1
|
Koohkansaadi G, Tabean M, Mohagheghi A, Masoumi S, Jahanabad ZJ, Mobed A, Charsouei S. Aspirin nanosensors. Clin Chim Acta 2025; 571:120222. [PMID: 40058719 DOI: 10.1016/j.cca.2025.120222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025]
Abstract
Aspirin, a widely used nonsteroidal anti-inflammatory drug (NSAID), plays a crucial role in the prevention and treatment of various cardiovascular and inflammatory conditions, including its significant application in stroke management. The accurate detection of aspirin in biological and environmental samples is essential for ensuring therapeutic efficacy and safety, particularly in patients at risk of stroke. This review aims to introduce and discuss the recent advancements in aspirin nanosensor technology, highlighting innovative approaches that enhance detection sensitivity and specificity. Traditional methods of aspirin detection often face limitations, including lengthy analysis times, the need for complex sample preparation, and insufficient sensitivity for trace detection. In contrast, the development of nanosensors has emerged as a promising solution, leveraging the unique properties of nanomaterials to facilitate rapid, reliable, and sensitive detection of aspirin. From a neuropharmaceutical perspective, the role of aspirin extends beyond its anti-inflammatory properties, as it also influences neurovascular health and may modulate neuroinflammatory processes associated with stroke. This review synthesizes current research findings, explores the mechanisms underlying nanosensor functionality, and addresses the challenges and future directions in the field of aspirin detection. By providing a comprehensive overview of cutting-edge research on aspirin nanosensors, this study underscores the importance of advancing detection technologies to improve patient outcomes, particularly in stroke prevention and management, and ensure effective therapeutic monitoring, while emphasizing the need for interdisciplinary approaches that integrate neuropharmaceutical insights to enhance the understanding of aspirin's multifaceted role in neuroprotection and its implications for stroke therapy.
Collapse
Affiliation(s)
| | - Mahsa Tabean
- Women's Reproductive Health Research Center, Tabriz University Of Medical Sciences, Tabriz, Iran
| | - Arash Mohagheghi
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahab Masoumi
- Cardiovascular Fellowship, Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ahmad Mobed
- Social Determinants of Health Research Center, Health Management and Safety Promotion, Iran.
| | - Saeid Charsouei
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Neurology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Batubara AS, Ainousah BE, Ramzy S, Abdelazim AH, Gamal M, Tony RM. Synchronous spectrofluorimetric determination of favipiravir and aspirin at the nano-gram scale in spiked human plasma; greenness evaluation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122880. [PMID: 37216820 DOI: 10.1016/j.saa.2023.122880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023]
Abstract
Favipiravir and aspirin are co-administered during COVID-19 treatment to prevent venous thromboembolism. For the first time, a spectrofluorometric method has been developed for the simultaneous analysis of favipiravir and aspirin in plasma matrix at nano-gram detection limits. The native fluorescence spectra of favipiravir and aspirin in ethanol showed overlapping emission spectra at 423 nm and 403 nm, respectively, after excitation at 368 nm and 298 nm, respectively. Direct simultaneous determination with normal fluorescence spectroscopy was difficult. The use of synchronous fluorescence spectroscopy for analyzing the studied drugs in ethanol at Δλ = 80 nm improved spectral resolution and enabled the determination of favipiravir and aspirin in the plasma matrix at 437 nm and 384 nm, respectively. The method described allowed sensitive determination of favipiravir and aspirin over a concentration range of 10-500 ng/mL and 35-1600 ng/mL, respectively. The described method was validated with respect to the ICH M10 guidelines and successfully applied for the simultaneous determination of the mentioned drugs in pure form and in the spiked plasma matrix. Moreover, the compliance of the method with the concepts of environmentally friendly analytical chemistry was evaluated using two metrics, the Green Analytical Procedure Index and the AGREE tool. The results showed that the described method was consistent with the accepted metrics for green analytical chemistry.
