1
|
Fedorov II, Protasov SA, Tarasova IA, Gorshkov MV. Ultrafast Proteomics. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1349-1361. [PMID: 39245450 DOI: 10.1134/s0006297924080017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 09/10/2024]
Abstract
Current stage of proteomic research in the field of biology, medicine, development of new drugs, population screening, or personalized approaches to therapy dictates the need to analyze large sets of samples within the reasonable experimental time. Until recently, mass spectrometry measurements in proteomics were characterized as unique in identifying and quantifying cellular protein composition, but low throughput, requiring many hours to analyze a single sample. This was in conflict with the dynamics of changes in biological systems at the whole cellular proteome level upon the influence of external and internal factors. Thus, low speed of the whole proteome analysis has become the main factor limiting developments in functional proteomics, where it is necessary to annotate intracellular processes not only in a wide range of conditions, but also over a long period of time. Enormous level of heterogeneity of tissue cells or tumors, even of the same type, dictates the need to analyze biological systems at the level of individual cells. These studies involve obtaining molecular characteristics for tens, if not hundreds of thousands of individual cells, including their whole proteome profiles. Development of mass spectrometry technologies providing high resolution and mass measurement accuracy, predictive chromatography, new methods for peptide separation by ion mobility and processing of proteomic data based on artificial intelligence algorithms have opened a way for significant, if not radical, increase in the throughput of whole proteome analysis and led to implementation of the novel concept of ultrafast proteomics. Work done just in the last few years has demonstrated the proteome-wide analysis throughput of several hundred samples per day at a depth of several thousand proteins, levels unimaginable three or four years ago. The review examines background of these developments, as well as modern methods and approaches that implement ultrafast analysis of the entire proteome.
Collapse
Affiliation(s)
- Ivan I Fedorov
- Moscow Institute of Physics and Technology (National University), Dolgoprudny, Moscow Region, 141700, Russia
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Sergey A Protasov
- Moscow Institute of Physics and Technology (National University), Dolgoprudny, Moscow Region, 141700, Russia
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Irina A Tarasova
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Mikhail V Gorshkov
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia.
| |
Collapse
|
2
|
Designing Formulation Strategies for Enhanced Stability of Therapeutic Peptides in Aqueous Solutions: A Review. Pharmaceutics 2023; 15:pharmaceutics15030935. [PMID: 36986796 PMCID: PMC10056213 DOI: 10.3390/pharmaceutics15030935] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/04/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
Over the past few decades, there has been a tremendous increase in the utilization of therapeutic peptides. Therapeutic peptides are usually administered via the parenteral route, requiring an aqueous formulation. Unfortunately, peptides are often unstable in aqueous solutions, affecting stability and bioactivity. Although a stable and dry formulation for reconstitution might be designed, from a pharmaco-economic and practical convenience point of view, a peptide formulation in an aqueous liquid form is preferred. Designing formulation strategies that optimize peptide stability may improve bioavailability and increase therapeutic efficacy. This literature review provides an overview of various degradation pathways and formulation strategies to stabilize therapeutic peptides in aqueous solutions. First, we introduce the major peptide stability issues in liquid formulations and the degradation mechanisms. Then, we present a variety of known strategies to inhibit or slow down peptide degradation. Overall, the most practical approaches to peptide stabilization are pH optimization and selecting the appropriate type of buffer. Other practical strategies to reduce peptide degradation rates in solution are the application of co-solvency, air exclusion, viscosity enhancement, PEGylation, and using polyol excipients.
