1
|
Jadon N, Tomar P, Shrivastava S, Hosseinzadeh B, Kaya SI, Ozkan SA. Monitoring of Specific Phytoestrogens by Dedicated Electrochemical Sensors: A Review. Food Chem 2024; 460:140404. [PMID: 39068721 DOI: 10.1016/j.foodchem.2024.140404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/30/2024]
Abstract
Phytoestrogens are non-steroidal estrogens produced from plants that can bind with the human body's estrogenic receptor site and be used as a substitute for maintaining hormonal balance. They are mainly classified as flavonoids, phenolic acids, lignans, stilbenes, and coumestans; some are resocyclic acids of lactones, which are mycotoxins and not natural phytoestrogen. Phytoestrogens have many beneficial medicinal properties, making them an important part of the daily diet. Electrochemical sensors are widely used analytical tools for analysing various pharmaceuticals, chemicals, pollutants and food items. Electrochemical sensors provide an extensive platform for highly sensitive and rapid analysis. Several reviews have been published on the importance of the biological and medicinal properties of phytoestrogens. However, this review provides an overview of recent work performed through electrochemical measurements with electrochemical sensors and biosensors for all the classes of phytoestrogens done so far since 2019.
Collapse
Affiliation(s)
- Nimisha Jadon
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Türkiye; School of Studies in Environmental Chemistry, Jiwaji University, Gwalior, M.P., 474011, India.
| | - Puja Tomar
- School of Studies in Environmental Chemistry, Jiwaji University, Gwalior, M.P., 474011, India
| | - Swati Shrivastava
- School of Studies in Environmental Chemistry, Jiwaji University, Gwalior, M.P., 474011, India
| | - Batoul Hosseinzadeh
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Türkiye
| | - S Irem Kaya
- University of Health Sciences, Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Türkiye
| | - Sibel A Ozkan
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Türkiye.
| |
Collapse
|
2
|
Gimadutdinova L, Ziyatdinova G, Davletshin R. Voltammetric Sensor Based on the Combination of Tin and Cerium Dioxide Nanoparticles with Surfactants for Quantification of Sunset Yellow FCF. SENSORS (BASEL, SWITZERLAND) 2024; 24:930. [PMID: 38339646 PMCID: PMC10857103 DOI: 10.3390/s24030930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Sunset Yellow FCF (SY FCF) is one of the widely used synthetic azo dyes in the food industry whose content has to be controlled for safety reasons. Electrochemical sensors are a promising tool for this type of task. A voltammetric sensor based on a combination of tin and cerium dioxide nanoparticles (SnO2-CeO2 NPs) with surfactants has been developed for SY FCF determination. The synergetic effect of both types of NPs has been confirmed. Surfactants of various natures (sodium lauryl sulfate (SLS), Brij® 35, and hexadecylpyridinium bromide (HDPB)) have been tested as dispersive media. The best effects, i.e., the highest oxidation currents of SY FCF, have been observed in the case of HDPB. The sensor demonstrates a 4.5-fold-higher electroactive surface area and a 38-fold-higher electron transfer rate compared to the bare glassy carbon electrode (GCE). The electrooxidation of SY FCF is an irreversible, two-electron, diffusion-driven process involving proton transfer. In differential pulse mode in Britton-Robinson buffer (BRB) pH 2.0, the sensor gives a linear response to SY FCF from 0.010 to 1.0 μM and from 1.0 to 100 μM with an 8.0 nM detection limit. The absence of an interferent effect from other typical food components and colorants has been shown. The sensor has been tested on soft drinks and validated with the standard chromatographic method.
