1
|
Wang X, Dong Z, Li W, Xiao D, Liu G, Yu Z, Yin S, Liang M. A high-sensitivity continuous glucose sensor using porous 3D cellulose/ carbon nanotube network. Talanta 2025; 283:127201. [PMID: 39546834 DOI: 10.1016/j.talanta.2024.127201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/30/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
While numerous needle-based continuous glucose monitoring (CGM) devices have been available today, the insufficient enzyme immobilization on monitoring sensor severely limited the detection sensitivity of CGM devices. This manuscript describes here a high-sensitivity continuous glucose sensor (CGS) by engineering a porous 3D cellulose/carbon nanotube (CNT) network on the working electrode, which subcutaneously increases the detection enzyme capacity and thus significantly enhances the signal intensity and sensitivity. Furthermore, a tapered needle made of soft resin is engraved into three distinct microgrooves where the glucose oxidase (GOD)-modified working electrode, Pt-modified counter electrode, and Ag/AgCl-modified reference electrode are separately constructed inside the microgrooves. Moreover, a miniature potentiostat tailored for signal acquisition, processing, and transmission is engineered. After incorporated with a wireless circuit, the proposed CGS achieves continuous glucose monitoring in interstitial fluid with a surprising sensitivity of 9.15 μA/mM/cm2, as well as maintaining functionality for a period of up to 9 days in live rats. This work provides the public a high-sensitivity continuous glucose monitoring device.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhiyang Dong
- School of Bioengineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Wei Li
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - DanDan Xiao
- Shunyi Hospital, Beijing Traditional Chinese Medicine Hospital, No.1, Jiansheng Street, Shunyi District, Beijing, 101300, China
| | - Guodong Liu
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhiqiang Yu
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314000, China
| | - Sijie Yin
- School of Automation, Beijing Institute of Technology, Beijing, 100081, China.
| | - Minmin Liang
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
2
|
Ferreira LMC, Silva PS, Augusto KKL, Gomes-Júnior PC, Farra SOD, Silva TA, Fatibello-Filho O, Vicentini FC. Using nanostructured carbon black-based electrochemical (bio)sensors for pharmaceutical and biomedical analyses: A comprehensive review. J Pharm Biomed Anal 2022; 221:115032. [PMID: 36152488 DOI: 10.1016/j.jpba.2022.115032] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/28/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022]
Abstract
The outstanding electronic properties of carbon black (CB) and its economic advantages have fueled its application as nanostructured electrode material for the development of new electrochemical sensors and biosensors. CB-based electrochemical sensing devices have been found to exhibit high surface area, fast charge transfer kinetics, and excellent functionalization. In the present work, we set forth a comprehensive review of the recent advances made in the development and application of CB-based electrochemical devices for pharmaceutical and biomedical analyses - from quantitative monitoring of drug formulations to clinical diagnoses - and the underlying challenges and constraints that need to be overcome. We also present a thorough discussion about the strategies and techniques employed in the development of new electrochemical sensing platforms and in the enhancement of their analytical properties and biocompatibility for anchoring active biomolecules, as well as the combination of these sensing devices with other materials aiming at boosting the performance and efficiency of the sensors.
Collapse
Affiliation(s)
- Luís M C Ferreira
- Center of Nature Sciences, Federal University of São Carlos, Rod. Lauri Simões de Barros km 12, 18290-000 Buri, SP, Brazil
| | - Patrícia S Silva
- Department of Chemistry, Federal University of Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Karen K L Augusto
- Department of Chemistry, Federal University of São Carlos, Rod. Washington Luís km 235, São Carlos, SP, Brazil
| | - Paulo C Gomes-Júnior
- Department of Chemistry, Federal University of São Carlos, Rod. Washington Luís km 235, São Carlos, SP, Brazil
| | - Sinara O D Farra
- Center of Nature Sciences, Federal University of São Carlos, Rod. Lauri Simões de Barros km 12, 18290-000 Buri, SP, Brazil
| | - Tiago A Silva
- Department of Chemistry, Federal University of Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Orlando Fatibello-Filho
- Department of Chemistry, Federal University of São Carlos, Rod. Washington Luís km 235, São Carlos, SP, Brazil
| | - Fernando C Vicentini
- Center of Nature Sciences, Federal University of São Carlos, Rod. Lauri Simões de Barros km 12, 18290-000 Buri, SP, Brazil.
