1
|
Granja HS, Silva JDOS, Andrade YB, Farrapeira RO, Sussuchi EM, Freitas LS. Emerging carbonaceous material based on residual grape seed applied in selective and sensitive electrochemical detection of fenamiphos. Talanta 2025; 281:126784. [PMID: 39245008 DOI: 10.1016/j.talanta.2024.126784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/16/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024]
Abstract
Fenamiphos (FNP) is a pesticide applied for soil pest control, particularly nematodes, and sucking insects, including aphids and thrips. Despite its use being banned in several countries due to its highly toxic nature for living beings, including mammals, because of its acetylcholine-inhibiting action, it is still marketed for use in agriculture. Therefore, a carbon paste electrode modified with residual grape seed biochar (bSU), served as an electrochemical sensor (E-bSU) for the quantification of fenamiphos in grape juice, tap water, and river water samples. The bSU underwent comprehensive characterization employing elemental, morphological, and spectroscopic analysis techniques. The impact of electrode modification and the electrochemical behavior of the FNP were systematically assessed through cyclic voltammetry, electrochemical impedance spectroscopy and differential pulse voltammetry. The biochar manifested a microporous surface adorned with dispersed functional groups, enhancing its affinity for organic compounds, particularly the investigated pesticide. Electrode modification and the optimization of analysis parameters resulted in a notable 6-fold amplification of the electrochemical signal of FNP relative to initial conditions, underscoring the efficacy of the E-bSU. The developed methodology attained limits of detection and quantification of 0.3 and 0.9 nmol L⁻1, respectively. Repeatability and reproducibility assays demonstrated relative standard deviations below 5%, underscoring the reliability of the applied electrode. The sensor showcased recoveries ranging from 99.75% to 109.9% across the analyzed samples, highlighting the utility of this selective, stable, and reproducible sensor for fenamiphos determination.
Collapse
Affiliation(s)
- Honnara S Granja
- Programa de Pós-Graduação Em Química, Universidade Federal de Sergipe, Av. Marcelo Déda Chagas, S/n - Rosa Elze, São Cristóvão, SE, 49107-230, Brazil.
| | - Jonatas de Oliveira S Silva
- Programa de Pós-Graduação Em Química, Instituto de Química, Universidade Federal da Bahia, R. Barão de Jeremoabo, S/n - Ondina, Salvador, BA, 40170-280, Brazil.
| | - Yasmine B Andrade
- Programa de Pós-Graduação Em Biotecnologia Industrial, Universidade Tiradentes, Av. Murilo Dantas, 300 - Farolândia, Aracaju, SE, 49032-490, Brazil.
| | - Rafael O Farrapeira
- NUESC - Núcleo de Estudos Em Sistemas Coloidais - ITP, Universidade Tiradentes, Av. Murilo Dantas, 300 - Farolândia, Aracaju, SE, 49032-490, Brazil.
| | - Eliana M Sussuchi
- Programa de Pós-Graduação Em Química, Universidade Federal de Sergipe, Av. Marcelo Déda Chagas, S/n - Rosa Elze, São Cristóvão, SE, 49107-230, Brazil.
| | - Lisiane S Freitas
- Programa de Pós-Graduação Em Química, Universidade Federal de Sergipe, Av. Marcelo Déda Chagas, S/n - Rosa Elze, São Cristóvão, SE, 49107-230, Brazil.
| |
Collapse
|
2
|
Draz ME, Edrees FH, Mohamed HM, Hammad SF, Saad AS. Quality-by-design ecofriendly potentiometric sensor for rapid monitoring of hydroxychloroquine purity in the presence of toxic impurities. Sci Rep 2024; 14:6869. [PMID: 38519474 PMCID: PMC10960021 DOI: 10.1038/s41598-024-53456-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/31/2024] [Indexed: 03/25/2024] Open
Abstract
Hydroxychloroquine (HCQ) is prescribed to treat malaria and certain autoimmune diseases. Recent studies questioned its efficiency in relieving COVID-19 symptoms and improving clinical outcomes. This work presents a quality-by-design approach to develop, optimize, and validate a potentiometric sensor for the selective analysis of HCQ in the presence of its toxic impurities (key starting materials), namely 4,7-Dichloroquinoline (DCQ) and hydroxynovaldiamine (HND). The study employed a custom experimental design of 16 sensors with different ion exchangers, plasticizers, and ionophores. We observed the Nernstian slopes, correlation coefficients, quantification limit, response time, and selectivity coefficient for DCQ and HND. The computer software constructed a prediction model for each response. The predicted responses strongly correlate to the experimental ones, indicating model fitness. The optimized sensor achieved 93.8% desirability. It proved a slope of 30.57 mV/decade, a correlation coefficient of 0.9931, a quantification limit of 1.07 × 10-6 M, a detection limit of 2.18 × 10-7 M, and a fast response of 6.5 s within the pH range of 2.5-8.5. The sensor was successfully used to determine HCQ purity in its raw material. The sensor represents a potential tool for rapid, sensitive, and selective monitoring of HCQ purity during industrial production from its starting materials.
