1
|
Khumngern S, Nontipichet N, Thavarungkul P, Kanatharana P, Numnuam A. Smartphone-enabled flow injection amperometric glucose monitoring based on a screen-printed carbon electrode modified with PEDOT@PB and a GOx@PPtNPs@MWCNTs nanocomposite. Talanta 2024; 277:126336. [PMID: 38823326 DOI: 10.1016/j.talanta.2024.126336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/25/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
This study presents a modified screen-printed carbon electrode (SPCE) to determine glucose in a custom-built flow injection system. The biosensor was constructed by immobilizing glucose oxidase on porous platinum nanoparticles decorated on multi-walled carbon nanotubes (GOx@PPtNPs@MWCTNs). The fabrication of the biosensor was completed by coating the GOx@PPtNPs@MWCTNs nanocomposite on an SPCE modified with a nanocomposite of poly(3,4-ethylenedioxythiophene) and Prussian blue (GOx@PPtNPs@MWCTNs/PEDOT@PB/SPCE). The fabricated electrode accurately measured hydrogen peroxide (H2O2), the byproduct of the GOx-catalyzed oxidation of glucose, and was then applied as a glucose biosensor. The glucose response was amperometrically determined from the PB-mediated reduction of H2O2 at an applied potential of -0.10 V in a flow injection system. Under optimal conditions, the developed biosensor produced a linear range from 2.50 μM to 1.250 mM, a limit of detection of 2.50 μM, operational stability over 500 sample injections, and good selectivity. The proposed biosensor determined glucose in human plasma samples, achieving recoveries and results that agreed with the hexokinase-spectrophotometric method (P > 0.05). Combining the proposed biosensor with the custom-built sample feed, a portable potentiostat and a smartphone, enabled on-site glucose monitoring.
Collapse
Affiliation(s)
- Suntisak Khumngern
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Natha Nontipichet
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Panote Thavarungkul
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Proespichaya Kanatharana
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Apon Numnuam
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| |
Collapse
|
2
|
Veerapandi G, Sekar C. Binder-free and efficient voltammetric sensor based on Zn-Ca 2CuO 3 nanoparticles for simultaneous determination of amlodipine, acetaminophen, and ascorbic acid in hypertension patients. Mikrochim Acta 2024; 191:409. [PMID: 38898141 DOI: 10.1007/s00604-024-06473-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
Amlodipine (AM) is a long active calcium channel blocker used to relax blood vessels by preventing calcium ion transport into the vascular walls and its supporting molecules acetaminophen (AP) and ascorbic acid (AA) are recommended for hypertension control and prevention. Considering their therapeutic importance and potential side effects due to over dosage, we have fabricated a sensor for individual and simultaneous determination of AA, AP, and AM in pharmaceuticals and human urine using novel Zn-doped Ca2CuO3 nanoparticles modified glassy carbon electrode (GCE). Optimally doped Ca2CuO3 (2.5 wt% Zn at Cu site) enhanced the detection of target molecules over much wider concentration ranges of 50 to 3130 µM for AA, 0.25 to 417 µM for AP, and 0.8 to 354 µM for AM with the corresponding lowest detection limits of 14 µM, 0.05 µM, and 0.07 µM, respectively. Furthermore, the Zn-Ca2CuO3/GCE exhibited excellent selectivity and high sensitivity even in the presence of several potential interfering agents. The usefulness of the developed electrode was tested using an amlodipine besylate tablet and urine samples of seven hypertension patients under medication. The results confirmed the presence of a significant amount of AP and AM in six patients' urine samples indicating that the personalized medication is essential and the quantum of medication need to be fixed by knowing the excess medicines excreted through urine. Thus, the Zn-Ca2CuO3/GCE with a high recovery percentage and good sensitivity shall be useful in the pharmaceutical and biomedical sectors.
