1
|
Cruz-Zabalegui A, Tirado-Cantú P, Alvarado-Muñoz EJ, Alcantar-Peña JJ, Martínez-Saucedo G, Chávez-Urbiola IR. Microfabricated Ti/Ni electrodes for non-enzymatic glucose detection: Mechanistic insights and interference analysis in blood-mimicking conditions. Talanta 2025; 293:128050. [PMID: 40188674 DOI: 10.1016/j.talanta.2025.128050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/18/2025] [Accepted: 03/29/2025] [Indexed: 05/14/2025]
Abstract
Accurate glucose monitoring is essential for diabetes management, and while enzymatic sensors dominate the market, their limitations in stability and reliability under extreme conditions require alternative approaches. This study presents a non-enzymatic glucose sensor based on Ti/Ni electrodes fabricated via microfabrication techniques, designed to operate across a broad glucose concentration range (0-30 mM) and under physiological conditions. Electrochemical evaluations using cyclic voltammetry and chronoamperometry confirm the catalytic oxidation of glucose on Ni surfaces, demonstrating high sensitivity and selectivity. The sensor achieves a LoD of 1.29 mM, a LoQ of 3.93 mM, in alkaline solution. Interference analysis with common blood analytes such as uric acid, acetaminophen, and ascorbic acid, reveals that Ti/Ni electrodes outperform copper-based alternatives in minimizing cross-reactivity, meeting ISO 15197 standards for selectivity. Integrating NaOH-modified cellulose fibers for pH stabilization further supports the sensor's adaptability for in situ applications. These findings underscore the potential of Ti/Ni electrodes to enhance the development of stable, reliable, and non-enzymatic glucose sensors for clinical and wearable technologies.
Collapse
Affiliation(s)
- A Cruz-Zabalegui
- Centro de Ingeniería y Desarrollo Industrial, Avenida Playa Pie de la Cuesta #702, Santiago de Querétaro, 76125, Querétaro, Mexico
| | - P Tirado-Cantú
- Centro de Ingeniería y Desarrollo Industrial, Avenida Playa Pie de la Cuesta #702, Santiago de Querétaro, 76125, Querétaro, Mexico
| | - E J Alvarado-Muñoz
- Centro de Ingeniería y Desarrollo Industrial, Avenida Playa Pie de la Cuesta #702, Santiago de Querétaro, 76125, Querétaro, Mexico
| | - J J Alcantar-Peña
- Centro de Ingeniería y Desarrollo Industrial, Avenida Playa Pie de la Cuesta #702, Santiago de Querétaro, 76125, Querétaro, Mexico
| | - G Martínez-Saucedo
- Centro de Ingeniería y Desarrollo Industrial, Avenida Playa Pie de la Cuesta #702, Santiago de Querétaro, 76125, Querétaro, Mexico
| | - I R Chávez-Urbiola
- Centro de Ingeniería y Desarrollo Industrial, Avenida Playa Pie de la Cuesta #702, Santiago de Querétaro, 76125, Querétaro, Mexico.
| |
Collapse
|
2
|
Kim SE, Sankar K, Yoon JC, Muthurasu A, Kim HY. Integration of Carboxylate Carbon Dot-Supported Gold Nanoparticles with Boron Nitride Nanosheets for Electrochemical Sensing of Prostate-Specific Antigen via Sandwich Immunoassays. ACS APPLIED BIO MATERIALS 2025; 8:4153-4165. [PMID: 40228088 DOI: 10.1021/acsabm.5c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
An electrochemical sandwich immunoassay was fabricated to measure the prostate-specific antigen (PSA) biomarker. The PSA immunosensor was developed by altering the surface of a glassy carbon electrode (GCE) with a nanocomposite comprising carboxyl-functionalized carbon dots that support gold nanoparticles (AuNPs), which were then combined with hydroxylated boron nitride nanosheets (HO-BN). This construction possesses distinctive signal enhancement characteristics and was prepared via a facile method. Considering the high biological affinity of AuNPs for biomolecules, carbon dots (CDs) with carboxyl (COOH) groups make a suitable substrate for electrode modification. This alteration allows for the PSA antibody (Ab1) attachment, resulting in a sandwich-like configuration. Additionally, carbon dot-stabilized AuNPs integrated into HO-BN nanosheet nanocomposites considerably boost the electron transfer rate, leading to remarkable potential in sensor applications. By utilizing horseradish peroxidase (HRP)-conjugated antifree PSA antibody (Ab2), a reduction in hydrogen peroxide (H2O2) was achieved within the electrochemical cell. This reduction led to increased current, attributed to the increased PSA concentration, which is required for the biosensor analysis to perform properly. The developed immunosensor revealed a linear correlation with PSA concentrations ranging from 1.0 to 3500 pg mL-1, achieving a low detection limit of 0.136 pg mL-1. Furthermore, the PSA aptasensor demonstrates excellent selectivity, remarkable stability, and commendable reproducibility, indicating its significant potential for clinical research and diagnostic applications.