Collapse
|
3
|
Arndt JR, Wormwood Moser KL, Van Aken G, Doyle RM, Talamantes T, DeBord D, Maxon L, Stafford G, Fjeldsted J, Miller B, Sherman M. High-Resolution Ion-Mobility-Enabled Peptide Mapping for High-Throughput Critical Quality Attribute Monitoring. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2019-2032. [PMID: 33835810 DOI: 10.1021/jasms.0c00434] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Characterization and monitoring of post-translational modifications (PTMs) by peptide mapping is a ubiquitous assay in biopharmaceutical characterization. Often, this assay is coupled to reversed-phase liquid chromatographic (LC) separations that require long gradients to identify all components of the protein digest and resolve critical modifications for relative quantitation. Incorporating ion mobility (IM) as an orthogonal separation that relies on peptide structure can supplement the LC separation by providing an additional differentiation filter to resolve isobaric peptides, potentially reducing ambiguity in identification through mobility-aligned fragmentation and helping to reduce the run time of peptide mapping assays. A next-generation high-resolution ion mobility (HRIM) technique, based on structures for lossless ion manipulations (SLIM) technology with a 13 m ion path, provides peak capacities and higher resolving power that rivals traditional chromatographic separations and, owing to its ability to resolve isobaric peptides that coelute in faster chromatographic methods, allows for up to 3× shorter run times than conventional peptide mapping methods. In this study, the NIST monoclonal antibody IgG1κ (NIST RM 8671, NISTmAb) was characterized by LC-HRIM-MS and LC-HRIM-MS with collision-induced dissociation (HRIM-CID-MS) using a 20 min analytical method. This approach delivered a sequence coverage of 96.5%. LC-HRIM-CID-MS experiments provided additional confidence in sequence determination. HRIM-MS resolved critical oxidations, deamidations, and isomerizations that coelute with their native counterparts in the chromatographic dimension. Finally, quantitative measurements of % modification were made using only the m/z-extracted HRIM arrival time distributions, showing good agreement with the reference liquid-phase separation. This study shows, for the first time, the analytical capability of HRIM using SLIM technology for enhancing peptide mapping workflows relevant to biopharmaceutical characterization.
Collapse
Affiliation(s)
- James R Arndt
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| | - Kelly L Wormwood Moser
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| | - Gregory Van Aken
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| | - Rory M Doyle
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| | - Tatjana Talamantes
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| | - Daniel DeBord
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| | - Laura Maxon
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| | - George Stafford
- Agilent Technologies Inc., 5301 Stevens Creek Bouelvard, Santa Clara, California 95051, United States
| | - John Fjeldsted
- Agilent Technologies Inc., 5301 Stevens Creek Bouelvard, Santa Clara, California 95051, United States
| | - Bryan Miller
- Agilent Technologies Inc., 5301 Stevens Creek Bouelvard, Santa Clara, California 95051, United States
| | - Melissa Sherman
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| |
Collapse
|
4
|
Lobas AA, Solovyeva EM, Saparbaev E, Gorshkov MV, Boyarkin OV. Accelerating photofragmentation UV Spectroscopy-Mass spectrometry fingerprinting for quantification of isomeric peptides. Talanta 2021; 232:122412. [PMID: 34074402 DOI: 10.1016/j.talanta.2021.122412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023]
Abstract
Identification of isomeric biomolecules remains a challenging analytical problem. A recently developed spectroscopic method that combines UV photofragmentation and mass spectrometry for fingerprinting of cold ions (2D UV-MS), has already demonstrated its high performance in the library-based identification and quantification of different types of biomolecular isomers. The practical use of the method has been hindered by a slow rate of data acquisition, which makes the fingerprinting incompatible with high-throughput analysis and online liquid chromatography (LC) separation. Herein we demonstrate how the use of a few pre-selected wavelengths can accelerate the method by two orders of magnitude without a significant loss of accuracy. As a proof of principle, 2D UV-MS fingerprinting was coupled to online LC separation and tested for quantification of isomeric peptides containing either Asp or isoAsp residues. The relative concentrations of the peptides mixed in solution have been determined, on average, with better than 4% and 6% accuracy for resolving and non-resolving gradients of LC separation, respectively.