Collapse
Affiliation(s)
- Mohammed E Draz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Fadwa H Edrees
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University (NUB), Beni-Suef, 62511, Egypt.
| | - Heba M Mohamed
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St, Cairo, 11562, Egypt
| | - Sherif F Hammad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Helwan, Egypt
- Medicinal Chemistry Department, PharmD Program, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Ahmed S Saad
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St, Cairo, 11562, Egypt
- Medicinal Chemistry Department, PharmD Program, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Alexandria, 21934, Egypt
| |
Collapse
|
3
|
Nardi N, Baumgarten LG, Dreyer JP, Santana ER, Winiarski JP, Vieira IC. Nanocomposite based on green synthesis of gold nanoparticles decorated with functionalized multi-walled carbon nanotubes for the electrochemical determination of hydroxychloroquine. J Pharm Biomed Anal 2023; 236:115681. [PMID: 37672903 DOI: 10.1016/j.jpba.2023.115681] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/13/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023]
Abstract
In this study, a selective and sensitive electrochemical approach for determining hydroxychloroquine (HCQ) was proposed. A novel nanocomposite based on gold nanoparticles synthesized by green synthesis in an extract of white pitaya (Hylocereus undatus) (AuNP-Ext) decorated with functionalized multi-walled carbon nanotubes (f-MWCNTs) was presented. AuNP-Ext was characterized by ultraviolet-visible spectroscopy and the f-MWCNTs/AuNP-Ext nanocomposite by transmission electron microscopy. The nanocomposite was used to modify a glassy carbon electrode (GCE). Using the f-MWCNT-AuNP-Ext/GCE sensor, an irreversible oxidation peak at +0.74 V vs. Ag/AgCl was verified by HCQ. The calibration plot was studied in two linear ranges, from 0.03 to 3.5 µmol/L and from 3.5 to 17.0 µmol/L, with a limit of detection of 0.0093 µmol/L and a limit of quantification of 0.031 µmol/L, regarding the first linear range. The proposed sensor was successfully applied to the determination of HCQ in pharmaceutical and clinical samples without any special purification, separation or pre-treatment steps. The accuracy was verified by UV-Vis spectrometry, and this revealed that the proposed method was accurate and precise, as evidenced by F- and t-tests.
Collapse
Affiliation(s)
- Nathalia Nardi
- Laboratory of Biosensors - Department of Chemistry, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC 88040-900, Brazil
| | - Luan Gabriel Baumgarten
- Laboratory of Biosensors - Department of Chemistry, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC 88040-900, Brazil
| | - Juliana Priscila Dreyer
- Laboratory of Biosensors - Department of Chemistry, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC 88040-900, Brazil
| | - Edson Roberto Santana
- Laboratory of Biosensors - Department of Chemistry, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC 88040-900, Brazil
| | - João Paulo Winiarski
- Laboratory of Biosensors - Department of Chemistry, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC 88040-900, Brazil.
| | - Iolanda Cruz Vieira
- Laboratory of Biosensors - Department of Chemistry, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC 88040-900, Brazil.