Collapse
Affiliation(s)
- So Eun Kim
- Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, South Korea
| | - Kathannan Sankar
- Division of Animal Disease and Health, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Jae Chol Yoon
- Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, South Korea
| | - Alagan Muthurasu
- Department of Nano Convergence Technology, Jeonbuk National University, Jeonju 561-756, Republic of Korea
- Department of Organic Materials and Fiber Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Hak Yong Kim
- Department of Nano Convergence Technology, Jeonbuk National University, Jeonju 561-756, Republic of Korea
- Department of Organic Materials and Fiber Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| |
Collapse
|
3
|
Xu Z, Ouyang H, Zhao S, Wang X, Huo X, He D, Liu R. Electroactive Fe 3O 4/α-Fe 2O 3@Au nanocomposites driven label-free electrochemical aptasensor with magnetic self-assembly for rapid quantification of alpha-fetoprotein. Mikrochim Acta 2025; 192:361. [PMID: 40381048 DOI: 10.1007/s00604-025-07173-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/12/2025] [Indexed: 05/19/2025]
Abstract
Alpha-fetoprotein (AFP) is a crucial biomarker for several cancers' diagnosis, especially hepatocellular carcinoma; therefore, early accurate detection of AFP is of vital significance. Herein, a label-free electrochemical aptasensor with magnetic self-assembly of heterogeneous Fe3O4/α-Fe2O3 nanosheets is presented for rapid and accurate detection of AFP. The sensor was mainly designed by loading Au nanoparticles (AuNPs) on the surface of Fe3O4/α-Fe2O3 nanosheets and further binding with aptamer probes through Au-S bonds, and the target could be captured by the high affinity and specificity with the aptamer. Furthermore, owing to the excellent superparamagnetization of Fe3O4/α-Fe2O3@Au nanocomposites, rapid magnetic separation and magnetic self-assembly could be realized, actualizing quantitative determination of AFP through current changes. Under optimal conditions, the aptasensor exhibited excellent quantitative determination performance in the 10 pg/mL to 1 μg/mL range, and the detection limit was 1.31 pg/mL. In addition, the aptasensor demonstrated favorable reproducibility, stability, selectivity, and achieved satisfactory recovery (97.34-104.60%) in human serum samples, providing a practical strategy for clinical detection of AFP.
Collapse
Affiliation(s)
- Zhihao Xu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Hezhong Ouyang
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, 212300, People's Republic of China
| | - Sihan Zhao
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Xinyu Wang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Xiangdong Huo
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| | - Dawei He
- Affiliated Kunshan Hospital, Jiangsu University, Suzhou, 215300, People's Republic of China.
| | - Ruijiang Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
4
|
Cao X, Yuan C, Yu Q, Wu J, Ju H. Highly Sensitive and Diversified Electrochemiluminescence DNA Methylation Biosensing Platform Based on Self-Assembly of Nanotags. Anal Chem 2025; 97:9920-9926. [PMID: 40298452 DOI: 10.1021/acs.analchem.5c00516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
This work proposes a highly sensitive, simple, and reliable electrochemiluminescence (ECL) DNA methylation biosensing platform by employing DNA-functionalized magnetic beads (DNA-MBs) for target capture and nanotag self-assembly aggregation for signal amplification. The target methylated DNA was first captured on DNA-MBs through base pairing recognition, and then its methylation sites were recognized by antibody-5mC (Ab-5mC). Afterward, a pair of antibodies functionalized [Ru(byp)3]2+-doped silica nanoparticles (Ab2-Ru@SiO2 and Ab3-Ru@SiO2) was layer-by-layer assembled on Ab-5mC for amplified signal transduction. The sensing beads could be transferred to screen-printed carbon electrodes (SPCEs) for ECL curve detection via photomultiplier tube or to gold-coated indium tin oxide (Au/ITO) arrays for high-throughput imaging detection. As the nanotag assembly layers increased from 1 to 3, the detection sensitivities of SPCE-based curve detection and Au/ITO-based imaging detection were enhanced 7-fold and 3-fold, achieving detection limits down to 0.8 pM and 0.9 fM, respectively. The nanotags showed good stability, with storage times of 300 days for Ru@SiO2 and 60 days for Ab-Ru@SiO2, respectively. This method is universal and could be applied to detect different methylated DNAs by using their corresponding DNA-MBs. The proposed ECL biosensing platform possessed advantages of high sensitivity, good diversity, and practicality, showing potential for high-throughput DNA methylation detection in clinical diagnosis.
Collapse
Affiliation(s)
- Xu Cao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chen Yuan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qian Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jie Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
5
|
Xie Q, Wu D, Chen Q, Liang H, Wang L, Qiu X. Novel paper sensor with modified aptamer for accurate detection of clinical cardiac troponin I. NANOSCALE 2025; 17:7412-7422. [PMID: 39998327 DOI: 10.1039/d5nr00073d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Accurate and rapid detection of Cardiac Troponin I (CTnI) is essential for the early diagnosis and timely management of myocardial infarction (MI). However, conventional detection methods relying on antigen-antibody interactions often face challenges such as high costs and lengthy procedures. Novel detection methods based on antigen-aptamer interactions offer a potentially superior alternative. Nevertheless, the performance of antigen-aptamer sensors is typically compromised by the unstable structure of aptamers, resulting in limited sensitivity and inconsistent specificity in CTnI detection. To address these issues, we have developed an innovative aptamer structure to construct a paper-based sensor comprising a paper electrode and a CTnI aptamer detection module. The paper electrode employs PEDOT:PSS to uniformly distribute single-walled carbon nanotubes (SWCNTs) at high concentrations on filter paper. The detection module utilizes modified CTnI aptamers with a continuous (AT)5 sequence in the anchor domain to enhance stable immobilization on SWCNTs without chemical reactions. We discovered that incorporating appropriate 18-atom hexa-ethylene glycol spacers (Sp18) between the protein-capture and anchor domains of the aptamers can improve the sensitivity of the current response for CTnI detection. Through the optimization of annealing temperature and duration, the paper sensor Aps3-CTnI-PS@CP, which integrates (AT)5 and three Sp18 into the aptamer, demonstrated enhanced sensitivity and specificity for CTnI detection. When applied to clinical samples, Aps3-CTnI-PS@CP exhibited a favorable receiver operating characteristic (ROC) curve, with an area under the curve (AUC) of 0.982, a sensitivity of 0.917, and a specificity of 0.945 for CTnI detection. This performance correlates strongly with traditional chemiluminescence immunoassay (CLIA) assays used in clinical settings. The straightforward fabrication process and minimal batch-to-batch variability make Aps3-CTnI-PS@CP a promising candidate for clinical aptamer-based CTnI detection.