Collapse
Affiliation(s)
- Liliya Gimadutdinova
- Analytical Chemistry Department, Kazan Federal University, Kremleyevskaya 18, Kazan 420008, Russia;
| | - Guzel Ziyatdinova
- Analytical Chemistry Department, Kazan Federal University, Kremleyevskaya 18, Kazan 420008, Russia;
| | - Rustam Davletshin
- Department of High Molecular and Organoelement Compounds, Kazan Federal University, Kremleyevskaya 18, Kazan 420008, Russia;
| |
Collapse
|
3
|
Xia HQ, Chen W, Qiu D, Zeng J. Portable Microelectrochemical Sensors for Rapid and Sensitive Determination of Hesperidin in Citrus reticulate 'Chachi' Peel. Molecules 2023; 28:5316. [PMID: 37513189 PMCID: PMC10384646 DOI: 10.3390/molecules28145316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Portable and low-cost analytical devices are essential for rapid detection of bioactive substrates in agricultural products. This study presents the first highly integrated microelectrochemical sensor based on pencil graphite for rapid and sensitive detection of hesperidin in Citrus reticulate 'Chachi' peel. The surface morphology and characterization as well as the electrochemical property of pencil graphite was investigated and discussed. A high electrocatalytic efficiency of hesperidin has been found at used pencil graphite-based microelectrodes. Kinetic analysis was carried out to further understand the electrochemical process of hesperidin at a pencil graphite microelectrode. Consequently, a portable and highly-integrated microelectrochemical sensor exhibits a sensitivity of 0.7251 μA cm-2 μM-1 and a detection limit as low as 25 nM (S/N = 3), and high selectivity was fabricated. Proposed microelectrochemical sensors were applied to electrochemically determinate the hesperidin content in the extract of Citrus reticulata "chachi" peel. As a result, the concentration of hesperidin in the actual real sample detected electrochemically with the proposed portable and low-cost microelectrochemical sensors is highly consistent to that obtained with a common chromatographic method, thus indicating the good reliability and that it can be used in practical applications.
Collapse
Affiliation(s)
- Hong-Qi Xia
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MARA), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Wanbing Chen
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MARA), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Diyang Qiu
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MARA), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jiwu Zeng
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MARA), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
4
|
Xia HQ, Qiu D, Chen W, Mao G, Zeng J. In situ formed and fully integrated laser-induced graphene electrochemical chips for rapid and simultaneous determination of bioflavonoids in citrus fruits. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
5
|
Yakupova E, Mukharlyamova A, Fitsev I, Ziyatdinova G. Layer-by-Layer Combination of MWCNTs and Poly(ferulic acid) as Electrochemical Platform for Hesperidin Quantification. BIOSENSORS 2023; 13:bios13050500. [PMID: 37232861 DOI: 10.3390/bios13050500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/07/2023] [Accepted: 04/23/2023] [Indexed: 05/27/2023]
Abstract
The electrochemical polymerization of suitable monomers is a powerful way to create voltammetric sensors with improved responses to a target analyte. Nonconductive polymers based on phenolic acids were successfully combined with carbon nanomaterials to obtain sufficient conductivity and high surface area of the electrode. Glassy carbon electrodes (GCE) modified with multi-walled carbon nanotubes (MWCNTs) and electropolymerized ferulic acid (FA) were developed for the sensitive quantification of hesperidin. The optimized conditions of FA electropolymerization in basic medium (15 cycles from -0.2 to 1.0 V at 100 mV s-1 in 250 µmol L-1 monomer solution in 0.1 mol L-1 NaOH) were found using the voltammetric response of hesperidin. The polymer-modified electrode exhibited a high electroactive surface area (1.14 ± 0.05 cm2 vs. 0.75 ± 0.03 and 0.089 ± 0.003 cm2 for MWCNTs/GCE and bare GCE, respectively) and decreased in the charge transfer resistance (21.4 ± 0.9 kΩ vs. 72 ± 3 kΩ for bare GCE). Under optimized conditions, hesperidin linear dynamic ranges of 0.025-1.0 and 1.0-10 µmol L-1 with a detection limit of 7.0 nmol L-1 were achieved, which were the best ones among those reported to date. The developed electrode was tested on orange juice and compared with chromatography.