| |
Collapse
|
4
|
Uçar A, Aydoğdu Tığ G, Er E. Recent advances in two dimensional nanomaterial-based electrochemical (bio)sensing platforms for trace-level detection of amino acids and pharmaceuticals. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
5
|
Zoubir J, Bakas I, Qourzal S, Tamimi M, Assabbane A. Electrochemical sensor based on a ZnO-doped graphitized carbon for the electrocatalytic detection of the antibiotic hydroxychloroquine. Application: tap water and human urine. J APPL ELECTROCHEM 2023; 53:1279-1294. [PMID: 36644408 PMCID: PMC9825087 DOI: 10.1007/s10800-022-01835-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/18/2022] [Indexed: 01/09/2023]
Abstract
Abstract In December 2019, the world experienced a new coronavirus, SARS-CoV-2, causing coronavirus disease 2019 originating from Wuhan.The virus has crossed national borders and now affects more than 200 countries and territories. Hydroxychloroquine has been considered as a drug capable of treating COVID-19. The objective of this work is to establish a simple platform for electrocatalytic detection of hydroxychloroquine in human urine samples and pharmaceutical samples (tablets) using a ZnO@CPE sensor constructed by simple and inexpensive hydrothermal methods using a square wave voltammetry method. The best results are obtained in a PBS electrolyte with irreversible behavior of the hydroxychloroquine complement and controlled by diffusion coupled with absorption phenomena. The ZnO@CPE shifts the oxidation potential of hydroxychloroquine with the formation of a single very intense peak at the position of Epa = 0.5 V/(vs Ag/AgCl) with a shift is ΔEp = 0.1 V(vs Ag/AgCl) compared to the unmodified electrode. The obtained ZnO@CPE hybrid nanocomposite was characterized by different techniques and showed excellent electrocatalytic activity and higher active surface area compared to the bare carbon paste electrode. Under the optimized experimental conditions, the ZnO@CPE sensor showed good analytical performance for the determination of trace amounts of hydroxychloroquine, a wide linearity range from 10-3 M to 0.8 × 10-6 M with a very low detection limit in the range of 1.33 × 10-7 M, satisfactory selectivity, acceptable repeatability and reproducibility. The calculated recovery and coefficient of variation for the two samples analyzed are very satisfactory, ranging from 97.6 to 102% and 1.2 to 2.3% respectively. The proposed applied method and the fabricated sensor offer the possibility to analyze traces of hydroxychloroquine in real human urine and water samples. Graphical abstract Strategy for the electro-oxidation reaction of hydroxychloroquine on the electro-catalytic surface of the ZnO@Carbon graphite electrode and real-time detection of hydroxychloroquine.
Collapse
Affiliation(s)
- Jallal Zoubir
- Team of Catalysis and Environment, Faculty of Sciences, Ibn Zohr University, BP 8106, Agadir, Morocco
| | - Idriss Bakas
- Team of Catalysis and Environment, Faculty of Sciences, Ibn Zohr University, BP 8106, Agadir, Morocco
| | - Samir Qourzal
- Team of Catalysis and Environment, Faculty of Sciences, Ibn Zohr University, BP 8106, Agadir, Morocco
| | - Malika Tamimi
- Team of Catalysis and Environment, Faculty of Sciences, Ibn Zohr University, BP 8106, Agadir, Morocco
| | - Ali Assabbane
- Team of Catalysis and Environment, Faculty of Sciences, Ibn Zohr University, BP 8106, Agadir, Morocco
| |
Collapse
|
6
|
Sherlin V A, Baby JN, Sriram B, Hsu YF, Wang SF, George M. Construction of ANbO 3 (A= Na, K)/f-carbon nanofiber composite: Rapid and real-time electrochemical detection of hydroxychloroquine in environmental samples. ENVIRONMENTAL RESEARCH 2022; 215:114232. [PMID: 36057336 DOI: 10.1016/j.envres.2022.114232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Hydroxychloroquine (HCQ) is a significant viral resistant drug widely acknowledged for its immunomodulatory and anti-inflammatory activities. To minimize the impact of HCQ residues on environmental pathways, exploring control measures is vital. In this regard, electrochemical sensing of HCQ using well-structured functional materials is advantageous. This work aims to provide an economical and sustainable route for the synthesis of ANbO3 (A = Na,K) perovskites via a thymol-menthol-based natural deep eutectic solvent. The as-synthesized NaNbO3 and KNbO3 are pinned to functionalized carbon nanofibers (f-CNF) via an ultrasonication approach. Benefitting from the synergistic effect of rapid electron transfer and improved surface area, enhanced electrochemical activity for NaNbO3@f-CNF/GCE is achieved. The fabricated NaNbO3@f-CNF displays a LOD (DPV = 0.01 μM, i-t = 0.007 μM), wide dynamic range (DPV = 0.09-22.5 μM, i-t = 0.006-35 μM), outstanding selectivity, and reproducibility, proving feasible in real-time analysis with good recovery rates (±97.67-99.81%). The NADES-mediated preparation of perovskites evades the incorporation of traditional toxic solvents and yields atom-efficient ANbO3 (A = Na,K) associated with green solvent templates. This validates the sustainable fabrication of electrode materials with reduced energy stipulations for detecting hazardous drug pollutants in the ecosystem.