Collapse
Affiliation(s)
- Qing Xie
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangdong 510515, Guangzhou, China.
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Danfeng Wu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangdong 510515, Guangzhou, China.
| | - Qinran Chen
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science; Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Haiyan Liang
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Leyu Wang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science; Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Xiaozhong Qiu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangdong 510515, Guangzhou, China.
| |
Collapse
|
6
|
Cheng H, Wang Y, Cheng Z, Zhang G, Hou H, Bi J, Yan S, Hao H. Self-powered multifunctional platform based on dual-photoelectrode for dual-mode detection and inactivation of Salmonella enteritidis. Biosens Bioelectron 2024; 265:116705. [PMID: 39182412 DOI: 10.1016/j.bios.2024.116705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/11/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Self-powered photoelectrochemical (PEC) sensing is a novel sensing modality. The introduction of dual-mode sensing and photoelectrocatalysis in a self-powered system enables both detection and sterilization purposes. To this end, herein, a self-powered multifunctional platform for the photoelectrochemical-fluorescence (PEC-FL) detection and in-situ inactivation of Salmonella enteritidis (SE) was constructed. The platform utilized Bi4NbO8Cl/V2CTx/FTO as a photoanode and CuInS2/FTO as a photocathode and incubated quantum dot (QDs) signaling probes on the surface of the photocathode. During detection, the system drives the transfer of photogenerated electrons between the dual photoelectrodes through the Fermi energy level difference. The photoanode amplifies the photoelectric signal, while the photocathode is solely dedicated to the immune recognition process. QDs provide an additional fluorescence signal to the system. Under optimal experimental conditions, the multifunctional platform achieves detection limits of 3.2 and 5.3 CFU/mL in PEC and FL modes respectively, with a detection range of 2.91 × 102 to 2.91 × 108 CFU/mL. With the application of an external bias voltage, it further promotes electron transfer between the dual photoelectrodes, inhibits the recombination of photogenerated electrons and holes. It generates a significant amount of superoxide radicals (·O2-) in the cathodic region, resulting in strong sterilization efficiency (99%). The constructed self-powered multifunctional platform exhibits high sensitivity and sterilization efficiency, it provides a feasible and effective strategy to enhance the comprehensive capability of self-powered sensors.
Collapse
Affiliation(s)
- Haoran Cheng
- Department of Inorganic Nonmetallic Materials Engineering, Dalian Polytechnic University, Dalian, 116034, China; Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian Polytechnic University, Dalian, 116034, China
| | - Yifan Wang
- Department of Inorganic Nonmetallic Materials Engineering, Dalian Polytechnic University, Dalian, 116034, China; Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian Polytechnic University, Dalian, 116034, China
| | - Ze Cheng
- Department of Inorganic Nonmetallic Materials Engineering, Dalian Polytechnic University, Dalian, 116034, China; Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian Polytechnic University, Dalian, 116034, China
| | - Gongliang Zhang
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian Polytechnic University, Dalian, 116034, China
| | - Hongman Hou
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian Polytechnic University, Dalian, 116034, China
| | - Jingran Bi
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian Polytechnic University, Dalian, 116034, China
| | - Shuang Yan
- Department of Inorganic Nonmetallic Materials Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Hongshun Hao
- Department of Inorganic Nonmetallic Materials Engineering, Dalian Polytechnic University, Dalian, 116034, China; Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
7
|
Zhao S, Deng P, Ma M, Xu Z, He A, Liu R. A type of self-assembled and label-free DNA-modified electrochemical biosensors based on magnetic α-Fe 2O 3/Fe 3O 4 heterogeneous nanorods for ultra-sensitive detection of CYP2C19*3. Bioelectrochemistry 2024; 160:108792. [PMID: 39126818 DOI: 10.1016/j.bioelechem.2024.108792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
CYP2C19*3 enzyme plays a pivotal role in drug metabolism and is tightly regulated by the CYP2C19*3 gene. Therefore, quantification of CYP2C19*3 gene holds paramount importance for achieving personalized medication guidance in precision medicine. In this project, the magnetic electrochemical biosensors were constructed for the ultra-sensitive detection of CYP2C19*3 gene. Employing magnetic α-Fe2O3/Fe3O4@Au as the matrixes for signal amplification, CYP2C19*3 complementary chains (c-ssDNA) were bound to their surfaces through gold-sulfur bonds with subsequent specific sites blockade by bovine serum albumin (BSA) to form the α-Fe2O3/Fe3O4@Au/c-ssDNA/BSA biosensors. This design enabled efficient biosensors separation, target gene capture, and self-assembly on the electrode surface, enhancing the response signal. The biosensors exhibited excellent capture capabilities with a wide linear range (1 pM-1 μM), a low detection limit of 0.2710 pM, a quantitation limit of 0.9033 pM, reproducibility with an RSD value of 1.26 %, and stable storage for at least one week. The RSD value of CYP2C19*3 in serum samples consistently remained below 4.5 %, with a recovery rate ranging 95.52 % from 102.71 %. Moreover, the target gene could be accurately identified and captured in a mixed system of multiple nucleotide mutants of the CYP2C19*3 gene, suggesting a promising applicability and popularization.
