1
|
Hyder A, Ali A, Buledi JA, Memon R, Al-Anzi BS, Memon AA, Kazi M, Solangi AR, Yang J, Thebo KH. A NiO-nanostructure-based electrochemical sensor functionalized with supramolecular structures for the ultra-sensitive detection of the endocrine disruptor bisphenol S in an aquatic environment. Phys Chem Chem Phys 2024; 26:10940-10950. [PMID: 38526327 DOI: 10.1039/d4cp00138a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Herein, NiO nanoparticles (NPs) functionalized with a para-hexanitrocalix[6]arene derivative (p-HNC6/NiO) were synthesized by using a facile method and applied as a selective electrochemical sensor for the determination of bisphenol S (BPS) in real samples. Moreover, the functional interactions, phase purities, surface morphologies and elemental compositions of the synthesized p-HNC6/NiO NPs were investigated via advanced analytical tools, such as Fourier-transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX). Additionally, the synthesized p-HNC6/NiO NPs were cast on the surface of a bare glassy carbon electrode (GCE) via a drop casting method, which resulted in uniform deposition of p-HNC6/NiO/GCE over the surface of the GCE. Additionally, the developed p-HNC6/NiO/GCE sensor demonstrated an outstanding electrochemical response to BPS under optimized conditions, including a supporting electrolyte, a Briton-Robinson buffer electrolyte at pH 4, a scan rate of 110 mV s-1 and a potential window of between -0.2 and 1.0 V. The wide linear dynamic range was optimized to 0.8-70 μM to obtain a brilliant linear calibration curve for BPS. The limit of detection (LOD) and limit of quantification (LOQ) of the developed sensor were estimated to be 0.0059 and 0.019 μM, respectively, which are lower than those of reported sensors for BPS. The feasibility of the developed method was successfully assessed by analyzing the content of BPS in waste water samples, and good recoveries were achieved.
Collapse
Affiliation(s)
- Ali Hyder
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan.
| | - Akbar Ali
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering (IPE), Chinese Academy of Sciences, Beijing 100F190, China.
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Jamil Ahmed Buledi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan.
| | - Roomia Memon
- Sabanci University, SUNUM Nanotechnology Research and Application Center, Tuzla, 34956, Istanbul, Turkey
| | - Bader S Al-Anzi
- Department of Environmental Sciences, Kuwait University, P.O. Box 5969, Safat, 13060, Kuwait.
| | - Ayaz Ali Memon
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan.
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box-2457, Riyadh 11451, Saudi Arabia
| | - Amber Rehana Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan.
| | - Jun Yang
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering (IPE), Chinese Academy of Sciences, Beijing 100F190, China.
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Khalid Hussain Thebo
- Institute of Metal Research (IMR), Chinese Academy of Science, 2 Wenhua Rood, Shenyang, China.
| |
Collapse
|
2
|
Xie J, Guo Y, Ma Y, Jiang H, Zhang L, Mao L, Zhu L, Zheng Y, Liu X. Spontaneous In-Source Fragmentation Reaction Mechanism and Highly Sensitive Analysis of Dicofol by Electrospray Ionization Mass Spectrometry. Molecules 2023; 28:molecules28093765. [PMID: 37175171 PMCID: PMC10180504 DOI: 10.3390/molecules28093765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Although dicofol has been widely banned all over the world as a kind of organochlorine contaminant, it still exists in the environment. This study developed a high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS/MS) detection technique for dicofol, an environmental pollutant, for the first time using in-source fragmentation. The results confirmed that m/z 251 was the only precursor ion of dicofol after in-source fragmentation, and m/z 139 and m/z 111 were reasonable product ions. The main factors triggering the in-source fragmentation were the H+ content and solution conductivity when dicofol entered the mass spectrometer. Density functional theory can be used to analyze and interpret the mechanism of dicofol fragmentation reaction in ESI source. Dicofol reduced the molecular energy from 8.8 ± 0.05 kcal/mol to 1.0 ± 0.05 kcal/mol, indicating that the internal energy release from high to low was the key driving force of in-source fragmentation. A method based on HPLC-MS/MS was developed to analyze dicofol residues in environmental water. The LOQ was 0.1 μg/L, which was better than the previous GC or GC-MS methods. This study not only proposed an HPLC-MS/MS analysis method for dicofol for the first time but also explained the in-source fragmentation mechanism of compounds in ESI source, which has positive significance for the study of compounds with unconventional mass spectrometry behavior in the field of organic pollutant analysis and metabonomics.