Collapse
Affiliation(s)
- Anna A Lobas
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland; V.L. Talrose Institute for Energy Problems of Chemical Physics, Federal Research Center of Chemical Physics, RAS, Moscow, Russia
| | - Elizaveta M Solovyeva
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland; V.L. Talrose Institute for Energy Problems of Chemical Physics, Federal Research Center of Chemical Physics, RAS, Moscow, Russia; Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Erik Saparbaev
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Mikhail V Gorshkov
- V.L. Talrose Institute for Energy Problems of Chemical Physics, Federal Research Center of Chemical Physics, RAS, Moscow, Russia
| | - Oleg V Boyarkin
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
5
|
Tarasova IA, Masselon CD, Gorshkov AV, Gorshkov MV. Predictive chromatography of peptides and proteins as a complementary tool for proteomics. Analyst 2018; 141:4816-4832. [PMID: 27419248 DOI: 10.1039/c6an00919k] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In the last couple of decades, considerable effort has been focused on developing methods for quantitative and qualitative proteome characterization. The method of choice in this characterization is mass spectrometry used in combination with sample separation. One of the most widely used separation techniques at the front end of a mass spectrometer is high performance liquid chromatography (HPLC). A unique feature of HPLC is its specificity to the amino acid sequence of separated peptides and proteins. This specificity may provide additional information about the peptides or proteins under study which is complementary to the mass spectrometry data. The value of this information for proteomics has been recognized in the past few decades, which has stimulated significant effort in the development and implementation of computational and theoretical models for the prediction of peptide retention time for a given sequence. Here we review the advances in this area and the utility of predicted retention times for proteomic applications.
Collapse
Affiliation(s)
- Irina A Tarasova
- Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow 119334, Russia.
| | - Christophe D Masselon
- CEA, iRTSV-BGE, Laboratoire d'Etude de la Dynamique des Protéomes, Grenoble, F-38000, France and INSERM, U1038-BGE, F-38000, Grenoble, France
| | - Alexander V Gorshkov
- N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Mikhail V Gorshkov
- Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow 119334, Russia. and Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region 141700, Russia
| |
Collapse
|
6
|
Hao P, Adav SS, Gallart-Palau X, Sze SK. Recent advances in mass spectrometric analysis of protein deamidation. MASS SPECTROMETRY REVIEWS 2017; 36:677-692. [PMID: 26763661 DOI: 10.1002/mas.21491] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 12/28/2015] [Accepted: 12/28/2015] [Indexed: 06/05/2023]
Abstract
Protein deamidation has been proposed to represent a "molecular clock" that progressively disrupts protein structure and function in human degenerative diseases and natural aging. Importantly, this spontaneous process can also modify therapeutic proteins by altering their purity, stability, bioactivity, and antigenicity during drug synthesis and storage. Deamidation occurs non-enzymatically in vivo, but can also take place spontaneously in vitro, hence artificial deamidation during proteomic sample preparation can hamper efforts to identify and quantify endogenous deamidation of complex proteomes. To overcome this, mass spectrometry (MS) can be used to conduct rigorous site-specific characterization of protein deamidation due to the high sensitivity, speed, and specificity offered by this technique. This article reviews recent progress in MS analysis of protein deamidation and discusses the strengths and limitations of common "top-down" and "bottom-up" approaches. Recent advances in sample preparation methods, chromatographic separation, MS technology, and data processing have for the first time enabled the accurate and reliable characterization of protein modifications in complex biological samples, yielding important new data on how deamidation occurs across the entire proteome of human cells and tissues. These technological advances will lead to a better understanding of how deamidation contributes to the pathology of biological aging and major degenerative diseases. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 36:677-692, 2017.