Collapse
Affiliation(s)
- Sihan Zhao
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Peng Deng
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang 212300, PR China
| | - Mingyi Ma
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhihao Xu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Aolin He
- Affiliated Kunshan Hospital, Jiangsu University, Suzhou 215300, PR China
| | - Ruijiang Liu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
8
|
Hewson AR, Lloyd-Laney HO, Keenan T, Richards SJ, Gibson MI, Linclau B, Signoret N, Fascione MA, Parkin A. Harnessing glycofluoroforms for impedimetric biosensing. Chem Sci 2024; 15:d4sc04409f. [PMID: 39282644 PMCID: PMC11393611 DOI: 10.1039/d4sc04409f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
Glycans play a major role in biological cell-cell recognition and signal transduction but have found limited application in biosensors due to glycan/lectin promiscuity; multiple proteins are capable of binding to the same native glycan. Here, site-specific fluorination is used to introduce protein-glycan selectivity, and this is coupled with an electrochemical detection method to generate a novel biosensor platform. 3F-lacto-N-biose glycofluoroform is installed onto polymer tethers, which are subsequently immobilised onto gold screen printed electrodes, providing a non-fouling surface. The impedance biosensing platform is shown to selectively bind cancer-associated galectin-3 compared to control glycans and proteins. To improve the analytical capability, Bayesian statistical analysis was deployed in the equivalent circuit fitting of electrochemical impedance spectroscopy data. It is shown that Markov Chain Monte Carlo (MCMC) analysis is a helpful method for visualising experimental irreproducibility, and we apply this as a quality control step.
Collapse
Affiliation(s)
- Alice R Hewson
- Department of Chemistry, University of York YO10 5DD York UK
| | | | - Tessa Keenan
- Department of Chemistry, University of York YO10 5DD York UK
| | - Sarah-Jane Richards
- Department of Chemistry, The University of Manchester M13 9PL UK
- Manchester Institute of Biotechnology, The University of Manchester M1 7DN UK
| | - Matthew I Gibson
- Department of Chemistry, The University of Manchester M13 9PL UK
- Manchester Institute of Biotechnology, The University of Manchester M1 7DN UK
| | - Bruno Linclau
- Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-S4 9000 Gent Belgium
- School of Chemistry, University of Southampton Highfield Southampton SO17 1BJ UK
| | | | | | - Alison Parkin
- Department of Chemistry, University of York YO10 5DD York UK
| |
Collapse
|
9
|
Wang R, He B, Wang Y, Liu Y, Liang Z, Jin H, Wei M, Ren W, Suo Z, Xu Y. A novel electrochemical aptasensor based on AgPdNPs/PEI-GO and hollow nanobox-like Pt@Ni-CoHNBs for procymidone detection. Bioelectrochemistry 2024; 158:108728. [PMID: 38733721 DOI: 10.1016/j.bioelechem.2024.108728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
Herein, an aptasensor based on a signal amplification strategy was developed for the sensitive detection of procymidone (PCM). AgPd nanoparticles/Polenimine Graphite oxide (AgPdNPs/PEI-GO) was weaned as electrode modification material to facilitate electron transport and increase the active sites on the electrode surface. Besides, Pt@Ni-Co nanoboxes (Pt@Ni-CoHNBs) were utilized to be carriers for signaling tags, after hollowing ZIF-67 and growing Pt, the resulting Pt@Ni-CoHNBs has a tremendous amounts of folds occurred on the surface, enables it to carry a larger quantity of thionine, thus amplify the detectable electrochemical signal. In the presence of PCM, the binding of PCM to the signal probe would trigger a change in electrical signal. The aptasensor was demonstrated with excellent sensitivity and a low detection limit of 0.98 pg·mL-1, along with a wide linear range of 1 μg·mL-1 to 1 pg·mL-1. Meanwhile, the specificity, stability and reproducibility of the constructed aptasensor were proved to be satisfactory.
Collapse
Affiliation(s)
- Ruonan Wang
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Baoshan He
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| | - Yuling Wang
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Yao Liu
- Henan Scientific Research Platform Service Center, Zhengzhou, Henan 450003, PR China
| | - Zhengyong Liang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Huali Jin
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Min Wei
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Wenjie Ren
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Zhiguang Suo
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Yiwei Xu
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| |
Collapse
|
10
|
Wang J, Ouyang H, Ni Y, Zhang H, Sun L, Liu R, Li S. Magnetic self-assembled label-free electrochemical biosensor based on Fe 3O 4/α-Fe 2O 3 heterogeneous nanosheets for the detection of Tau proteins. Bioelectrochemistry 2024; 157:108678. [PMID: 38452441 DOI: 10.1016/j.bioelechem.2024.108678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/25/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
A type of electrochemical biosensors based on magnetic Fe3O4/α-Fe2O3 heterogeneous nanosheets was constructed to detect Tau proteins for early diagnosis and intervention therapy of Alzheimer's disease (AD). Firstly, Fe3O4/α-Fe2O3 heterogeneous nanosheets were fabricated as the substrate to realize magnetic self-assembly and magnetic separation to improve current response, and Fe3O4/α-Fe2O3@Au-Apt/ssDNA/MCH biosensors were successfully constructed through the reduction process of chloroauric acid, the immobilizations of aptamer (Apt) and ssDNA, and the intercept process of 6-Mercapto-1-hexanol (MCH); the construction process of the electrochemical biosensor was monitored using Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), and the factors affecting the current response of this sensor (concentration of Fe3O4/α-Fe2O3@Au and Apt/ssDNA, incubation temperature and time of Tau) were explored and optimized using differential pulse voltammetry (DPV). Analyzing the performance of this sensor under optimal conditions, the linear range was finally obtained to be 0.1 pg/mL-10 ng/mL, the limit of detection (LOD) was 0.08 pg/mL, and the limit of quantification (LOQ) was 0.28 pg/mL. The selectivity, reproducibility and stability of the biosensors were further investigated, and in a really sample analysis using human serum, the recoveries were obtained in the range of 93.93 %-107.39 %, with RSD ranging from 1.05 % to 1.94 %.