| |
Collapse
|
3
|
Li S, Chen H, Liu X, Li P, Wu W. Nanocellulose as a promising substrate for advanced sensors and their applications. Int J Biol Macromol 2022; 218:473-487. [PMID: 35870627 DOI: 10.1016/j.ijbiomac.2022.07.124] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 01/14/2023]
Abstract
Nanocellulose has broad and promising applications owing to its low density, large specific surface area, high mechanical strength, modifiability, renewability. Recently, nanocellulose has been widely used to fabricate flexible, durable and environmental-friendly sensor substrates. In this contribution, the construction and characteristics of nanocellulose-based sensors are comprehensively reviewed. Various nanocellulose-based sensors are summarized and divided into colorimetric, fluorescent, electronic, electrochemical and SERS types according to the sensing mechanism. This review also introduces the applications of nanocellulose-based sensors in the fields of biomedicine, environmental monitoring, food safety, and wearable devices.
Collapse
Affiliation(s)
- Sijie Li
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Haibo Chen
- School of Electronic and Information Engineering, Soochow University, Suzhou 215000, Jiangsu, China
| | - Xingyue Liu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Peng Li
- School of Electronic and Information Engineering, Soochow University, Suzhou 215000, Jiangsu, China.
| | - Weibing Wu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
4
|
Mishra PK, Pavelek O, Rasticova M, Mishra H, Ekielski A. Nanocellulose-Based Biomedical Scaffolds in Future Bioeconomy: A Techno-Legal Assessment of the State-of-the-Art. Front Bioeng Biotechnol 2022; 9:789603. [PMID: 35223812 PMCID: PMC8873513 DOI: 10.3389/fbioe.2021.789603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/24/2021] [Indexed: 11/28/2022] Open
Abstract
Nanocellulose is a broader term used for nano-scaled cellulosic crystal and/or fibrils of plant or animal origin. Where bacterial nanocellulose was immediately accepted in biomedicine due to its “cleaner” nature, the plant-based nanocellulose has seen several roadblocks. This manuscript assesses the technological aspects (chemistry of cellulose, nanocellulose producing methods, its purity, and biological properties including toxicity and suggested applications in final drug formulation) along with legal aspects in REACH (Registration, Evaluation, Authorization, and Restriction of Chemicals) regulation by the European Union, EMA (European Medicine Agency). The botanical biomass processing methods leading to the nanoscale impurity (lignin and others) on nanocellulose surface, along with surface modification with harsh acid treatments are found to be two major sources of “impurity” in botanical biomass derived nanocellulose. The status of nanocellulose under the light of REACH regulation along with EMA has been covered. The provided information can be directly used by material and biomedical scientists while developing new nanocellulose production strategies as well as formulation design for European markets.
Collapse
Affiliation(s)
- Pawan Kumar Mishra
- Faculty of Business and Economics, Mendel University in Brno, Brno, Czechia
- *Correspondence: Pawan Kumar Mishra,
| | - Ondrej Pavelek
- Faculty of Business and Economics, Mendel University in Brno, Brno, Czechia
| | - Martina Rasticova
- Faculty of Business and Economics, Mendel University in Brno, Brno, Czechia
| | - Harshita Mishra
- Smart Society Research Team, Faculty of Business and Economics, Mendel University in Brno, Brno, Czechia
| | - Adam Ekielski
- Department of Production Engineering, Warsaw University Of Life Sciences, Warsaw, Poland
| |
Collapse
|
5
|
Effect of nanocellulose polymorphism on electrochemical analytical performance in hybrid nanocomposites with non-oxidized single-walled carbon nanotubes. Mikrochim Acta 2022; 189:62. [PMID: 35031873 PMCID: PMC8816370 DOI: 10.1007/s00604-021-05161-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/28/2021] [Indexed: 11/03/2022]
Abstract
Two cellulose nanocrystals/single-walled carbon nanotube (CNC/SW) hybrids, using two cellulose polymorphs, were evaluated as electrochemical transducers: CNC type I (CNC-I/SW) and CNC type II (CNC-II/SW). They were synthesized and fully characterized, and their analytical performance as electrochemical sensors was carefully studied. In comparison with SWCNT-based and screen-printed carbon electrodes, CNC/SW sensors showed superior electroanalytical performance in terms of sensitivity and selectivity, not only in the detection of small metabolites (uric acid, dopamine, and tyrosine) but also in the detection of complex glycoproteins (alpha-1-acid glycoprotein (AGP)). More importantly, CNC-II/SW exhibited 20 times higher sensitivity than CNC-I/SW for AGP determination, yielding a LOD of 7 mg L-1.These results demonstrate the critical role played by nanocellulose polymorphism in the electrochemical performance of CNC/SW hybrid materials, opening new directions in the electrochemical sensing of these complex molecules. In general, these high-active-surface hybrids smartly exploited the preserved non-oxidized SW conductivity with the high aqueous dispersibility of the CNC, avoiding the use of organic solvents or the incorporation of toxic surfactants during their processing, making the CNC/SW hybrids promising nanomaterials for electrochemical detection following greener approaches.