Collapse
Affiliation(s)
- G Veerapandi
- Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi, 630003, Tamil Nadu, India
| | - C Sekar
- Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi, 630003, Tamil Nadu, India.
| |
Collapse
|
3
|
Fallah F, Shishehbore MR, Sheibani A. Fabrication of a novel sensor based on Cu quantum dot and SH-SiO 2 nanoparticles supported on copper-based metal organic framework (Cu QD-SH-SiO 2@Cu-MOF) and its application for the simultaneous determination of norepinephrine, piroxicam and epinephrine. Talanta 2023; 252:123776. [PMID: 35987127 DOI: 10.1016/j.talanta.2022.123776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/17/2022] [Accepted: 07/23/2022] [Indexed: 10/15/2022]
Abstract
In this research, a novel electrochemical sensor with excellent sensitivity was fabricated based on Cu quantum dot (Cu QD) and SH-SiO2 nanoparticles immobilized on copper-metal-organic frameworks (Cu-MOFs) for determining piroxicam and simultaneous determination of norepinephrine, piroxicam and epinephrine. The nanoparticles were synthesized and characterized using FT-IR, EDX, FESEM, TEM and BET, and were subsequently used to modify carbon paste electrode. Cu QD-SH-SiO2@Cu-MOF for electrode modification possesses a distinctive structure and a high conductivity that raises the electron transfer rate and enhances the performance of electrochemical sensors. Square wave voltammetry was applied to investigate the redox properties of Cu QD-SH-SiO2@Cu-MOF/CPE, voltammograms showed three distinct anodic peaks at 0.41, 0.62 and 1.06 V in the presence of norepinephrine, piroxicam, and epinephrine. Various experimental parameters including the type and pH of electrolyte and scan rate were investigated. The calibration graph was obtained over the range 0.2-34285.0 μM including three linear segments. Also, the limit of detection was calculated as 0.05 μM of piroxicam. The introduced sensor was satisfactorily utilized for electrochemical determination of norepinephrine, piroxicam, and epinephrine in real samples. The obtained results using the introduced sensor were validated by high-performance liquid chromatography and the statistical tests confirmed the good agreement of them.
Collapse
Affiliation(s)
- Fatemeh Fallah
- Department of Chemistry, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - M Reza Shishehbore
- Department of Chemistry, Yazd Branch, Islamic Azad University, Yazd, Iran.
| | - Ali Sheibani
- Department of Chemistry, Yazd Branch, Islamic Azad University, Yazd, Iran
| |
Collapse
|
4
|
Fang Y, Chang H, Li J, Li Z, Zhang D. Recent Advances in Metal Nanocomposite-Based Electrochemical (Bio)Sensors for Pharmaceutical Analysis. Crit Rev Anal Chem 2022; 54:1680-1706. [PMID: 36201181 DOI: 10.1080/10408347.2022.2128633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
Rising rates of drug abuse and pharmaceutical pollution throughout the world as a consequence of increased drug production and utilization pose a serious risk to public health and to environmental integrity. It is thus critical that reliable analytical approaches to detecting drugs and their metabolites in a range of sample matrices be developed. Recent advances in the design of nanomaterial-based electrochemical sensors and biosensors have enabled promising new approaches to pharmaceutical analysis. In particular, the development of a range of novel metal nanocomposites with enhanced catalytic properties has provided a wealth of opportunities for the design of rapid and reliable platforms for the detection of specific pharmaceutical compounds. The present review provides a comprehensive overview of representative metal nanocomposites with synergistic properties and their recent (2017-2022) application in the context of electrochemical sensing as a means of detecting specific antibiotic, tuberculostatic, analgesic, antineoplastic, antipsychotic, and antihypertensive drugs. In discussing these applications, we further explore a variety of testing-related principles, fabrication approaches, characterization techniques, and parameters associated with the sensitivity and selectivity of these sensor platforms before surveying the future outlook regarding the fabrication of next-generation (bio)sensor platforms for use in pharmaceutical analysis.