Collapse
Affiliation(s)
- Jie Wang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Hezhong Ouyang
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang 212300, PR China
| | - Yun Ni
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Haoda Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Lei Sun
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Ruijiang Liu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China.
| | - Shasha Li
- Affiliated Kunshan Hospital, Jiangsu University, Suzhou 215300, PR China.
| |
Collapse
|
11
|
Zheng D, Zhang R, Zheng K, Zhang C, Chen J, Wang C, Sun S, Lin S. A hair-ball heterostructure of MnS-MnS 2/CdS with compact linking interface for ultrasensitive photoelectrochemical bioanalysis of carcinoembryonic antigen. Bioelectrochemistry 2024; 155:108586. [PMID: 37844392 DOI: 10.1016/j.bioelechem.2023.108586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/18/2023]
Abstract
The heterostructured photoelectric material is supposed to markedly promote the photoelectrochemical (PEC) property. Herein, the species heterostructured MnS/CdS and MnS-MnS2/CdS(1∼2) composites derived from Mn-ZIF MOFs via a sulfofication reaction using Cd(NO3)2, CdC12 cadmium source, respectively. Under irradiation, the PEC tests showed that the photocurrent response of MnS-MnS2/CdS(1∼2) signally enhanced compared to globose MnS/CdS heterostructure and pure MnS or CdS. It was ascribed to the matching band-gap to form type II heterojunction in MnS-MnS2/CdS(1∼2) which dramatically facilitated photo-induced electron/hole (e-/h+) separation and transfer. The hair-ball morphologies structure of MnS-MnS2/CdS(1∼2) with large number of pores was beneficial to improve penetrating efficiency of the electrolyte liquid. Meanwhile, the well-synergistic effect on the MnS, MnS2, CdS components and with tight connecting heterojunction interface among MnS-MnS2/CdS(1∼2) which also led to violently photocurrent output. Besides, the chitosan (CS) was covalently coupled with glutaraldehyde (GLD) to obtain steady composite film, and the cross-linker of GLD can achieve the high efficiency to graft the Apt-CEA (aptamer) biomolecules, which resulting in the promotion of hybridization reaction efficiency of the CEA target. Hence, this created biosensor of Apt-CEA/GLD-CS/MnS-MnS2/CdS(1)/ITO for the CEA detection displayed a wide linear range from 0.001 to 18 ng mL-1 and with ultralow detection limit of 0.313 pg mL-1. This research innovatively prepared a contact heterojunction interface with special porosities structure, which had superior PEC nature for the fabrication of high-performance biosensor.
Collapse
Affiliation(s)
- Delun Zheng
- College of Construction and Ecology, Shantou Polytechnic, Shantou, Guangdong 515078, PR China.
| | - Ruilong Zhang
- College of Construction and Ecology, Shantou Polytechnic, Shantou, Guangdong 515078, PR China
| | - Kaibo Zheng
- College of Construction and Ecology, Shantou Polytechnic, Shantou, Guangdong 515078, PR China
| | - Caiyun Zhang
- College of Construction and Ecology, Shantou Polytechnic, Shantou, Guangdong 515078, PR China
| | - Jianqiao Chen
- College of Construction and Ecology, Shantou Polytechnic, Shantou, Guangdong 515078, PR China
| | - Chengwen Wang
- College of Construction and Ecology, Shantou Polytechnic, Shantou, Guangdong 515078, PR China
| | - Shaochen Sun
- College of Construction and Ecology, Shantou Polytechnic, Shantou, Guangdong 515078, PR China
| | - Sihan Lin
- College of Construction and Ecology, Shantou Polytechnic, Shantou, Guangdong 515078, PR China
| |
Collapse
|
12
|
Zhang Y, Wang J, Liu M, Ni Y, Yue Y, He D, Liu R. Magnetically induced self-assembly electrochemical biosensor with ultra-low detection limit and extended measuring range for sensitive detection of HER2 protein. Bioelectrochemistry 2024; 155:108592. [PMID: 37925821 DOI: 10.1016/j.bioelechem.2023.108592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
An innovative electrochemical biosensor was fabricated for sensitive detection of human epidermal growth factor receptor 2 (HER2) protein, which was considered as an essential tumor marker for diagnosis and treatment evaluation of breast cancer. The sensor was constructed using Apt and PNA as recognition probes incorporated with magnetic Fe3O4/α-Fe2O3@Au nanocomposites. The sensing strategy was designed to lower the detection limit of HER2, and avoid the large steric interference caused by macromolecular HER2 on the electrode surface. Rigid structure dsDNA (Apt/ssDNA) was designed to improve the sensitivity of the sensor. Apt captured the macromolecular HER2 protein, and ssDNA chains were simultaneously released, causing a sensitive change in the electrochemical signal. PNA captured the released ssDNA chains, which converted the electrochemical signal changes caused by HER2 to those caused by the number of short strand ssDNA, so the detection range was extended. Under optimized conditions, this sensing strategy realized an ultra-low detection LOD of HER2 (4.1 fg·mL-1), and the detection range was 10 fg·mL-1-5 × 106 fg·mL-1. The experimental results confirmed that the electrochemical biosensor had excellent selectivity, reproducibility, and storage stability. Analysis of spiked serum samples exhibited a recovery rate of 95.9-115.7 %, which indicated great promise for HER2 detection in serum samples.