Collapse
Affiliation(s)
- Elvira Yakupova
- Analytical Chemistry Department, Kazan Federal University, Kremleyevskaya, 18, Kazan 420008, Russia
- Federal State Budgetary Scientific Institution «Federal Center for Toxicological, Radiation, and Biological Safety», Nauchny Gorodok-2, Kazan 420075, Russia
| | - Aisylu Mukharlyamova
- Federal State Budgetary Scientific Institution «Federal Center for Toxicological, Radiation, and Biological Safety», Nauchny Gorodok-2, Kazan 420075, Russia
| | - Igor Fitsev
- Federal State Budgetary Scientific Institution «Federal Center for Toxicological, Radiation, and Biological Safety», Nauchny Gorodok-2, Kazan 420075, Russia
| | - Guzel Ziyatdinova
- Analytical Chemistry Department, Kazan Federal University, Kremleyevskaya, 18, Kazan 420008, Russia
| |
Collapse
|
6
|
Lameche S, Berrabah SE, Benchettara A, Tabti S, Manseri A, Djadi D, Bardeau JF. One-step electrochemical elaboration of SnO 2 modified electrode for lead ion trace detection in drinking water using SWASV. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:44578-44590. [PMID: 36696063 DOI: 10.1007/s11356-023-25517-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
A facile method was proposed for the elaboration of an electrochemical sensor for heavy metal's trace detection by using square wave anodic stripping voltammetry (SWASV); this method is based on a simple anodic conversion of tin electrode into Sn/SnO2 modified electrode. Both electrochemical and physico-chemical techniques were used to confirm the modification process and better understand the electrode's behavior. Then, depending on the operating conditions, the response signal was studied and adjusted in order to obtain optimal sensor performance. When optimized, the proposed method reached a lowest detection limit (LOD) of 2.15 μg L-1 (0.0104 μM), and quantification limit (LOQ) of 5.36 μg L-1 (0.0259 μM), in linearity range between from 6.2 and 20.7 μg L-1. Additionally, after having used the elaborated electrode for ten successive measurements, the repeatability remains very high with an RSD of approximately 5.3%; furthermore, ten other species appear to have very slight effect on Pb(II) detection. Finally, for the method validation, the proposed electrode was able to sense different lead concentration integrated in a local bottled spring water by showing recovery levels ranging from 103.8 to 108.4%.
Collapse
Affiliation(s)
- Siham Lameche
- Laboratory of Electrochemistry-Corrosion, Metallurgy and Mineral Chemistry, Faculty of Chemistry, USTHB, BP 32, 16111, Algiers, Algeria
| | - Salah Eddine Berrabah
- Laboratory of Electrochemistry-Corrosion, Metallurgy and Mineral Chemistry, Faculty of Chemistry, USTHB, BP 32, 16111, Algiers, Algeria.
| | - Abdelhakim Benchettara
- Laboratory of Electrochemistry-Corrosion, Metallurgy and Mineral Chemistry, Faculty of Chemistry, USTHB, BP 32, 16111, Algiers, Algeria
| | - Sabrina Tabti
- Laboratory of Electrochemistry-Corrosion, Metallurgy and Mineral Chemistry, Faculty of Chemistry, USTHB, BP 32, 16111, Algiers, Algeria
| | - Amar Manseri
- Research Center On Semiconductor Technology for Energetic (CRTSE), Thin Films Surface and Interface Division CMSI, 02 Bd. Frantz-Fanon, B.P. 140, Alger-7 Merveilles, Algiers, Algeria
| | - Djaouida Djadi
- Laboratory of Electrochemistry-Corrosion, Metallurgy and Mineral Chemistry, Faculty of Chemistry, USTHB, BP 32, 16111, Algiers, Algeria
| | - Jean-François Bardeau
- IMMM, Le Mans Université, UMR 6283 CNRS, Avenue Olivier Messiaen, 72085, Le Mans, France
| |
Collapse
|
7
|
Gimadutdinova L, Ziyatdinova G, Davletshin R. Selective Voltammetric Sensor for the Simultaneous Quantification of Tartrazine and Brilliant Blue FCF. SENSORS (BASEL, SWITZERLAND) 2023; 23:1094. [PMID: 36772133 PMCID: PMC9920251 DOI: 10.3390/s23031094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Tartrazine and brilliant blue FCF are synthetic dyes used in the food, cosmetic and pharmaceutical industries. The individual and/or simultaneous control of their concentrations is required due to dose-dependent negative health effects. Therefore, the paper presents experimental results related to the development of a sensing platform for the electrochemical detection of tartrazine and brilliant blue FCF