1
|
Navarro-López B, .Baeta M, Moreno-López O, Kleinbielen T, Raffone C, Granizo-Rodríguez E, Ferragut J, Alvarez-Gila O, Barbaro A, Picornell A, de Pancorbo E M. Y-chromosome analysis recapitulates key events of Mediterranean populations. Heliyon 2024; 10:e35329. [PMID: 39220888 PMCID: PMC11365299 DOI: 10.1016/j.heliyon.2024.e35329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
The remarkable geographical situation of the Mediterranean region, located between Europe, Africa, and Asia, with numerous migratory routes, has made this area a crucible of cultures. Studying the Y-chromosome variability is a very performant tool to explore the genetic ancestry and evaluate scenarios that may explain the current Mediterranean gene pool. Here, six Mediterranean populations, including three Balearic Islands (Ibiza, Majorca, and Minorca) and three Southern Italian regions (Catanzaro, Cosenza, and Reggio di Calabria) were typed using 23 Y-STR loci and up to 39 Y-SNPs and compared to geographically targeted key reference populations to explore their genetic relationship and provide an overview of Y-chromosome variation across the Mediterranean basin. Pairwise RST genetic distances calculated with STRs markers and Y-haplogroups mirror the West to East geographic distribution of European and Asian Mediterranean populations, highlighting the North-South division of Italy, with a higher Eastern Mediterranean component in Southern Italian populations. In contrast, the African populations from the Southern coast of the Mediterranean clustered separately. Overall, these results support the notion that migrations from Magna Graecia or the Byzantine Empire, which followed similar Neolithic and post-Neolithic routes into Southern Italy, may have contributed to maintaining and/or reinforcing the Eastern Mediterranean genetic component in Southern Italian populations.
Collapse
Affiliation(s)
- B. Navarro-López
- BIOMICs Research Group, Department of Z. and Cell Biology A., Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain
| | - M. .Baeta
- BIOMICs Research Group, Department of Z. and Cell Biology A., Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain
| | - O. Moreno-López
- BIOMICs Research Group, Department of Z. and Cell Biology A., Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - T. Kleinbielen
- BIOMICs Research Group, Department of Z. and Cell Biology A., Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - C. Raffone
- BIOMICs Research Group, Department of Z. and Cell Biology A., Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain
| | - E. Granizo-Rodríguez
- BIOMICs Research Group, Department of Z. and Cell Biology A., Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - J.F. Ferragut
- Departament de Biologia, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS) i Laboratori de Genètica, Universitat de les Illes Balears, Palma de Mallorca, Illes Balears, Spain
| | - O. Alvarez-Gila
- Department of Medieval, Early Modern and American History, Faculty of Letters, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - A. Barbaro
- Forensic Genetics Section, Studio Indagini Mediche e Forensi (SIMEF), Reggio Calabria, Italy
| | - A. Picornell
- Departament de Biologia, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS) i Laboratori de Genètica, Universitat de les Illes Balears, Palma de Mallorca, Illes Balears, Spain
| | - M.M. de Pancorbo E
- BIOMICs Research Group, Department of Z. and Cell Biology A., Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain
| |
Collapse
|
2
|
Bardan F, Higgins D, Austin JJ. A custom hybridisation enrichment forensic intelligence panel to infer biogeographic ancestry, hair and eye colour, and Y chromosome lineage. Forensic Sci Int Genet 2023; 63:102822. [PMID: 36525814 DOI: 10.1016/j.fsigen.2022.102822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/02/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Massively parallel sequencing can provide genetic data for hundreds to thousands of loci in a single assay for various types of forensic testing. However, available commercial kits require an initial PCR amplification of short-to-medium sized targets which limits their application for highly degraded DNA. Development and optimisation of large PCR multiplexes also prevents creation of custom panels that target different suites of markers for identity, biogeographic ancestry, phenotype, and lineage markers (Y-chromosome and mtDNA). Hybridisation enrichment, an alternative approach for target enrichment prior to sequencing, uses biotinylated probes to bind to target DNA and has proven successful on degraded and ancient DNA. We developed a customisable hybridisation capture method, that uses individually mixed baits to allow tailored and targeted enrichment to specific forensic questions of interest. To allow collection of forensic intelligence data, we assembled and tested a custom panel of hybridisation baits to infer biogeographic ancestry, hair and eye colour, and paternal lineage (and sex) on modern male and female samples with a range of self-declared ancestries and hair/eye colour combinations. The panel correctly estimated biogeographic ancestry in 9/12 samples (75%) but detected European admixture in three individuals from regions with admixed demographic history. Hair and eye colour were predicted correctly in 83% and 92% of samples respectively, where intermediate eye colour and blond hair were problematic to predict. Analysis of Y-chromosome SNPs correctly assigned sex and paternal haplogroups, the latter complementing and supporting biogeographic ancestry predictions. Overall, we demonstrate the utility of this hybridisation enrichment approach to forensic intelligence testing using a combined suite of biogeographic ancestry, phenotype, and Y-chromosome SNPs for comprehensive biological profiling.
