1
|
Motshakeri M, Angoro B, Phillips ARJ, Svirskis D, Kilmartin PA, Sharma M. Advancements in Mercury-Free Electrochemical Sensors for Iron Detection: A Decade of Progress in Electrode Materials and Modifications. SENSORS (BASEL, SWITZERLAND) 2025; 25:1474. [PMID: 40096308 PMCID: PMC11902859 DOI: 10.3390/s25051474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
Efforts to quantify iron ion concentrations across fields such as environmental, chemical, health, and food sciences have intensified over the past decade, which drives advancements in analytical methods, particularly electrochemical sensors known for their simplicity, portability, and reliability. The development of electrochemical methods using non-mercury electrodes is increasing as alternatives to environmentally unsafe mercury-based electrodes. However, detecting iron species such as Fe(II) and Fe(III) remains challenging due to their distinct chemical properties, continuous oxidation-state interconversion, presence of interfering species, and complex behavior in diverse environments and matrixes. Selective trace detection demands careful optimization of electrochemical methods, including proper electrode materials selection, electrode surface modifications, operating conditions, and sample pretreatments. This review critically evaluates advancements over the past decade in mercury-free electrode materials and surface modification strategies for iron detection. Strategies include incorporating a variety of nanomaterials, composites, conducting polymers, membranes, and iron-selective ligands to improve sensitivity, selectivity, and performance. Despite advancements, achieving ultra-low detection limits in real-world samples with minimal interference remains challenging and emphasizes the need for enhanced sample pretreatment. This review identifies challenges, knowledge gaps, and future directions and paves the way for advanced iron electrochemical sensors for environmental monitoring, health diagnostics, and analytical precision.
Collapse
Affiliation(s)
- Mahsa Motshakeri
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (B.A.); (D.S.)
- School of Biological Sciences, Faculty of Science, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
| | - Barbara Angoro
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (B.A.); (D.S.)
| | - Anthony R. J. Phillips
- School of Biological Sciences, Faculty of Science, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
- Surgical and Translational Research Center, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (B.A.); (D.S.)
| | - Paul A. Kilmartin
- School of Chemical Sciences, Faculty of Science, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
| | - Manisha Sharma
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (B.A.); (D.S.)
| |
Collapse
|
2
|
Esfandiari N, Aliofkhazraei M. Advances in the determination of trace amounts of iron cations through electrochemical methods: A comprehensive review of principles and their limits of detection. Talanta 2024; 277:126365. [PMID: 38964047 DOI: 10.1016/j.talanta.2024.126365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 07/06/2024]
Abstract
Quantification of trace amounts of iron is of great importance in various fields. In the industrial sector, it is crucial to monitor the release of iron out of corrosion, pickling treatment, and steel manufacturing to address potential environmental and economic challenges. In biological systems, despite its indispensability, it is essential to maintain iron concentration below a specific threshold. Electrochemical (EC) methods provide significant analytical capabilities due to their simplicity, ease of use, and cost-effectiveness. This review focuses on the fundamental principles of EC methods for iron detection, including potentiometry, amperometry, coulometry, voltammetry, and electrochemical impedance spectroscopy (EIS). It further explains the process of obtaining calibration curves, and subsequently, determining the concentration of unknown ions. Additionally, technical notes are presented on selecting the initial signal value, reducing the duration of tests, excluding non-faradaic signals, and extending the linear region with the lowest detection limit. These notes are supported by key findings from relevant case studies.
Collapse
Affiliation(s)
- Naeemeh Esfandiari
- Department of Materials Engineering, Faculty of Engineering, Tarbiat Modares University, P.O. Box: 14115-143, Tehran, Iran
| | - Mahmood Aliofkhazraei
- Department of Civil and Environmental Engineering, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
3
|
A photoelectrochemical sensor for ultrasensitive dopamine detection based on composites of BiOI and Au-Ag nanoparticles. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
4
|
Ma X, Yu J, Wei L, Zhao Q, Ren L, Hu Z. Electrochemical sensor based on N-CQDs/AgNPs/β-CD nanomaterials: Application to simultaneous selective determination of Fe(Ⅱ) and Fe(Ⅲ) irons released from iron supplement in simulated gastric fluid. Talanta 2023; 253:123959. [PMID: 36208556 DOI: 10.1016/j.talanta.2022.123959] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 12/13/2022]
Abstract
Simultaneous selective determination of Fe (Ⅱ) and Fe (Ⅲ) is of great significance to the study of iron ion tracking and release of iron supplement in gastric fluid. In this paper, a composite material (N-CQDs/AgNPs/β-CD) was prepared by a one-pot method. The various characterizations confirmed the silver nanoparticles (AgNPs) grew in situ on the surface of nitrogen-doped carbon quantum dots (N-CQDs), and the β-cyclodextrin (β-CD) and AgNPs linked together by Ag-O bonds finally presented gourd-like nanoparticles on the surface of N-CQDs. Then, N-CQDs/AgNPs/β-CD modified glassy carbon electrode (GCE) was applied to detect Fe(II) and Fe(III) simultaneously. The cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) results confirmed that N-CQDs/AgNPs/β-CD enhanced electrode performances because of the synergistic effect between N-CQDs, AgNPs and β-CD. The sensor was successfully applied for the determination by differential pulse voltammetry (DPV) of Fe(II) and Fe(III) released from four iron supplementations in simulated gastric fluid (SGF).
Collapse
Affiliation(s)
- Xuemei Ma
- School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, China.
| | - Jiayi Yu
- School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, China
| | - Lin Wei
- School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, China
| | - Qian Zhao
- School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, China
| | - Liyong Ren
- School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, China
| | - Zhiyong Hu
- School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, China
| |
Collapse
|
5
|
Construction of reversible enol-to-keto-to-enol tautomerization covalent organic polymer for sensitive, selective and multi-channel detection of iron (III). Anal Chim Acta 2022; 1232:340458. [DOI: 10.1016/j.aca.2022.340458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022]
|