Collapse
Affiliation(s)
- Piliang Hao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Sunil S Adav
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Xavier Gallart-Palau
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| |
Collapse
|
7
|
Faserl K, Sarg B, Maurer V, Lindner HH. Exploiting charge differences for the analysis of challenging post-translational modifications by capillary electrophoresis-mass spectrometry. J Chromatogr A 2017; 1498:215-223. [DOI: 10.1016/j.chroma.2017.01.086] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 01/25/2017] [Accepted: 01/29/2017] [Indexed: 12/27/2022]
|
8
|
Kuznetsova KG, Trufanov PV, Moysa AA, Pyatnitskiy MA, Zgoda VG, Gorshkov MV, Moshkovskii SA. Threonine versus isothreonine in synthetic peptides analyzed by high-resolution liquid chromatography/tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:1323-1331. [PMID: 27173114 DOI: 10.1002/rcm.7566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/15/2016] [Accepted: 03/15/2016] [Indexed: 06/05/2023]
Abstract
RATIONALE One of the problems in proteogenomic research aimed at identification of variant peptides is the presence of peptides with amino acid isomers of different origin in the analyzed samples. Among the most challenging examples are peptides with threonine and isothreonine (homoserine) in their sequences. Indeed, the latter residue may appear in vitro as a methionine substitution during sample preparation for shotgun proteome analysis. Yet, this substitution of Met to isoThr is not encoded genetically and should be unambiguously distinguished from, e.g., point mutations in proteins that result in Met conversion to Thr. METHODS In this work we compared tandem mass (MS/MS) spectra produced by an Orbitrap mass spectrometer of Thr- and isoThr-containing tryptic peptides and found a distinctive feature in their collisionally activated fragmentation patterns. RESULTS Up to 84% of MS/MS spectra for peptides containing isoThr residues have been positively specified. We also studied the differences in retention times for peptides containing Thr isoforms that can be further used for their distinction. CONCLUSIONS Threonine can be distinguished from isothreonine by its retention time and HCD fragmentation pattern, specifically relative intensity of the bn - product ion, which can be further used in proteomic research. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Pavel V Trufanov
- Institute of Biomedical Chemistry, Moscow, Russia
- Moscow State University, Biological Faculty, Moscow, Russia
| | - Alexander A Moysa
- Institute of Biomedical Chemistry, Moscow, Russia
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | | - Mikhail V Gorshkov
- Institute of Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region, Russia
| | - Sergei A Moshkovskii
- Institute of Biomedical Chemistry, Moscow, Russia
- Pirogov Russian National Medical University, Moscow, Russia
| |
Collapse
|
9
|
Li W, Kerwin JL, Schiel J, Formolo T, Davis D, Mahan A, Benchaar SA. Structural Elucidation of Post-Translational Modifications in Monoclonal Antibodies. ACS SYMPOSIUM SERIES 2015. [DOI: 10.1021/bk-2015-1201.ch003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Wenzhou Li
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - James L. Kerwin
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - John Schiel
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - Trina Formolo
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - Darryl Davis
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - Andrew Mahan
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - Sabrina A. Benchaar
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
10
|
Tarasova IA, Surin AK, Fornelli L, Pridatchenko ML, Suvorina MY, Gorshkov MV. Ion coalescence in Fourier transform mass spectrometry: should we worry about this in shotgun proteomics? EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2015; 21:459-470. [PMID: 26307727 DOI: 10.1255/ejms.1356] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Coupling of motion of the ion clouds with close m/z values is a well-established phenomenon for ion- trapping mass analyzers. In Fourier transform ion cyclotron resonance mass spectrometry it is known as ion coalescence. Recently, ion coalescence was demonstrated and semiquantitatively characterized for the Orbitrap mass analyzer as well. When it occurs, the coalescence negatively affects the basic characteristics of a mass analyzer. Specifically, the dynamic range available for the high resolving power mass measurements reduces. In shotgun proteomics, another potentially adverse effect of ion coalescence is interference of the isotopic envelopes for the coeluting precursor ions of close m/z values, subjected to isolation before fragmentation. In this work we characterize coalescence events for synthetic peptide mixtures with fully and partially overlapping (13)C-isotope envelopes including pairs of peptides with glutamine deamidation. Furthermore, we demonstrate that fragmentation of the otherwise coalesced peptide ion clouds may remove the locking between them owing to the total charge redistribution between more ion species in the mass spectrum. Finally, we estimated the possible scale of the coalescence phenomenon for shotgun proteomics by considering the fraction of coeluted peptide pairs with the close masses using literature data for the yeast proteome. It was found that up to one tenth of all peptide identifications with the relative mass differences of 20 ppm or less in the corresponding pairs may potentially experience the coalescence of the (13)C-isotopic envelopes. However, sample complexity in a real proteomics experiment and precursor ion signal splitting between many channels in tandem mass spectrometry drastically increase the threshold for coalescence, thus leading to practically coalescence-free proteomics based on Fourier transform mass spectrometry.