Collapse
Affiliation(s)
- Felicia Bardan
- Australian Centre for Ancient DNA, School of Biological Sciences, The University of Adelaide, South Australia, Australia
| | - Denice Higgins
- Australian Centre for Ancient DNA, School of Biological Sciences, The University of Adelaide, South Australia, Australia; School of Dentistry, Health and Medical Sciences, The University of Adelaide, South Australia, Australia
| | - Jeremy J Austin
- Australian Centre for Ancient DNA, School of Biological Sciences, The University of Adelaide, South Australia, Australia.
| |
Collapse
|
3
|
Rauf S, Austin JJ, Higgins D, Khan MR. Unveiling forensically relevant biogeographic, phenotype and Y-chromosome SNP variation in Pakistani ethnic groups using a customized hybridisation enrichment forensic intelligence panel. PLoS One 2022; 17:e0264125. [PMID: 35176104 PMCID: PMC8853543 DOI: 10.1371/journal.pone.0264125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 02/03/2022] [Indexed: 11/19/2022] Open
Abstract
Massively parallel sequencing following hybridisation enrichment provides new opportunities to obtain genetic data for various types of forensic testing and has proven successful on modern as well as degraded and ancient DNA. A customisable forensic intelligence panel that targeted 124 SNP markers (67 ancestry informative markers, 23 phenotype markers from the HIrisplex panel, and 35 Y-chromosome SNPs) was used to examine biogeographic ancestry, phenotype and sex and Y-lineage in samples from different ethnic populations of Pakistan including Pothwari, Gilgit, Baloach, Pathan, Kashmiri and Siraiki. Targeted sequencing and computational data analysis pipeline allowed filtering of variants across the targeted loci. Study samples showed an admixture between East Asian and European ancestry. Eye colour was predicted accurately based on the highest p-value giving overall prediction accuracy of 92.8%. Predictions were consistent with reported hair colour for all samples, using the combined highest p-value approach and step-wise model incorporating probability thresholds for light or dark shade. Y-SNPs were successfully recovered only from male samples which indicates the ability of this method to identify biological sex and allow inference of Y-haplogroup. Our results demonstrate practicality of using hybridisation enrichment and MPS to aid in human intelligence gathering and will open many insights into forensic research in South Asia.
Collapse
Affiliation(s)
- Sobiah Rauf
- Genome Editing & Sequencing Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jeremy J. Austin
- Australian Centre for Ancient DNA (ACAD), School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Denice Higgins
- Australian Centre for Ancient DNA (ACAD), School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- School of Dentistry, Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Muhammad Ramzan Khan
- Genome Editing & Sequencing Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
4
|
Effective resolution of the Y chromosome sublineages of the Iberian haplogroup R1b-DF27 with forensic purposes. Int J Legal Med 2018; 133:17-23. [PMID: 30229332 DOI: 10.1007/s00414-018-1936-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/07/2018] [Indexed: 10/28/2022]
Abstract
Single-nucleotide polymorphisms (SNPs) found within the non-recombining region of the Y chromosome (NRY) represent a powerful tool in forensic genetics for inferring the paternal ancestry of a vestige and complement the determination of biogeographical origin in combination with other markers like AIMs. In the present study, we introduce a panel of 15 Y-SNPs for a fine-resolution subtyping of the haplogroup R1b-DF27, in a single minisequencing reaction. This is the first minisequencing panel that allows a fine subtyping of R1b-DF27, which displays high frequencies in Iberian and Iberian-influenced populations. This panel includes subhaplogroups of DF27 that display moderate geographical differentiation, of interest to link a sample with a specific location of the Iberian Peninsula or with Iberian ancestry. Conversely, part of the intricacy of a new minisequencing panel is to have all the included variants available to test the effectiveness of the analysis method. We have overcome the absence of the least common variants through site-directed mutagenesis. Overall, the results show that our panel is a robust and effective method for subtyping R1b-DF27 lineages from a minimal amount of DNA, and its high resolution enables to improve male lineage discrimination in Iberian and Southwest European descent individuals. The small length of the amplicons and its reproducibility makes this assay suitable for forensic and population genetics purposes.
Collapse
|
6
|
van Oven M, Toscani K, van den Tempel N, Ralf A, Kayser M. Multiplex genotyping assays for fine-resolution subtyping of the major human Y-chromosome haplogroups E, G, I, J, and R in anthropological, genealogical, and forensic investigations. Electrophoresis 2013; 34:3029-38. [PMID: 23893838 DOI: 10.1002/elps.201300210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 06/17/2013] [Accepted: 06/26/2013] [Indexed: 12/20/2022]
Abstract
Inherited DNA polymorphisms located within the nonrecombing portion of the human Y chromosome provide a powerful means of tracking the patrilineal ancestry of male individuals. Recently, we introduced an efficient genotyping method for the detection of the basal Y-chromosome haplogroups A to T, as well as an additional method for the dissection of haplogroup O into its sublineages. To further extend the use of the Y chromosome as an evolutionary marker, we here introduce a set of genotyping assays for fine-resolution subtyping of haplogroups E, G, I, J, and R, which make up the bulk of Western Eurasian and African Y chromosomes. The marker selection includes a total of 107 carefully selected bi-allelic polymorphisms that were divided into eight hierarchically organized multiplex assays (two for haplogroup E, one for I, one for J, one for G, and three for R) based on the single-base primer extension (SNaPshot) technology. Not only does our method allow for enhanced Y-chromosome lineage discrimination, the more restricted geographic distribution of the subhaplogroups covered also enables more fine-scaled estimations of patrilineal bio-geographic origin. Supplementing our previous method for basal Y-haplogroup detection, the currently introduced assays are thus expected to be of major relevance for future DNA studies targeting male-specific ancestry for forensic, anthropological, and genealogical purposes.
Collapse
Affiliation(s)
- Mannis van Oven
- Department of Forensic Molecular Biology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|