based on a glassy carbon electrode (GCE) modified with MnO2 nanorods, using anodic differential pulse voltammetry. Homogeneous and stable suspensions of MnO2 nanorods have been obtained involving cetylpyridinium bromide solution as a cationic surfactant. The MnO2 nanorods-modified electrode showed a 7.9-fold increase in the electroactive surface area and a 72-fold decrease in the electron transfer resistance. The developed sensor allowed the simultaneous quantification of dyes for two linear domains: in the ranges of 0.10-2.5 and 2.5-15 μM for tartrazine and 0.25-2.5 and 2.5-15 μM for brilliant blue FCF with detection limits of 43 and 41 nM, respectively. High selectivity of the sensor response in the presence of typical interference agents (inorganic ions, saccharides, ascorbic and sorbic acids), other food dyes (riboflavin, indigo carmine, and sunset yellow), and vanillin has been achieved. The sensor has been tested by analyzing soft and isotonic sports drinks and the determined concentrations were close to those obtained involving the chromatography technique.
Collapse
Affiliation(s)
- Liliya Gimadutdinova
- Analytical Chemistry Department, Kazan Federal University, Kremleyevskaya, 18, Kazan 420008, Russia
| | - Guzel Ziyatdinova
- Analytical Chemistry Department, Kazan Federal University, Kremleyevskaya, 18, Kazan 420008, Russia
| | - Rustam Davletshin
- Department of High Molecular and Organoelement Compounds, Kazan Federal University, Kremleyevskaya, 18, Kazan 420008, Russia
| |
Collapse
|
8
|
Hesperidin: A Review on Extraction Methods, Stability and Biological Activities. Nutrients 2022; 14:nu14122387. [PMID: 35745117 PMCID: PMC9227685 DOI: 10.3390/nu14122387] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Hesperidin is a bioflavonoid occurring in high concentrations in citrus fruits. Its use has been associated with a great number of health benefits, including antioxidant, antibacterial, antimicrobial, anti-inflammatory and anticarcinogenic properties. The food industry uses large quantities of citrus fruit, especially for the production of juice. It results in the accumulation of huge amounts of by-products such as peels, seeds, cell and membrane residues, which are also a good source of hesperidin. Thus, its extraction from these by-products has attracted considerable scientific interest with aim to use as natural antioxidants. In this review, the extraction and determination methods for quantification of hesperidin in fruits and by-products are presented and discussed as well as its stability and biological activities.
Collapse
|
9
|
Voltammetric Sensor Based on SeO2 Nanoparticles and Surfactants for Indigo Carmine Determination. SENSORS 2022; 22:s22093224. [PMID: 35590915 PMCID: PMC9103650 DOI: 10.3390/s22093224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/06/2022] [Accepted: 04/20/2022] [Indexed: 02/01/2023]
Abstract
Indigo carmine is a widely used colorant in the food and pharmaceutical industry a high concentration of which can lead to a wide range of negative effects on human health. Therefore, colorant contents have to be strictly controlled. SeO2-nanoparticle-modified glassy carbon electrodes (GCE) have been developed as a voltammetric sensor for indigo carmine. Various types and concentrations of surfactants have been used as reagents for the stabilization of SeO2 nanoparticle dispersions and as electrode surface co-modifiers. An amount of 1.0 mM cationic cetylpyridinium bromide (CPB) provides the best response of the indigo carmine on the modified electrode. The electrodes were characterized by cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy (EIS). SeO2 nanoparticle–CPB-modified electrodes show 4.2-fold higher electroactive area vs. GCE as well as a dramatic 5043-fold decrease in the electron transfer resistance indicating effectivity of the modifier developed. The surface-controlled electrooxidation of indigo carmine proceeds irreversibly (αa = 0.46) with the participation of two electrons and two protons. A linear dynamic range of 0.025–1.0 and 1.0–10 µM of indigo carmine were obtained with the detection and quantification limits of 4.3 and 14.3 nM, respectively. The practical applicability of the sensor was successfully shown on the pharmaceutical dosage forms.