Collapse
Affiliation(s)
- Afnan S Batubara
- Department of Pharmaceutical Chemistry, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Bayan E Ainousah
- Department of Pharmaceutical Chemistry, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Sherif Ramzy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, 11751 Cairo, Egypt.
| | - Ahmed H Abdelazim
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, 11751 Cairo, Egypt
| | - Mohammed Gamal
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, 62514 Beni-Suef, Egypt
| | - Rehab M Tony
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| |
Collapse
|
3
|
Abd-Elsabour M, Abou-Krisha MM, Kenawy SH, Yousef TA. A Novel Electrochemical Sensor Based on an Environmentally Friendly Synthesis of Magnetic Chitosan Nanocomposite Carbon Paste Electrode for the Determination of Diclofenac to Control Inflammation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1079. [PMID: 36985972 PMCID: PMC10058736 DOI: 10.3390/nano13061079] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
A simple and eco-friendly electrochemical sensor for the anti-inflammatory diclofenac (DIC) was developed in a chitosan nanocomposite carbon paste electrode (M-Chs NC/CPE). The M-Chs NC/CPE was characterized with FTIR, XRD, SEM, and TEM for the size, surface area, and morphology. The produced electrode showed a high electrocatalytic activity to use the DIC in 0.1 M of the BR buffer (pH 3.0). The effect of scanning speed and pH on the DIC oxidation peak suggests that the DIC electrode process has a typical diffusion characteristic with two electrons and two protons. Furthermore, the peak current linearly proportional to the DIC concentration ranged from 0.025 M to 4.0 M with the correlation coefficient (r2). The sensitivity, limit of detection (LOD; 3σ), and the limit of quantification (LOQ; 10σ) were 0.993, 9.6 µA/µM cm2, 0.007 µM, and 0.024 µM, respectively. In the end, the proposed sensor enables the reliable and sensitive detection of DIC in biological and pharmaceutical samples.
Collapse
Affiliation(s)
- Mohamed Abd-Elsabour
- Chemistry Department, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Mortaga M. Abou-Krisha
- Chemistry Department, Faculty of Science, South Valley University, Qena 83523, Egypt
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Sayed H. Kenawy
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
- Refractories, Ceramics and Building Materials Department, National Research Centre, El-Buhouth St., Dokki, Giza 12622, Egypt
| | - Tarek A. Yousef
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
- Mansoura Laboratory, Toxic and Narcotic Drug, Forensic Medicine Department, Medicolegal Organization, Ministry of Justice, Cairo 11435, Egypt
| |
Collapse
|
4
|
Abdelazim AH, Abdel-Fattah A, Osman AOE, Abdel-Kareem RF, Ramzy S. Spectrophotometric Quantitative Analysis of Aspirin and Vonoprazan Fumarate in Recently Approved Fixed-Dose Combination Tablets Using Ratio Spectra Manipulating Tools. J AOAC Int 2023; 106:490-495. [PMID: 36264114 DOI: 10.1093/jaoacint/qsac128] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/11/2022] [Accepted: 10/13/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Low-dose aspirin (ASP) is prescribed to millions of people around the world as a secondary preventative strategy for the majority of significant cardiovascular events; however, it carries a substantial risk of gastric ulcer and bleeding. Cabpirin® tablets, which include low-dose ASP and vonoprazan fumarate (VON), are approved in Japan for the treatment of acid-related diseases in patients who require a low dose of ASP but are at risk of ASP-associated gastric ulcers. OBJECTIVE This paper describes the first published quantitative analytical approaches for the determination of ASP and VON. METHOD The normal ultraviolet absorption spectra of ASP and vonoprazan overlap significantly. The ratio spectra of the studied drugs were created and manipulated by ratio difference (RD) and first derivative of ratio spectra approaches. In the RD approach, the differences in the amplitude values between 229 and 283 nm enabled the quantitative analysis of ASP, and the differences in the amplitude values between 255 and 212 nm enabled the quantitative analysis of vonoprazan. In the first derivative of the ratio spectra approach, the created ratio spectra of each drug were transformed to the first-order derivative. ASP could be determined selectively at 237.40 nm without interference from vonoprazan. Moreover, vonoprazan could be determined selectively at 244 nm without interference from ASP. RESULTS The applied approaches were validated according to the ICH guideline, with good results. Linear correlations were obtained for ASP and vonoprazan over concentration ranges of 2-25 and 1-10 µg/mL, respectively. CONCLUSIONS The described methods were optimized, validated, and applied for determination of the studied drugs in the synthetic mixtures and in pharmaceutical tablets without interferences. HIGHLIGHTS Two spectrophotometric ratio spectra manipulating approaches were developed for the determination of the ASP and vonoprazan in their pharmaceutical combination tablets.