Collapse
Affiliation(s)
- Yuxin Fang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Hongen Chang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Jingrong Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, PR China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, PR China
| | - Di Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, PR China
| |
Collapse
|
5
|
Natesan M, Subramaniyan P, Chen TW, Chen SM, Ajmal Ali M, Al-Zaqri N. Ceria-doped zinc oxide nanorods assembled into microflower architectures as electrocatalysts for sensing of piroxicam in urine sample. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Ziaie N, Shabani-Nooshabadi M. Introduction of AlV 3O 9/CNT Nanocomposite for Modification of the Electrochemical Sensor in Order the Determination of Amlodipine and Hydrochlorothiazide in Biological and Pharmaceutical Samples. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Neda Ziaie
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, 87317-53153, Iran
| | - Mehdi Shabani-Nooshabadi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, 87317-53153, Iran
- Institute of Nano Science and Nano Technology, University of Kashan, Kashan, 87317-51167, Iran
| |
Collapse
|
7
|
Ognjanović M, Stankovic D, Jaćimović Ž, Kosović-Perutović M, F.M.L. Mariano J, Krehula S, Musić S, Antić B. Construction of sensor for submicromolar detection of riboflavin by surface modification of SPCE with thermal degradation products of nickel acetate tetrahydrate. ELECTROANAL 2022. [DOI: 10.1002/elan.202100602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Bratislav Antić
- Department of Theoretical Physics and Condensed Matter Physics, „VINČA" Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia SERBIA
| |
Collapse
|
8
|
Nitrogen-Doped Graphene-Based Sensor for Electrochemical Detection of Piroxicam, a NSAID Drug for COVID-19 Patients. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10020047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nitrogen-doped graphene (NGr) was synthesized by the hydrothermal method using urea as a reducing and doping agent for graphene oxide (GO). The crystalline structure of GO was revealed by the XRD intense peak recorded at 2θ = 11.4°, indicating that the interlayer distance within the structure was large (d = 0.77 nm), and the number of layers (n) was 9. Further, the transformation of GO in NGr also led to the decrease in the interlayer distance and number of layers (d = 0.387 nm; n = 3). As indicated by elemental analysis, the concentration of nitrogen in the NGr sample was 6 wt%. Next, the comparison between the performance of bare GC and the graphene-modified electrode (NGr/GC) towards piroxicam (PIR) detection was studied. Significant differences were observed between the two electrodes. Hence, in the case of bare GC, the oxidation signal of PIR was very broad and appeared at a high potential (+0.7 V). In contrast, the signal recorded with the NGr/GC electrode was significantly higher (four times) and shifted towards lower potentials (+0.54 V), proving the electro-catalytic effect of nitrogen-doped graphene. The NGr/GC electrode was also tested for its ability to detect piroxicam in pharmaceutical drugs (Flamexin), giving excellent recoveries.
Collapse
|
9
|
Atta NF, Galal A, El-Gohary AR. Electrochemical sensing of dobutamine, paracetamol, amlodipine, and daclatasvir in serum based on thiourea SAMs over nano-gold particles-CNTs composite. NEW J CHEM 2022. [DOI: 10.1039/d2nj01822e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report in this work a one-step approach for the formation of self-assembled monolayers (SAMs) from thiourea (TU) over gold nanoparticles dispersed in carbon nanotubes (CNTs-Aunano). The fabrication of the...
Collapse
|
10
|
Kalambate PK, Noiphung J, Rodthongkum N, Larpant N, Thirabowonkitphithan P, Rojanarata T, Hasan M, Huang Y, Laiwattanapaisal W. Nanomaterials-based electrochemical sensors and biosensors for the detection of non-steroidal anti-inflammatory drugs. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116403] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
11
|
Yuan Q, Du Y, Chao L, Xie Q. Preparation of a uniform thin-film Pd-Au electrocatalyst via electroreduction of a palladium hexacyanoferrate(II)-Au electrodeposit for alkaline oxidation of methanol. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Taji Z, Ensafi AA, Heydari‐Soureshjani E, Rezaei B. A Novel Non‐enzymatic Selective and Sensitive Glucose Sensor Based on Nickel‐Copper Oxide@3D‐rGO/MWCNTs. ELECTROANAL 2021. [DOI: 10.1002/elan.202060151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zahra Taji