Collapse
Affiliation(s)
- Irina A Tarasova
- V.L. Talrose Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, 38 Leninsky Pr., Bld. 2, Moscow 119334, Russia.
| | - Alexey K Surin
- Institute of Protein Research, Russian Academy of Sciences, 4 Institutskaya Str., Pushchino 142292, Moscow region, Russia.
| | - Luca Fornelli
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.Departments of Chemistry and Molecular Biosciences, Northwestern University, 2170 Campus Drive, Evanston, Illinois 60208.
| | - Marina L Pridatchenko
- V.L. Talrose Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, 38 Leninsky Pr., Bld. 2, Moscow 119334, Russia.
| | - Mariya Yu Suvorina
- Institute of Protein Research, Russian Academy of Sciences, 4 Institutskaya Str., Pushchino 142292, Moscow region, Russia.
| | - Mikhail V Gorshkov
- V.L. Talrose Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, 38 Leninsky Pr., Bld. 2, Moscow 119334, Russia. Moscow Institute of Physics and Technology (State University), 9 Institutskii Per., Dolgoprudny 141700, Moscow region, Russia.
| |
Collapse
|
11
|
Tao Y, Julian RR. Identification of amino acid epimerization and isomerization in crystallin proteins by tandem LC-MS. Anal Chem 2014; 86:9733-41. [PMID: 25188914 PMCID: PMC4188265 DOI: 10.1021/ac502296c] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Post-translational modifications that do not result in a change in mass are particularly difficult to detect by mass spectrometry. For example, isomerization of aspartic acid or epimerization of any chiral residue within a peptide do not lead to mass shifts but can be identified by examination of independently acquired tandem mass spectra or by combination with another technique. For analysis of a biological sample, this means that liquid chromatography or some other type of separation must be used to first separate the isomers from one another. Furthermore, each specific m/z of interest must be sampled repeatedly to allow for comparison of the tandem mass spectra from each separated isomer, which contrasts with the traditional approach in proteomics where the goal is typically to avoid resampling the same m/z. We illustrate that isomerization and epimerization of peptides can be identified in this fashion by examination of long-lived crystallin proteins extracted from a sheep eye lens. Tandem mass spectrometry relying on a combination of radical directed dissociation (RDD) and collision induced dissociation (CID) following separation by liquid chromatography was used to identify modified peptides. Numerous sites of isomerization and epimerization, including several that have not been previously identified, were determined with peptide specificity. It is demonstrated that the specific sites of amino acid isomerization within each peptide can be identified by comparison with synthetic peptides. For α-crystallin proteins, the sites that undergo the greatest degree of isomerization correspond to disordered regions, which may have important implications on chaperone functionality within the context of aging.
Collapse
Affiliation(s)
- Yuanqi Tao
- Department of Chemistry, University of California , Riverside, California 92521, United States
| | | |
Collapse
|
12
|
Ivanov MV, Levitsky LI, Lobas AA, Panic T, Laskay ÜA, Mitulovic G, Schmid R, Pridatchenko ML, Tsybin YO, Gorshkov MV. Empirical Multidimensional Space for Scoring Peptide Spectrum Matches in Shotgun Proteomics. J Proteome Res 2014; 13:1911-20. [DOI: 10.1021/pr401026y] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Mark V. Ivanov
- Institute
for Energy Problems of Chemical Physics, Russian Academy of Sciences, 38 Leninsky Pr., Bld. 2, Moscow 119334, Russia
- Moscow Institute of Physics and Technology (State University), Inststitutskii per., 9, Dolgoprudny 141700, Moscow region, Russia
| | - Lev I. Levitsky
- Institute
for Energy Problems of Chemical Physics, Russian Academy of Sciences, 38 Leninsky Pr., Bld. 2, Moscow 119334, Russia
- Moscow Institute of Physics and Technology (State University), Inststitutskii per., 9, Dolgoprudny 141700, Moscow region, Russia
| | - Anna A. Lobas
- Institute
for Energy Problems of Chemical Physics, Russian Academy of Sciences, 38 Leninsky Pr., Bld. 2, Moscow 119334, Russia
- Moscow Institute of Physics and Technology (State University), Inststitutskii per., 9, Dolgoprudny 141700, Moscow region, Russia
| | - Tanja Panic