Collapse
Affiliation(s)
- Abhikha Sherlin V
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai, Tamil Nadu, 600086, India
| | - Jeena N Baby
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai, Tamil Nadu, 600086, India; Department of Chemistry, St. Mary's College, Sulthan Bathery, Wayanad, Kerala, 673592, India
| | - Balasubramanian Sriram
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Yung-Fu Hsu
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Mary George
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai, Tamil Nadu, 600086, India.
| |
Collapse
|
7
|
A Green Approach: Eco-friendly Synthesis of Gd2Ti2O7/N-GQD Nanocomposite and Photo-Degradation and Electrochemical Measurement of Hydroxychloroquine as a Perdurable Drug. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
8
|
Matrouf M, Loudiki A, Alaoui OT, Laghrib F, Farahi A, Bakasse M, Saqrane S, Lahrich S, El Mhammedi MA. Synthesis of Reduced Graphene Oxide by Ethyl Acetate and Its Utilization in Determining Hydroxychloroquine in Wastewater and Pharmaceutical Samples. ChemistrySelect 2022. [DOI: 10.1002/slct.202201056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mustapha Matrouf
- Sultan Moulay Slimane University of Beni Mellal Laboratory of Materials Science Mathematics and Environment, Polydisciplinary faculty 25 000 Khouribga Morocco
| | - Abdelwahed Loudiki
- Sultan Moulay Slimane University of Beni Mellal Laboratory of Materials Science Mathematics and Environment, Polydisciplinary faculty 25 000 Khouribga Morocco
- Chouaib Doukkali University Organic Micropollutants Analysis Team Faculty of Sciences Morocco
| | - Ouafa Tahiri Alaoui
- Moulay Ismail University Laboratory of Physical Chemistry Materials and Environment Sciences and Technologies Faculty Errachidia Morocco
| | - Fathellah Laghrib
- Sultan Moulay Slimane University of Beni Mellal Laboratory of Materials Science Mathematics and Environment, Polydisciplinary faculty 25 000 Khouribga Morocco
- Sidi Mohamed Ben Abdellah University Engineering Laboratory of Organometallic Molecular Materials, and Environment, City of Innovation Immouzer Road, Box 2626 Fes Morocco
| | - Abdelfettah Farahi
- Sultan Moulay Slimane University of Beni Mellal Laboratory of Materials Science Mathematics and Environment, Polydisciplinary faculty 25 000 Khouribga Morocco
| | - Mina Bakasse
- Chouaib Doukkali University Organic Micropollutants Analysis Team Faculty of Sciences Morocco
| | - Sana Saqrane
- Sultan Moulay Slimane University of Beni Mellal Laboratory of Materials Science Mathematics and Environment, Polydisciplinary faculty 25 000 Khouribga Morocco
| | - Sara Lahrich
- Sultan Moulay Slimane University of Beni Mellal Laboratory of Materials Science Mathematics and Environment, Polydisciplinary faculty 25 000 Khouribga Morocco
| | - Moulay Abderrahim El Mhammedi
- Sultan Moulay Slimane University of Beni Mellal Laboratory of Materials Science Mathematics and Environment, Polydisciplinary faculty 25 000 Khouribga Morocco
| |
Collapse
|
9
|
Zheng L, Yan Y, Wang N, Li M, Shuang S, Bian W, Choi MMF. Sulfur-doped graphitic carbon nitride nanosheets as a sensitive fluorescent probe for detecting environmental and intracellular Ag. Methods Appl Fluoresc 2022; 10. [PMID: 35850115 DOI: 10.1088/2050-6120/ac8223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/18/2022] [Indexed: 11/11/2022]
Abstract
Silver is widely used in medical materials, photography, electronics and other industries as a precious metal. The large-scale industrial production of silver-containing products and liquid waste emissions aggravate the environmental pollution. Silver ion is one of the most toxic metal ions, causing pollution to the environment and damage to public health. Therefore, the efficient and sensitive detection of Ag+ in the water environment is extremely important. Sulfur-doped carbon nitride nanosheets (SCN Ns) were prepared by melamine and thiourea via high-temperature calcination. The morphology, chemical composition and surface functional groups of the SCN Ns were characterized by SEM, TEM, XRD, XPS, and FT-IR. The fluorescence of SCN Ns was gradually quenched as the Ag+ concentration increased. The detection limit for Ag+ was as low as 0.28 nM. The quenching mechanism mainly is attributed to static quenching. In this paper, SCN Ns were used as the fluorescent probe for detecting Ag+. SCN Ns have successfully detected Ag+ in different environmental aqueous samples and cells. Finally, SCN Ns were further applied to the visual quantitative detection of intracellular Ag+.