- Department of Chemistry Isfahan University of Technology Isfahan 84156-83111 Iran
| | - Ali A. Ensafi
- Department of Chemistry Isfahan University of Technology Isfahan 84156-83111 Iran
| | | | - Behzad Rezaei
- Department of Chemistry Isfahan University of Technology Isfahan 84156-83111 Iran
| |
Collapse
|
13
|
Amiri M, Akbari Javar H, Mahmoudi‐Moghaddam H. Facile Green Synthesis of NiO/NiCo
2
O
4
Nanocomposite as an Efficient Electrochemical Platform for Determination of Dopamine. ELECTROANAL 2021. [DOI: 10.1002/elan.202060489] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mahnaz Amiri
- Neuroscience Research Center Institute of Neuropharmacology Kerman University of Medical Science Kerman Iran
- Cell Therapy and Regenerative Medicine Comprehensive Center Kerman University of Medical Science Kerman Iran
| | - Hamid Akbari Javar
- Pharmaceutics Department Faculty of Pharmacy Tehran University of Medical Sciences Tehran Iran
| | - Hadi Mahmoudi‐Moghaddam
- Pharmaceutical Sciences and Cosmetic Products Research Center Kerman University of Medical Sciences Kerman Iran
- Environmental Health Engineering Research Center Kerman University of Medical Sciences Kerman Iran
| |
Collapse
|
14
|
Lei H, Zhu H, Sun S, Zhu Z, Hao J, Lu S, Cai Y, Zhang M, Du M. Synergistic integration of Au nanoparticles, Co-MOF and MWCNT as biosensors for sensitive detection of low-concentration nitrite. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137375] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Bao Q, Li G, Yang Z, Pan P, Liu J, Chang J, Wei J, Lin L. Electrochemical performance of a three-layer electrode based on Bi nanoparticles, multi-walled carbon nanotube composites for simultaneous Hg(II) and Cu(II) detection. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.06.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Alizadeh M, Azar PA, Mozaffari SA, Karimi-Maleh H, Tamaddon AM. Evaluation of Pt,Pd-Doped, NiO-Decorated, Single-Wall Carbon Nanotube-Ionic Liquid Carbon Paste Chemically Modified Electrode: An Ultrasensitive Anticancer Drug Sensor for the Determination of Daunorubicin in the Presence of Tamoxifen. Front Chem 2020; 8:677. [PMID: 32974271 PMCID: PMC7466574 DOI: 10.3389/fchem.2020.00677] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022] Open
Abstract
Measuring the concentration of anticancer drugs in pharmacological and biological samples is a very useful solution to investigate the effectiveness of these drugs in the chemotherapy process. A Pt,Pd-doped, NiO-decorated SWCNTs (Pt,Pd-NiO/SWCNTs) nanocomposite was synthesized using a one-pot procedure and combining chemical precipitation and ultrasonic sonochemical methods and subsequently characterized by TEM and EDS analysis methods. The analyses results showed the high purity and good distribution of elements and the ~10-nm diameter of the Pt,Pd-NiO nanoparticle decorated on the surface of the SWCNTs with a diameter of about 20-30 nm. Using a combination of Pt,Pd-NiO/SWCNTs and 1-butyl-2,3-dimethylimidazolium tetrafluoroborate (1B23DTFB) in a carbon paste (CP) matrix, Pt,Pd-NiO/SWCNTs/1B23DTFB/CP was fabricated as a highly sensitive analytical tool for the electrochemical determination of daunorubicin in the concentration range of 0.008-350 μM with a detection limit of 3.0 nM. Compared to unmodified CP electrodes, the electro-oxidation process of daunorubicin has undergone significant improvements in current (about 9.8 times increasing in current) and potential (about 110 mV) decreasing in potential). It is noteworthy that the designed sensor can well measure daunorubicin in the presence of tamoxifen (two breast anticancer drugs with a ΔE = 315 mV. According to the real sample analysis data, the Pt,Pd-NiO/SWCNTs/1B23DTFB/CP has proved to be a promising methodology for the analysis and measuring of daunorubicin and tamoxifen in real (e.g., pharmaceutical) samples.
Collapse
Affiliation(s)
- Marzieh Alizadeh
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Parviz Aberoomand Azar
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sayed Ahmad Mozaffari
- Thin Layer and Nanotechnology Laboratory, Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Hassan Karimi-Maleh
- Laboratory of Nanotechnology, Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Ali-Mohammad Tamaddon
- Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|