Collapse
Affiliation(s)
- Yanling Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Jie Wang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Min Liu
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang 212300, PR China
| | - Yun Ni
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Yao Yue
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Dawei He
- Affiliated Kunshan Hospital, Jiangsu University, Suzhou 215300, PR China.
| | - Ruijiang Liu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
13
|
Li W, Wang W, Luo S, Chen S, Ji T, Li N, Pan W, Zhang X, Wang X, Li K, Zhang Y, Yan X. A sensitive and rapid electrochemical biosensor for sEV-miRNA detection based on domino-type localized catalytic hairpin assembly. J Nanobiotechnology 2023; 21:328. [PMID: 37689652 PMCID: PMC10492399 DOI: 10.1186/s12951-023-02092-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/31/2023] [Indexed: 09/11/2023] Open
Abstract
Small extracellular-vesicule-associated microRNA (sEV-miRNA) is an important biomarker for cancer diagnosis. However, rapid and sensitive detection of low-abundance sEV-miRNA in clinical samples is challenging. Herein, a simple electrochemical biosensor that uses a DNA nanowire to localize catalytic hairpin assembly (CHA), also called domino-type localized catalytic hairpin assembly (DT-LCHA), has been proposed for sEV-miRNA1246 detection. The DT-LCHA offers triple amplification, (i). CHA system was localized in DNA nanowire, which shorten the distance between hairpin substrate, inducing the high collision efficiency of H1 and H2 and domino effect. Then, larger numbers of CHAs were triggered, capture probe bind DT-LCHA by exposed c sites. (ii) The DNA nanowire can load large number of electroactive substance RuHex as amplified electrochemical signal tags. (iii) multiple DT-LCHA was carried by the DNA nanowire, only one CHA was triggered, the DNA nanowire was trapped by the capture probe, which greatly improve the detection sensitivity, especially when the target concentration is extremely low. Owing to the triple signal amplification in this strategy, sEV-miRNA at a concentration of as low as 24.55 aM can be detected in 20 min with good specificity. The accuracy of the measurements was also confirmed using reverse transcription quantitative polymerase chain reaction. Furthermore, the platform showed good performance in discriminating healthy donors from patients with early gastric cancer (area under the curve [AUC]: 0.96) and was equally able to discriminate between benign gastric tumors and early cancers (AUC: 0.77). Thus, the platform has substantial potential in biosensing and clinical diagnosis.
Collapse
Affiliation(s)
- Wenbin Li
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Wen Wang
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen University, Shenzhen, 518001, People's Republic of China
| | - Shihua Luo
- Center for Clinical Laboratory Diagnosis and Research, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, People's Republic of China
| | - Siting Chen
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Tingting Ji
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Ningcen Li
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Weilun Pan
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Xiaohe Zhang
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Xiaojing Wang
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Ke Li
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Ye Zhang
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China.
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| | - Xiaohui Yan
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China.
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
14
|
Soltani-Shahrivar M, Afkhami A, Madrakian T, Jalal NR. Sensitive and selective impedimetric determination of TNT using RSM-CCD optimization. Talanta 2023; 257:124381. [PMID: 36801757 DOI: 10.1016/j.talanta.2023.124381] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/05/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023]
Abstract
Detection of trace amounts of 2,4,6-Trinitrotoluene as a widely used explosive in the military and industrial sectors is of vital importance due to security and environmental concerns. The sensitive and selective measurement characteristics of the compound still is considered a challenge for analytical chemists. Unlike conventional optical and electrochemical methods, the electrochemical impedance spectroscopy technique (EIS), has a very high sensitivity, but it faces a significant challenge in that it requires complex and expensive steps to modify the electrode surface with selective agents. We reported the design and construction of an inexpensive, simple, sensitive, and selective impedimetric electrochemical TNT sensor based on the formation of a Meisenheimer complex between magnetic multiwalled carbon nanotubes modified with aminopropyl triethoxysilane (MMWCNTs @ APTES) and TNT. The formation of the mentioned charge transfer complex at the electrode-solution interface blocks the electrode surface and disrupts the charge transfer in [(Fe (CN) 6)] 3-/4- redox probe system. Charge transfer resistance changes (ΔRCT) were used as an analytical response that corresponded to TNT concentration. To investigate the influence of effective parameters on the electrode response, such as pH, contact time, and modifier percentage, the response surface methodology based on central composite design (RSM-CCD) was used. The calibration curve was achieved in the range of 1-500 nM with a detection limit of 0.15 nM under optimal conditions, which included pH of 8.29, contact time of 479 s, and modifier percentage of 12.38% (w/w). The selectivity of the constructed electrode towards several nitroaromatic species was investigated, and no significant interference was found. Finally, the proposed sensor was able to successfully measure TNT in various water samples with satisfactory recovery percentages.
Collapse
Affiliation(s)
| | - Abbas Afkhami
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran; D-8 International University, Hamedan, Iran.
| | | | | |
Collapse
|
15
|
Alrashidi A, El-Sherif AM, Ahmed J, Faisal M, Alsaiari M, Algethami JS, Moustafa MI, Abahussain AAM, Harraz FA. A Sensitive Hydroquinone Amperometric Sensor Based on a Novel Palladium Nanoparticle/Porous Silicon/Polypyrrole-Carbon Black Nanocomposite. BIOSENSORS 2023; 13:178. [PMID: 36831944 PMCID: PMC9953257 DOI: 10.3390/bios13020178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Exposure to hydroquinone (HQ) can cause various health hazards and negative impacts on the environment. Therefore, we developed an efficient electrochemical sensor to detect and quantify HQ based on palladium nanoparticles deposited in a porous silicon-polypyrrole-carbon black nanocomposite (Pd@PSi-PPy-C)-fabricated glassy carbon electrode. The structural and morphological characteristics of the newly fabricated Pd@PSi-PPy-C nanocomposite were investigated utilizing FESEM, TEM, EDS, XPS, XRD, and FTIR spectroscopy. The exceptionally higher sensitivity of 3.0156 μAμM-1 cm-2 and a low limit of detection (LOD) of 0.074 μM were achieved for this innovative electrochemical HQ sensor. Applying this novel modified electrode, we could detect wide-ranging HQ (1-450 μM) in neutral pH media. This newly fabricated HQ sensor showed satisfactory outcomes during the real sample investigations. During the analytical investigation, the Pd@PSi-PPy-C/GCE sensor demonstrated excellent reproducibility, repeatability, and stability. Hence, this work can be an effective method in developing a sensitive electrochemical sensor to detect harmful phenol derivatives for the green environment.