Collapse
Affiliation(s)
- Ahmed H Abdelazim
- Al-Azhar University, Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, 11751 Nasr City, Cairo, Egypt
| | - Ashraf Abdel-Fattah
- Al-Azhar University, Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, 11751 Nasr City, Cairo, Egypt
| | - Ayman O E Osman
- Al-Azhar University, Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, 11751 Nasr City, Cairo, Egypt
| | - Rady F Abdel-Kareem
- Al-Azhar University, Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, 11751 Nasr City, Cairo, Egypt
| | - Sherif Ramzy
- Al-Azhar University, Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, 11751 Nasr City, Cairo, Egypt
| |
Collapse
|
5
|
Abd-Elsabour M, Alsoghier HM, Alhamzani AG, Abou-Krisha MM, Yousef TA, Assaf HF. A Novel Electrochemical Sensor for Detection of Nicotine in Tobacco Products Based on Graphene Oxide Nanosheets Conjugated with (1,2-Naphthoquinone-4-Sulphonic Acid) Modified Glassy Carbon Electrode. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2354. [PMID: 35889578 PMCID: PMC9323772 DOI: 10.3390/nano12142354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/18/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023]
Abstract
A simple electrochemical sensor for nicotine (NIC) detection was performed. The sensor based on a glassy carbon electrode (GCE) was modified by (1,2-naphthoquinone-4-sulphonic acid)(Nq) decorated by graphene oxide (GO) nanocomposite. The synthesized (GO) nanosheets were characterized using X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscope (SEM), transmission electron microscope (TEM), FT-IR, and UV-Visible Spectroscopy. The insertion of Nq with GO nanosheets on the surface of GCE displayed high electrocatalytic activity towards NIC compared to the bare GCE. NIC determination was performed under the optimum conditions using 0.10 M of Na2SO4 as a supporting electrolyte with pH 8.0 at a scan rate of 100 mV/s using both cyclic voltammetry (CV) and differential pulse voltammetry (DPV). This electrochemical sensor showed an excellent result for NIC detection. The oxidation peak current increased linearly with a 6.5-245 µM of NIC with R2 = 0.9999. The limit of detection was 12.7 nM. The fabricated electrode provided satisfactory stability, reproducibility, and selectivity for NIC oxidation. The reliable GO/Nq/GCE sensor was successfully applied for detecting NIC in the tobacco product and a urine sample.
Collapse
Affiliation(s)
- M. Abd-Elsabour
- Chemistry Department, Faculty of Science, South Valley University, Qena 83523, Egypt; (M.A.-E.); (H.M.A.)
| | - Hesham M. Alsoghier
- Chemistry Department, Faculty of Science, South Valley University, Qena 83523, Egypt; (M.A.-E.); (H.M.A.)
| | - Abdulrahman G. Alhamzani
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; (A.G.A.); (T.A.Y.)
| | - Mortaga M. Abou-Krisha
- Chemistry Department, Faculty of Science, South Valley University, Qena 83523, Egypt; (M.A.-E.); (H.M.A.)
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; (A.G.A.); (T.A.Y.)
| | - Tarek A. Yousef
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; (A.G.A.); (T.A.Y.)
- Mansoura Laboratory, Department of Toxic and Narcotic Drug, Forensic Medicine, Medicolegal Organization, Ministry of Justice, Mansoura 35511, Egypt
| | - Hytham F. Assaf
- Chemistry Department, Faculty of Science, South Valley University, Qena 83523, Egypt; (M.A.-E.); (H.M.A.)
| |
Collapse
|