Collapse
|
6
|
Tortorella S, Vetri Buratti V, Maturi M, Sambri L, Comes Franchini M, Locatelli E. Surface-Modified Nanocellulose for Application in Biomedical Engineering and Nanomedicine: A Review. Int J Nanomedicine 2020; 15:9909-9937. [PMID: 33335392 PMCID: PMC7737557 DOI: 10.2147/ijn.s266103] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/07/2020] [Indexed: 01/22/2023] Open
Abstract
Presently, a plenty of concerns related to the environment are due to the overuse of petroleum-based chemicals and products; the synthesis of functional materials, starting from the natural sources, is the current trend in research. The interest for nanocellulose has recently increased in a huge range of fields, from the material science to the biomedical engineering. Nanocellulose gained this leading role because of several reasons: its natural abundance on this planet, the excellent mechanical and optical features, the good biocompatibility and the attractive capability of undergoing surface chemical modifications. Nanocellulose surface tuning techniques are adopted by the high reactivity of the hydroxyl groups available; the chemical modifications are mainly performed to introduce either charged or hydrophobic moieties that include amination, esterification, oxidation, silylation, carboxymethylation, epoxidation, sulfonation, thiol- and azido-functional capability. Despite the several already published papers regarding nanocellulose, the aim of this review involves discussing the surface chemical functional capability of nanocellulose and the subsequent applications in the main areas of nanocellulose research, such as drug delivery, biosensing/bioimaging, tissue regeneration and bioprinting, according to these modifications. The final goal of this review is to provide a novel and unusual overview on this topic that is continuously under expansion for its intrinsic sophisticated properties.
Collapse
Affiliation(s)
- Silvia Tortorella
- Department of Industrial Chemistry “Toso Montanari”, Alma Mater Studiorum – University of Bologna, Bologna40136, Italy
| | - Veronica Vetri Buratti
- Department of Industrial Chemistry “Toso Montanari”, Alma Mater Studiorum – University of Bologna, Bologna40136, Italy
| | - Mirko Maturi
- Department of Industrial Chemistry “Toso Montanari”, Alma Mater Studiorum – University of Bologna, Bologna40136, Italy
| | - Letizia Sambri
- Department of Industrial Chemistry “Toso Montanari”, Alma Mater Studiorum – University of Bologna, Bologna40136, Italy
| | - Mauro Comes Franchini
- Department of Industrial Chemistry “Toso Montanari”, Alma Mater Studiorum – University of Bologna, Bologna40136, Italy
| | - Erica Locatelli
- Department of Industrial Chemistry “Toso Montanari”, Alma Mater Studiorum – University of Bologna, Bologna40136, Italy
| |
Collapse
|
7
|
Dai L, Wang Y, Zou X, Chen Z, Liu H, Ni Y. Ultrasensitive Physical, Bio, and Chemical Sensors Derived from 1-, 2-, and 3-D Nanocellulosic Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906567. [PMID: 32049432 DOI: 10.1002/smll.201906567] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/11/2020] [Indexed: 05/23/2023]
Abstract
Sensors are of increasing interest since they can be applied to daily life in different areas from various industrial sectors. As a natural nanomaterial, nanocellulose plays a vital role in the development of novel sensors, particularly in the context of constructing multidimensional architectures. This review summarizes the utilization of nanocellulose including cellulose nanofibers, cellulose nanocrystals, and bacterial cellulose for sensor design, mainly focusing on the influence of nanocellulose on the sensing performance of these sensors. Special attention is paid to nanocellulose in different forms (1D, 2D, and 3D) to highlight the impact of nanocellulose constructed structures. The aim is to provide a critical review on the most recent progress (especially after 2017) related to nanocellulose-containing sensors, since there are significantly increasing research activities in this area. Moreover, the outlook for the development of nanocellulose-containing sensors is also provided at the end of this work.