- Medical University of Vienna, Spitalgasse 23, Vienna 1090, Austria
| | - Ünige A. Laskay
- Biomolecular
Mass Spectrometry Laboratory, Ecole Polytechnique Fédérale de Lausanne, 2 av. Forel, Lausanne 1015, Switzerland
| | - Goran Mitulovic
- Medical University of Vienna, Spitalgasse 23, Vienna 1090, Austria
| | - Rainer Schmid
- Medical University of Vienna, Spitalgasse 23, Vienna 1090, Austria
| | - Marina L. Pridatchenko
- Institute
for Energy Problems of Chemical Physics, Russian Academy of Sciences, 38 Leninsky Pr., Bld. 2, Moscow 119334, Russia
| | - Yury O. Tsybin
- Biomolecular
Mass Spectrometry Laboratory, Ecole Polytechnique Fédérale de Lausanne, 2 av. Forel, Lausanne 1015, Switzerland
| | - Mikhail V. Gorshkov
- Institute
for Energy Problems of Chemical Physics, Russian Academy of Sciences, 38 Leninsky Pr., Bld. 2, Moscow 119334, Russia
- Moscow Institute of Physics and Technology (State University), Inststitutskii per., 9, Dolgoprudny 141700, Moscow region, Russia
| |
Collapse
|
13
|
Wang S, Kaltashov IA. An 18O-labeling assisted LC/MS method for assignment of aspartyl/isoaspartyl products from Asn deamidation and Asp isomerization in proteins. Anal Chem 2013; 85:6446-52. [PMID: 23713887 DOI: 10.1021/ac400984r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
An (18)O-labeling assisted LC/MS method was designed for unambiguous assignment of aspartyl/isoaspartyl products produced by Asn deamidation and Asp isomerization. By preparing the acid- and base-catalyzed deamidation standards in H2(18)O, isomer-specific mass tags were introduced to aspartyl- and isoaspartyl-containing peptides, which could be easily distinguished by mass spectrometry (MS). In contrast to the traditional ways of assigning the isomers on the basis of their elution order in reverse phase HPLC, the new method is more reliable and universal. Furthermore, the new method can be applied to the entire protein digest, and is therefore more time- and cost-effective compared with existing methods that use synthetic aspartyl- and isoaspartyl-containing peptide standards. Finally, since the identification of isomers in the new method only relies on LC/MS analysis, it can be easily implemented using the most basic and inexpensive MS instrumentation, thus providing an attractive alternative to tandem MS based approaches. The feasibility of this new method is demonstrated using a model peptide as well as the entire digest of human serum transferrin.
Collapse
Affiliation(s)
- Shunhai Wang
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | | |
Collapse
|
14
|
Kumar M, Chatterjee A, Khedkar AP, Kusumanchi M, Adhikary L. Mass spectrometric distinction of in-source and in-solution pyroglutamate and succinimide in proteins: a case study on rhG-CSF. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:202-212. [PMID: 23283728 DOI: 10.1007/s13361-012-0531-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 10/17/2012] [Accepted: 10/29/2012] [Indexed: 06/01/2023]
Abstract
Formation of cyclic intermediates involving water or ammonia loss is a common occurrence in any reaction involving terminal amines or hydroxyl group containing species. Proteins that have both these functional groups in abundance are no exception, and presence of amino acids such as asparagine, glutamines, aspartic acids, and glutamic acids aid in formation of such intermediates. In the biopharma scenario, such intermediates lead to product- or process-related impurities that might be immunogenic. Mass spectroscopy is a powerful technique that is used to decipher the presence and physicochemical characteristics of such impurities. However, such intermediates can also form in situ during mass spectrometric analysis. We present here the detection of in-source and in-solution formation of succinimide and pyroglutamate in the protein granulocyte colony stimulating factor. We also propose an approach for quick differentiation of such in-situ species from the tangible impurities. We believe that this will not only reduce the time spent in unambiguous identification of succinimide- and/or pyroglutamate-related impurity in bio-pharmaceutics but also provide a platform for similar studies on other impurities that may form due to stabilized intermediates.
Collapse
Affiliation(s)
- Mukesh Kumar
- Molecular Characterization Laboratory, Biocon Research Ltd., Bangalore, Karnataka, India
| | | | | | | | | |
Collapse
|