Collapse
Affiliation(s)
- Lingling Zheng
- Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi Province, China, Taiyuan, Shanxi , 030001, CHINA
| | - Yangyang Yan
- Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi Province, China, Taiyuan, Shanxi , 030001, CHINA
| | - Ning Wang
- Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi Province, China, Taiyuan, Shanxi , 030001, CHINA
| | - Mingli Li
- Lvliang People's Hospital, Lvliang People's Hospital, Lvliang, China, Lvliang, 033000, CHINA
| | - Shaomin Shuang
- Shanxi University, Xiaodian District, Taiyuan City, Shanxi Province, Taiyuan, Shanxi , 030006, CHINA
| | - Wei Bian
- Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi Province, China, Taiyuan, 030001, CHINA
| | - Martin M F Choi
- c/o Tyndale Baptist Church, Bristol Chinese Christian Church, 137-139 Whiteladies Road, Bristol, BS8 2QG, United Kingdom, Clifton, Bristol, BS8 2QG, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
10
|
Additively manufactured electrodes for the electrochemical detection of hydroxychloroquine. Talanta 2022; 250:123727. [PMID: 35850056 PMCID: PMC9262657 DOI: 10.1016/j.talanta.2022.123727] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 11/21/2022]
Abstract
Although studies have demonstrated the inactivity of hydroxychloroquine (HCQ) towards SARS-CoV-2, this compound was one of the most prescribed by medical organizations for the treatment of hospitalized patients during the coronavirus pandemic. As a result of it, HCQ has been considered as a potential emerging contaminant in aquatic environments. In this context, we propose a complete electrochemical device comprising cell and working electrode fabricated by the additive manufacture (3D-printing) technology for HCQ monitoring. For this, a 3D-printed working electrode made of a conductive PLA containing carbon black assembled in a 3D-printed cell was associated with square wave voltammetry (SWV) for the fast and sensitive determination of HCQ. After a simple surface activation procedure, the proposed 3D-printed sensor showed a linear response towards HCQ detection (0.4-7.5 μmol L-1) with a limit of detection of 0.04 μmol L-1 and precision of 2.4% (n = 10). The applicability of this device was shown to the analysis of pharmaceutical and water samples. Recovery values between 99 and 112% were achieved for tap water samples and, in addition, the obtained concentration values for pharmaceutical tablets agreed with the values obtained by spectrophotometry (UV region) at a 95% confidence level. The proposed device combined with portable instrumentation is promising for on-site HCQ detection.
Collapse
|
11
|
Monteiro M, Sant'Anna M, dos Santos Júnior JC, Alves A, Macedo JF, Silva J, Gimenez IDF, Sussuchi EM. Reduced graphene oxide‐based sensor for 17α–ethinylestradiol voltammetric determination in wastewater, tablets and synthetic urine samples. ELECTROANAL 2022. [DOI: 10.1002/elan.202100500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Simultaneous electrochemical detection of gallic acid and uric acid with p-tert-butylcalix[4]arene-based coordination polymer/mesoporous carbon composite. Mikrochim Acta 2022; 189:93. [PMID: 35132498 DOI: 10.1007/s00604-022-05201-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/25/2022] [Indexed: 10/19/2022]
Abstract
Design and synthesis of an efficient electrocatalyst for simultaneous determination of gallic acid (GA) and uric acid (UA) is vital in the biological field. Herein, we synthesized a new p-tert-butylcalix[4]arene-based metal-organic electrocatalyst (Mn-L@MC) by combining Mn-L (H4L = tetrakis[(2-biphenylcarboxyl)oxy]-p-tertbutylcalix[4]arene) and mesoporous carbon (MC) via a simple mechanical grinding method. Synergistic effect between Mn-L and MC made the Mn-L@MC composite behave high-efficiency electrocatalytic performance toward simultaneous detection of GA and UA. Under optimal experimental conditions, the Mn-L@MC-2 electrode material featured relatively wide linear range (0.5-90 µM) for the two analytes, and low determination limits of 0.043 µM for GA and 0.059 µM for UA. The remarkable electrochemical detection behavior of Mn-L@MC-2 electrode material toward GA and UA are comparable to those known sensors containing precious metals. The Mn-L@MC-2 material exhibited high selectivity, superior reproducibility, and acceptable stability during the determination of the two analytes. The sensor was assembled to simultaneously detect GA and UA in healthy human urine with satisfactory recoveries.
Collapse
|