Collapse
Affiliation(s)
- Abdullah Alrashidi
- Engineering College, Northern Border University, Arar 91431, Saudi Arabia
| | - Anas M. El-Sherif
- Engineering College, Northern Border University, Arar 91431, Saudi Arabia
| | - Jahir Ahmed
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
- Department of Chemistry, Faculty of Science and Arts, Najran University, Najran 11001, Saudi Arabia
| | - M. Faisal
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
- Department of Chemistry, Faculty of Science and Arts, Najran University, Najran 11001, Saudi Arabia
| | - Mabkhoot Alsaiari
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
- Empty Quarter Research Unit, Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Sharurah 68342, Saudi Arabia
| | - Jari S. Algethami
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
- Department of Chemistry, Faculty of Science and Arts, Najran University, Najran 11001, Saudi Arabia
| | | | - Abdulaziz A. M. Abahussain
- Department of Chemical Engineering, College of Engineering, King Saud University, Riyadh 11451, Saudi Arabia
| | - Farid A. Harraz
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
- Empty Quarter Research Unit, Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Sharurah 68342, Saudi Arabia
| |
Collapse
|
16
|
Khoshfetrat SM, Seyed Dorraji P, Shayan M, Khatami F, Omidfar K. Smartphone-Based Electrochemiluminescence for Visual Simultaneous Detection of RASSF1A and SLC5A8 Tumor Suppressor Gene Methylation in Thyroid Cancer Patient Plasma. Anal Chem 2022; 94:8005-8013. [PMID: 35616262 DOI: 10.1021/acs.analchem.2c01132] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Visual one-step simultaneous detection of low-abundance methylation is a crucial challenge in early cancer diagnosis in a simple manner. Through the design of a closed split bipolar electrochemistry system (BE), detection of promoter methylation of tumor suppressor genes in papillary thyroid cancer, RASSF1A and SLC5A8, was achieved using electrochemiluminescence. For this purpose, electrochemiluminescence of luminol loaded into the Fe3O4@UiO-66 and gold nanorod-functionalized graphite-like carbon nitride nanosheet (AuNRs@C3N4 NS), separately, on the anodic and cathodic pole bipolar electrodes (BPEs) in two different chambers of a bipolar cell were recorded on a smartphone camera. To provide the same electric potential (ΔEelec) through the BPEs to conduct simultaneous light emission, as well as to achieve higher sensitivity, anodic and cathodic poles BPEs were separately connected to ruthenium nanoparticles electrodeposited on nitrogen-doped graphene-coated Cu foam (fCu/N-GN/RuNPs) to provide a hydrogen evolution reaction (HER) and polycatechol-modified reduced graphene oxide/pencil graphite electrode (PC-rGO/PGE) to provide electrooxidation of hydrazine. Moreover, taking advantages of the strong cathodic ECL activity due to the roles of AuNRs, as well as the high density of capture probes on the UiO-66 and Fe3O4 roles in improving the signal-to-background ratio (S/B) in complicated plasma media, a sensitive visual ECL immunosensor was developed to detect two different genes as model target analytes in patient plasma samples. The ability of discrimination of methylation levels as low as 0.01% and above 90% clinical sensitivity in thyroid cancer patient plasma implies that the present strategy is able to diagnose cancer early, as well as monitor responses of patients to therapeutic agents.
Collapse
Affiliation(s)
- Seyyed Mehdi Khoshfetrat
- Department of Chemistry, Faculty of Basic Science, Ayatollah Boroujerdi University, Boroujerd 6869199-69737, Iran.,Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, P.O. Box 1411713137, Islamic Republic of Iran
| | - Parisa Seyed Dorraji
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran 199389373, Iran
| | - Mohsen Shayan
- Department of Chemistry, Dalhousie University, 6274 Coburg Road B3H 4R2 Halifax, Canada
| | - Fatemeh Khatami
- Urology Research Center, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Kobra Omidfar
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, P.O. Box 1411713137, Islamic Republic of Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, P.O. Box 1411713137, Iran
| |
Collapse
|
17
|
Azizi S, Gholivand MB, Amiri M, Manouchehri I, Moradian R. Carbon dots-thionine modified aptamer-based biosensor for highly sensitive cocaine detection. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
18
|
Aayanifard Z, Alebrahim T, Pourmadadi M, Yazdian F, Dinani HS, Rashedi H, Omidi M. Ultra pH-sensitive detection of total and free prostate-specific antigen using electrochemical aptasensor based on reduced graphene oxide/gold nanoparticles emphasis on TiO 2/carbon quantum dots as a redox probe. Eng Life Sci 2021; 21:739-752. [PMID: 34764826 PMCID: PMC8576073 DOI: 10.1002/elsc.202000118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/30/2021] [Accepted: 08/10/2021] [Indexed: 12/20/2022] Open
Abstract
The development of a rapid, sensitive, and straightforward detection method of prostate-specific antigen (PSA) is indispensable for the early diagnosis of prostate cancer (PCa). This work relates an electrochemical method using functionalized single-stranded DNA aptamer to diagnose PCa and benign prostate hyperplasia. The sensing platform relies on PSA recognition by aptamer/Au/GO-nanohybrid-modified glassy carbon electrode. Besides ferrocyanide TiO2/carbon quantum dots (CQDs) probe is used to investigate the effect of nanoparticle-containing electrolyte. Optimization of incubation time of aptamer/Au/GO-nanohybrid and volume fraction of nafion were done using Design Expert 10 software reporting 42.4 h and 0.095% V/V, respectively. In ferrocyanide medium, PSA detection as low as 3, 2.96, and 0.85 ng mL-1 was achieved with a dynamic range from 0.5 to 7 ng ml-1, in accord with clinical values, using cyclic voltammetry, square wave voltammetry, and electrochemical impedance spectroscopy, respectively. Moreover, this sensor exhibited conspicuous performance in TiO2/CQDs-containing medium with different pH values of 5.4 and 8 to distinguish total PSA and free PSA, resulting in very low limit of detections, 0.028, and 0.007 ng ml-1, respectively. The results manifested the proposed system as a forthcoming sensor in a clinical and point of care analysis of PSA.