Collapse
|
10
|
A Review on Electrochemical Sensors and Biosensors Used in Assessing Antioxidant Activity. Antioxidants (Basel) 2022; 11:antiox11030584. [PMID: 35326234 PMCID: PMC8945540 DOI: 10.3390/antiox11030584] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 01/27/2023] Open
Abstract
Currently, there is growing interest in screening and quantifying antioxidants from biological samples in the quest for natural and effective antioxidants to combat free radical-related pathological complications. Antioxidants play an important role in human health and provide a defense against many diseases. Due to the valuable dietary role of these compounds, the analysis and determination of their amount in food is of particular importance. In recent years, many attempts have been made to provide simple, fast, and economical analytical approaches for the on-site detection and determination of antioxidant activity in food antioxidants. In this regard, electrochemical sensors and biosensors are considered promising tools for antioxidant research due to their high sensitivity, fast response time, and ease of miniaturization; thus, they are used in a variety of fields, including food analysis, drug screening, and toxicity research. Herein, we review the recent advances in sensors and biosensors for the detection of antioxidants, underlying principles, and emphasizing advantages, along with limitations regarding the ability to discriminate between the specific antioxidant or quantifying total antioxidant content. In this work, both direct and indirect methods for antioxidants detecting with electrochemical sensors and biosensors are analyzed in detail. This review aims to prove how electrochemical sensors and biosensors represent reliable alternatives to conventional methods for antioxidant analysis.
Collapse
|
11
|
Ziyatdinova G, Gimadutdinova L. Cerium(IV) and Iron(III) Oxides Nanoparticles Based Voltammetric Sensor for the Sensitive and Selective Determination of Lipoic Acid. SENSORS (BASEL, SWITZERLAND) 2021; 21:7639. [PMID: 34833711 PMCID: PMC8621773 DOI: 10.3390/s21227639] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/13/2021] [Accepted: 11/14/2021] [Indexed: 01/25/2023]
Abstract
A novel voltammetric sensor based on CeO2·Fe2O3 nanoparticles (NPs) has been developed for the determination of lipoic acid, playing an essential role in aerobic metabolism in the living organism. Sensor surface modification provides a 5.6-fold increase of the lipoic acid oxidation currents and a 20 mV anodic shift of the oxidation potential. The best voltammetric parameters have been obtained for the 0.5 mg mL-1 dispersion of CeO2·Fe2O3 NPs. Scanning electron microscopy (SEM) confirms the presence of spherical NPs of 25-60 nm, and their aggregates evenly distributed on the electrode surface and formed porous coverage. This leads to the 4.4-fold increase of the effective surface area vs. bare glassy carbon electrode (GCE). The sensor shows a significantly higher electron transfer rate. Electrooxidation of lipoic acid on CeO2·Fe2O3 NPs modified GCE is an irreversible diffusion-controlled pH-independent process occurring with the participation of two electrons. The sensor gives a linear response to lipoic acid in the ranges of 0.075-7.5 and 7.5-100 μM with the detection limit of 0.053 μM. The sensor is selective towards lipoic acid in the presence of inorganic ions, ascorbic acid, saccharides, and other S-containing compounds. The sensor developed has been tested on the pharmaceutical dosage forms of lipoic acid.
Collapse
Affiliation(s)
- Guzel Ziyatdinova
- Department of Analytical Chemistry, Kazan Federal University, Kremleyevskaya 18, 420008 Kazan, Russia
| | - Liliya Gimadutdinova
- Department of Analytical Chemistry, Kazan Federal University, Kremleyevskaya 18, 420008 Kazan, Russia
| |
Collapse
|