Collapse
Affiliation(s)
- Jun Xie
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yage Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongqiang Ma
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Hongyun Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liangang Mao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lizhen Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongquan Zheng
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
3
|
Zhang C, Qiu M, Wang J, Liu Y. Recent Advances in Nanoparticle-Based Optical Sensors for Detection of Pesticide Residues in Soil. BIOSENSORS 2023; 13:bios13040415. [PMID: 37185490 PMCID: PMC10136432 DOI: 10.3390/bios13040415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 05/17/2023]
Abstract
The excessive and unreasonable use of pesticides has adversely affected the environment and human health. The soil, one of the most critical natural resources supporting human survival and development, accumulates large amounts of pesticide residues. Compared to traditional spectrophotometry analytical methods, nanoparticle-based sensors stand out for their simplicity of operation as well as their high sensitivity and low detection limits. In this review, we focus primarily on the functions that various nanoparticles have and how they can be used to detect various pesticide residues in soil. A detailed discussion was conducted on the properties of nanoparticles, including their color changeability, Raman enhancement, fluorescence enhancement and quenching, and catalysis. We have also systematically reviewed the methodology for detecting insecticides, herbicides, and fungicides in soil by using nanoparticles.
Collapse
Affiliation(s)
- Chunhong Zhang
- Xi'an Key Laboratory of Advanced Control and Intelligent Process, School of Automation, Xi'an University of Posts & Telecommunications, Xi'an 710121, China
| | - Mingle Qiu
- Xi'an Key Laboratory of Advanced Control and Intelligent Process, School of Automation, Xi'an University of Posts & Telecommunications, Xi'an 710121, China
| | - Jinglin Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yongchun Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
4
|
Furhan, Ramesan MT. Zinc oxide reinforced poly( para-aminophenol) nanocomposites: Structural, thermal stability, conductivity and ammonia gas sensing applications. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2111262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Furhan
- Centre for Polymer Science and Technology, Department of Chemistry, University of Calicut, Calicut, Kerala, India
| | - M. T. Ramesan
- Centre for Polymer Science and Technology, Department of Chemistry, University of Calicut, Calicut, Kerala, India
| |
Collapse
|
5
|
Pan Y, Wei X. A novel FRET immunosensor for rapid and sensitive detection of dicofol based on bimetallic nanoclusters. Anal Chim Acta 2022; 1224:340235. [DOI: 10.1016/j.aca.2022.340235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/13/2022] [Accepted: 08/01/2022] [Indexed: 11/01/2022]
|
6
|
Development of conductive poly (para-aminophenol)/zinc oxide nanocomposites for optoelectronic devices. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04373-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Li Y, Ma Y, Lichtfouse E, Song J, Gong R, Zhang J, Wang S, Xiao L. In situ electrochemical synthesis of graphene-poly(arginine) composite for p-nitrophenol monitoring. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126718. [PMID: 34339986 DOI: 10.1016/j.jhazmat.2021.126718] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Para-Nitrophenol (p-nitrophenol) is a common industrial pollutant occurring widely in water bodies, yet actual monitoring methods are limited. Herein we proposed a fully electrochemically in situ synthesized graphene-polyarginine composite functionalized screen printed electrode, as a novel p-nitrophenol sensing platform. The electrode was characterized by morphologic, spectrometric and electrochemical techniques. p-nitrophenol in both pure aqueous solution and real water samples was tested. Results show a detection limit as low as the nanomolar level, and display a linear response and high selectivity in the range of 0.5-1250 μM. Molecular simulation reveals a detailed synergy between graphene and poly-arginine. The preferable orientation of nitrophenol molecules on the graphene interface in the presence of poly-arginine induces H- and ionic binding. This sensor is an ideal prototype for p-nitrophenol quantification in real waters.
Collapse
Affiliation(s)
- Yiwei Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, PR China; Shandong Provincial Key Laboratory of Biosensors, Jinan 250103, PR China
| | - Yaohong Ma
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, PR China; Shandong Provincial Key Laboratory of Biosensors, Jinan 250103, PR China
| | - Eric Lichtfouse
- Aix-Marseille Univ, CNRS, IRD, INRA, Coll France, CEREGE, Avenue Louis Philibert, Aix en Provence 13100, France; State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Jin Song
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, PR China; Shandong Provincial Key Laboratory of Biosensors, Jinan 250103, PR China
| | - Rui Gong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, PR China
| | - Jinheng Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, PR China; Shandong Provincial Key Laboratory of Biosensors, Jinan 250103, PR China
| | - Shuo Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, PR China; Shandong Provincial Key Laboratory of Biosensors, Jinan 250103, PR China
| | - Leilei Xiao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.