Collapse
Affiliation(s)
- Zahra Aayanifard
- School of Chemical EngineeringCollege of EngineeringUniversity of TehranTehranIran
| | - Talieh Alebrahim
- School of Chemical EngineeringCollege of EngineeringUniversity of TehranTehranIran
| | | | - Fatemeh Yazdian
- Department of Life Science EngineeringFaculty of New Science and TechnologiesUniversity of TehranTehranIran
| | | | - Hamid Rashedi
- School of Chemical EngineeringCollege of EngineeringUniversity of TehranTehranIran
| | - Meisam Omidi
- Protein Research CenterShahid Beheshti UniversityTehranIran
| |
Collapse
|
19
|
Dowlatshahi S, Abdekhodaie MJ. Electrochemical prostate-specific antigen biosensors based on electroconductive nanomaterials and polymers. Clin Chim Acta 2021; 516:111-135. [PMID: 33545110 DOI: 10.1016/j.cca.2021.01.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 01/11/2023]
Abstract
Prostate cancer (PCa), the second most malignant neoplasm in men, is also the fifth leading cause of cancer-related deaths in men globally. Unfortunately, this malignancy remains largely asymptomatic until late-stage emergence when treatment is limited due to the lack of effective metastatic PCa therapeutics. Due to these limitations, early PCa detection through prostate-specific antigen (PSA) screening has become increasingly important, resulting in a more than 50% decrease in mortality. Conventional assays for PSA detection, such as enzyme-linked immunosorbent assay (ELISA), are labor intensive, relatively expensive, operator-dependent and do not provide adequate sensitivity. Electrochemical biosensors overcome these limitations because they are rapid, cost-effective, simple to use and ultrasensitive. This article reviews electrochemical PSA biosensors using electroconductive nanomaterials such as carbon-, metal-, metal oxide- and peptide-based nanostructures, as well as polymers to significantly improve conductivity and enhance sensitivity. Challenges associated with the development of these devices are discussed thus providing additional insight into their analytic strength as well as their potential use in early PCa detection.
Collapse
Affiliation(s)
- Sayeh Dowlatshahi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad J Abdekhodaie
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran; Yeates School of Graduate Studies, Ryerson University, Toronto, Ontario, Canada.
| |
Collapse
|
20
|
Conducting polymer applied in a label-free electrochemical immunosensor for the detection prostate-specific antigen using its redox response as an analytical signal. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
DNA biosensor based on surface modification of ITO by physical vapor deposition of gold and carbon quantum dots modified with neutral red as an electrochemical redox probe. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Electrochemical synthesis of polyaniline nanocomposite based on modified gold nanoparticles and its application for electrochemical aptasensor. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04761-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Ehzari H, Amiri M, Safari M. Enzyme-free sandwich-type electrochemical immunosensor for highly sensitive prostate specific antigen based on conjugation of quantum dots and antibody on surface of modified glassy carbon electrode with core–shell magnetic metal-organic frameworks. Talanta 2020; 210:120641. [DOI: 10.1016/j.talanta.2019.120641] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 11/30/2022]
|
24
|
A succinct review of refined chemical sensor systems based on conducting polymer–cyclodextrin hybrids. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.06.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Karimi R, Gholivand MB, Amiri M. Monitoring of triamterene and hydrochlorothiazide at carbonic materials modified electrode. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.05.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Peptide cleavage-based electrochemical biosensor coupling graphene oxide and silver nanoparticles. Anal Chim Acta 2019; 1047:45-51. [DOI: 10.1016/j.aca.2018.09.053] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/15/2018] [Accepted: 09/21/2018] [Indexed: 12/13/2022]
|
27
|
Raymundo-Pereira PA, Baccarin M, Oliveira ON, Janegitz BC. Thin Films and Composites Based on Graphene for Electrochemical Detection of Biologically-relevant Molecules. ELECTROANAL 2018. [DOI: 10.1002/elan.201800283] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Paulo A. Raymundo-Pereira
- São Carlos Institute of Physics; University of São Paulo; CP 369, CEP 13560-970 São Carlos, SP Brazil
| | - Marina Baccarin
- São Carlos Institute of Chemistry; University of São Paulo; CP 380, CEP 13566-590 São Carlos, SP Brazil
| | - Osvaldo N. Oliveira
- São Carlos Institute of Physics; University of São Paulo; CP 369, CEP 13560-970 São Carlos, SP Brazil
| | - Bruno C. Janegitz
- Department of Nature Sciences, Mathematics and Education; Federal University of São Carlos; CEP 13600-970 Araras, SP Brazil
| |
Collapse
|