Collapse
Affiliation(s)
- Lei Dai
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an, 710021, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yan Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Xuejun Zou
- FPInnovations, 570 boul. St-Jean, Pointe-Claire, Quebec, H9R3J9, Canada
| | - Zhirong Chen
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan, 250022, China
| | - Yonghao Ni
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| |
Collapse
|
8
|
Naghdi T, Yousefi H, Sharifi AR, Golmohammadi H. Nanopaper-based sensors. COMPREHENSIVE ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/bs.coac.2020.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Hassannezhad M, Hosseini M, Ganjali MR, Arvand M. Electrochemical Sensor Based on Carbon Nanotubes Decorated with ZnFe
2
O
4
Nanoparticles Incorporated Carbon Paste Electrode for Determination of Metoclopramide and Indomethacin. ChemistrySelect 2019. [DOI: 10.1002/slct.201900959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Morassa Hassannezhad
- Center of Excellence in ElectrochemistrySchool of ChemistryCollege of ScienceUniversity of Tehran, Tehran Iran
| | - Morteza Hosseini
- Department of Life Science EngineeringFaculty of New Sciences & TechnologiesUniversity of Tehran, Tehran Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in ElectrochemistrySchool of ChemistryCollege of ScienceUniversity of Tehran, Tehran Iran
- Biosensor Research CenterEndocrinology and Metabolism Molecular-Cellular Sciences InstituteTehran University of Medical Sciences, Tehran Iran
| | - Majid Arvand
- Electroanalytical Chemistry LaboratoryFaculty of ChemistryUniversity of Guilan Iran
| |
Collapse
|
10
|
Shalauddin M, Akhter S, Basirun WJ, Bagheri S, Anuar NS, Johan MR. Hybrid nanocellulose/f-MWCNTs nanocomposite for the electrochemical sensing of diclofenac sodium in pharmaceutical drugs and biological fluids. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.03.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Ghalkhani M, Maghsoudi S, Saeedi R, Khaloo SS. Ultrasensitive quantification of paraquat using a newly developed sensor based on silver nanoparticle-decorated carbon nanotubes. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01605-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
Ghalkhani M, Khaloo SS, Mirzaie RA. Klonopin assay using modified electrode with multiwalled carbon nanotubes and poly melamine nanocomposite. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:121-128. [PMID: 30889656 DOI: 10.1016/j.msec.2019.01.102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/12/2019] [Accepted: 01/23/2019] [Indexed: 11/18/2022]
Abstract
Developing of cheap, sensitive and stable sensors plays a significant role in pharmaceutical and clinical applications. Considering the effective role of Klonopin (KNP) in the treatment of epilepsy, KNP quantification in its production process for dose adjustments and checking the purity and also after its usage by patents for bioavailability testing and effectiveness assay is vital. In present work, an efficient electrochemical sensor based on poly melamine and multiwalled carbon nanotubes nanocomposite (PMela/CNTs) was constructed which displayed effective electrochemical response toward KNP. Electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and square-wave voltammetry (SWV) experiments were applied for performance evaluation of the PMela/CNTs modified electrode and electrochemical redox behavior of KNP. Distinguish synergetic effect was observed between CNTs and poly melamine in response to KNP electrochemical redox reaction. A linear detection range of 0.05 to 10 μM with the detection limits of 63 nM was achieved for KNP analysis. The practical application of the PMela/CNTs modified electrode revealed satisfactory results for quantification of KNP in biological fluids.
Collapse
Affiliation(s)
- Masoumeh Ghalkhani
- Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Lavizan, P.O. Box 1678815811, Tehran, Iran.
| | - Shokooh Sadat Khaloo
- Department of Health, Safety and Environment, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Rasol Abdullah Mirzaie
- Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Lavizan, P.O. Box 1678815811, Tehran, Iran
| |
Collapse
|
13
|
|