1
|
Yang Y, Ji W, Yin Y, Wang N, Wu W, Zhang W, Pei S, Liu T, Tao C, Zheng B, Wu Q, Li L. Catalytic Modification of Porous Two-Dimensional Ni-MOFs on Portable Electrochemical Paper-Based Sensors for Glucose and Hydrogen Peroxide Detection. BIOSENSORS 2023; 13:bios13050508. [PMID: 37232869 DOI: 10.3390/bios13050508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/17/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
Rapid and accurate detection of changes in glucose (Glu) and hydrogen peroxide (H2O2) concentrations is essential for the predictive diagnosis of diseases. Electrochemical biosensors exhibiting high sensitivity, reliable selectivity, and rapid response provide an advantageous and promising solution. A porous two-dimensional conductive metal-organic framework (cMOF), Ni-HHTP (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene), was prepared by using a one-pot method. Subsequently, it was employed to construct enzyme-free paper-based electrochemical sensors by applying mass-producing screen-printing and inkjet-printing techniques. These sensors effectively determined Glu and H2O2 concentrations, achieving low limits of detection of 1.30 μM and 2.13 μM, and high sensitivities of 5573.21 μA μM-1 cm-2 and 179.85 μA μM-1 cm-2, respectively. More importantly, the Ni-HHTP-based electrochemical sensors showed an ability to analyze real biological samples by successfully distinguishing human serum from artificial sweat samples. This work provides a new perspective for the use of cMOFs in the field of enzyme-free electrochemical sensing, highlighting their potential for future applications in the design and development of new multifunctional and high-performance flexible electronic sensors.
Collapse
Affiliation(s)
- Ya Yang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Wenhui Ji
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Yutao Yin
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Nanxiang Wang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Wanxia Wu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Wei Zhang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Siying Pei
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Tianwei Liu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Chao Tao
- The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Bing Zheng
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China
| |
Collapse
|
2
|
Xue F, Qin R, Zhu R, Zhou X. Sn species modified mesoporous zeolite TS-1 with oxygen vacancy for enzyme-free electrochemical H 2O 2 detecting. Dalton Trans 2022; 51:18169-18175. [PMID: 36394274 DOI: 10.1039/d2dt02926j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Sn species modified zeolite TS-1 with a unique mesopore structure (Sn-TS-1) and rich oxygen vacancy defects has been designed via a sol-gel method and an ion-exchange process, which can be used as an enzyme-free electrochemical sensor for H2O2 detection. The resultant composite Sn-TS-1 has a high BET surface area of 191 cm2 g-1, fast electron transfer, rich oxygen vacancies, and abundant active sites, showing super performance in H2O2 reduction with a low detection limit (0.27 μM, S/N = 3). The current is linear with H2O2 concentration from 1 to 1000 and 1000 to 11 000 μM, and the corresponding sensitivities are 360.4 and 80.44 μA mM-1 cm-1, respectively. More importantly, this Sn-TS-1 sensor also shows excellent anti-interference ability and stability. This work provides a new idea for an enzyme-free sensor for H2O2 detection in biological environments, which has promising potential in point-of-care (POC) testing for H2O2.
Collapse
Affiliation(s)
- Fengfeng Xue
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China. .,School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Ruomeng Qin
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Runwei Zhu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Xiaoxia Zhou
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|
3
|
Murthy R, Neelakantan SC. Graphitic Carbon Cloth-Based Hybrid Molecular Catalyst: A Non-conventional, Synthetic Strategy of the Drop Casting Method for a Stable and Bifunctional Electrocatalyst for Enhanced Hydrogen and Oxygen Evolution Reactions. ACS OMEGA 2022; 7:32604-32614. [PMID: 36120071 PMCID: PMC9476522 DOI: 10.1021/acsomega.2c04199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Hydrogen energy production through water electrolysis is envisaged as one of the most promising, sustainable, and viable alternate sources to cater to the incessant demands of renewable energy storage. Germane to our effort in this field, we report easily synthesizable and very cost-effective isoperthiocyanic acid (IPA) molecular complexes as electrocatalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) under acidic and alkaline conditions. The Pd(II)IPA, Co(II)IPA, and Ni(II)IPA complexes were synthesized and were evaluated for HER and OER applications. These complexes when embedded onto graphitized carbon cloth (GrCC) exhibited a significant enhancement in the HER activity in contrast to their pristine counterparts. The hybrid electrocatalyst Pd(II)IPA among the three showed an extremely low overpotential of 94.1 mV to achieve a current density of 10 mA cm-2, while Co(II)IPA and Ni(II)IPA complexes showed overpotentials of 367 and 394 mV, respectively, to achieve a current density of 10 mA cm-2. These complexes on carbon cloth showed decreased charge transfer resistance compared to that of pristine metal complexes. The enhanced catalytic activity of the complexes on carbon cloth can be attributed to the porous and conducting nature of the graphitized carbon cloth. For OER activity, the Pd(II)IPA complex showed an excellent performance with an overpotential value of 210 mV, while Co(II)IPA and Ni(II)IPA exhibited overpotentials of 400 and 270 mV, respectively, to drive a current density of 10 mA cm-2 in 0.1 M KOH. This work further widens the scope and application of molecular complexes in combination with an excellent carbon support for renewable energy storage applications.
Collapse
Affiliation(s)
- Ram Murthy
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Brindavan Campus, Kadugodi, Bengaluru 560067, India
| | - Sundaresan Chittor Neelakantan
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Brindavan Campus, Kadugodi, Bengaluru 560067, India
| |
Collapse
|