| |
Collapse
|
8
|
Electropolymerization as an electrochemical preconcentration approach for the determination of melamine in milk samples. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138897] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Liu J, Song S, Wu A, Kuang H, Liu L, Xiao J, Xu C. Development of immunochromatographic strips for the detection of dicofol. Analyst 2021; 146:2240-2247. [PMID: 33596275 DOI: 10.1039/d0an02238a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In this study, a monoclonal antibody (mAb) against dicofol was developed to prepare immunochromatographic strips (ICAs) for the detection of dicofol residues in fruit and vegetables. The mAb exhibited high affinity and high sensitivity, with an affinity constant of 2.96 × 1010 and a limit of detection of 3.142 ng mL-1. A cross reactivity test revealed that the mAb also had good specificity for dicofol. This ICA method gave a visible limit of detection of 50 ng g-1, and a cut-off value of 500 ng g-1 for the detection of dicofol in both apple and cucumber with the naked eye. Importantly, the results here are consistent with results obtained using liquid chromatography mass spectrometry and ic-ELISAs indicating that this ICA method is reliable and practical when used for the detection of dicofol in fruit and vegetables.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
10
|
Laghrib F, Aghris S, Ajermoun N, Hrioua A, Bakasse M, Lahrich S, El Mhammedi MA. Recent progress in controlling the synthesis and assembly of nanostructures: Application for electrochemical determination of p-nitroaniline in water. Talanta 2020; 219:121234. [PMID: 32887125 DOI: 10.1016/j.talanta.2020.121234] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/30/2020] [Accepted: 05/31/2020] [Indexed: 01/11/2023]
Abstract
The development of nanoparticle research has grown considerably in recent years. One of the reasons for the considerable current interest in nanoparticles is because such materials frequently display unusual physical (structural, electronic, magnetic, and optical) and chemical (catalytic) properties. The development of nanomaterials is of interest to the scientific community and industrial companies. Different methods (physical, chemical, and biological) allow their manufacture. In particular, a major effort has been devoted to the development and improvement of synthesis methods in order to obtain nano-objects of controlled size and shape, a necessary pre-requisite to their organization, and to the study of their intrinsic and collective properties. Reviews play an important role in keeping interested parties up to date on the current state of the research in any academic field. This review aims to focus on the development of nanoparticles and stabilization with adsorbed/covalently attached ligands in solution phase since these factors are deeply related to the origins of the particles' stability, the media to which they are exposed, and the involved applications. This study also examines the factors that influence the synthesis of nanoparticles. It aims to provide an overview of existing electrochemical sensors, particularly those that operate with nanomaterial-based electrode modifications for p-nitroaniline (PNA) determination and to propose guidelines for related research and development activities. Emphasis was placed on the procedure for the analysis of PNA in water samples using nanosilver-based electrodes.
Collapse
Affiliation(s)
- F Laghrib
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25000 Khouribga, Morocco
| | - S Aghris
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25000 Khouribga, Morocco
| | - N Ajermoun
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25000 Khouribga, Morocco
| | - A Hrioua
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25000 Khouribga, Morocco
| | - M Bakasse
- University Chouaib Doukkali, Organic Micropollutants Analysis Team, Faculty of Sciences, El Jadida, Morocco
| | - S Lahrich
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25000 Khouribga, Morocco
| | - M A El Mhammedi
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25000 Khouribga, Morocco.
| |
Collapse
|
11
|
Li C, Begum A, Xue J. Analytical methods to analyze pesticides and herbicides. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1770-1785. [PMID: 32762111 DOI: 10.1002/wer.1431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/10/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
This paper reviews studies published in 2019, in the area of analytical techniques for determination of pesticides and herbicides. It should be noted that some of the reports summarized in this review are not directly related to but could potentially be used for water environment studies. Based on different methods, the literatures are organized into six sections, namely extraction methods, electrochemical techniques, spectrophotometric techniques, chemiluminescence and fluorescence methods, chromatographic and mass spectrometric techniques, and biochemical assays. PRACTITIONER POINTS: Totally 141 research articles have been summarized. The review is divided into six parts. Chromatographic and mass spectrometric techniques are the most widely used methods.
Collapse
Affiliation(s)
- Chao Li
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Afruza Begum
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, Canada
| | - Jinkai Xue
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, Canada
| |
Collapse
|
12
|
Rapid and sensitive detection of Salmonella Typhimurium using nickel nanowire bridge for electrochemical impedance amplification. Talanta 2020; 211:120715. [PMID: 32070611 DOI: 10.1016/j.talanta.2020.120715] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/27/2019] [Accepted: 01/02/2020] [Indexed: 11/23/2022]
Abstract
Rapid detection of foodborne pathogens is crucial to prevent the outbreaks of foodborne illnesses. In this study, a sensitive electrochemical aptasensor was developed using aptamer coated gold interdigitated microelectrode for target capture and impedance measurement, and antibody modified nickel nanowires (NiNWs) for target separation and impedance amplification. First, the interdigitated microelectrode was modified with the biotinylated aptamers against Salmonella typhimurium through electrostatic absorption of streptavidin onto the microelectrode and streptavidin-biotin binding. Then, the target Salmonella cells were magnetically separated and concentrated using the NiNWs modified with the anti-Salmonella typhimurium antibodies to form the bacteria-NiNW complexes, and incubated on the microelectrode to form the aptamer-bacteria-NiNW complexes. After an external arc magnetic field was developed and applied to control the NiNWs to form conductive NiNW bridges across the microelectrode, the enhanced impedance change of the microelectrode was measured and used to determine the amount of target bacteria. This electrochemical aptasensor was able to quantitatively detect Salmonella ranging from 102 to 106 CFU/mL in 2 h with the detection limit of 80 CFU/mL. The mean recovery for the spiked chicken samples was 103.2%.
Collapse
|