1
|
Habeeb IF, Alao TE, Delgado D, Buffone A. When a negative (charge) is not a positive: sialylation and its role in cancer mechanics and progression. Front Oncol 2024; 14:1487306. [PMID: 39628991 PMCID: PMC11611868 DOI: 10.3389/fonc.2024.1487306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/10/2024] [Indexed: 12/06/2024] Open
Abstract
Sialic acids and sialoglycans are critical actors in cancer progression and metastasis. These terminal sugar residues on glycoproteins and glycolipids modulate key cellular processes such as immune evasion, cell adhesion, and migration. Aberrant sialylation is driven by overexpression of sialyltransferases, resulting in hypersialylation on cancer cell surfaces as well as enhancing tumor aggressiveness. Sialylated glycans alter the structure of the glycocalyx, a protective barrier that fosters cancer cell detachment, migration, and invasion. This bulky glycocalyx also increases membrane tension, promoting integrin clustering and downstream signaling pathways that drive cell proliferation and metastasis. They play a critical role in immune evasion by binding to Siglecs, inhibitory receptors on immune cells, which transmit signals that protect cancer cells from immune-mediated destruction. Targeting sialylation pathways presents a promising therapeutic opportunity to understand the complex roles of sialic acids and sialoglycans in cancer mechanics and progression, which is crucial for developing novel diagnostic and therapeutic strategies that can disrupt these processes and improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Issa Funsho Habeeb
- Department of Biomedical Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
| | - Toheeb Eniola Alao
- Department of Biomedical Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
| | - Daniella Delgado
- Department of Biomedical Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
| | - Alexander Buffone
- Department of Biomedical Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
- Chemical and Materials Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
| |
Collapse
|
2
|
Ulke J, Schwedler C, Krüger J, Stein V, Geserick P, Kleinridders A, Kappert K. High-fat diet alters N-glycosylation of PTPRJ in murine liver. J Nutr Biochem 2024; 123:109500. [PMID: 37875230 DOI: 10.1016/j.jnutbio.2023.109500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/10/2023] [Accepted: 10/21/2023] [Indexed: 10/26/2023]
Abstract
Protein tyrosine phosphatases (PTPs) regulate multiple signaling pathways. Disruption of tyrosine phosphorylation through imbalanced action between protein tyrosine kinases (RTKs) and PTPs is a hallmark of metabolic disorders, including insulin resistance. A representative member of the receptor-type PTP family, PTPRJ (DEP-1), was previously identified as a negative regulator of insulin signaling and possesses post-translational glycosylation sites. In this regard, it seems of great importance to decipher the structure of PTPRJ's glycosylation, particularly in the context of metabolic disturbances, but this has not been done in detail. Thus, here we aimed at characterizing the glycosylation pattern of PTPRJ in liver. We show that N-glycosylation accounts for up to half of PTPRJ's molecular weight. Applying mass spectrometry, we detected increased levels of high-mannose structures in PTPRJ in liver tissue of obese mice compared to lean littermates. In addition, complex neutral structures without fucose were also elevated in PTPRJ of high-fat diet (HFD) mice. Conversely, complex fucosylated N-glycans as well as sialylated bi- and triantennary N-glycans, were significantly reduced in PTPRJ of HFD-derived liver tissue compared to LFD by ∼two fold (P≤.01, P≤.0001 and P≤.001, respectively). In congruence with these findings, the mannosidase MAN2A1, responsible for the conversion of high-mannose to complex N-glycans, was significantly downregulated under HFD conditions. Here we present for the first time that HFD-induced obesity impacts on the glycosylation pattern of the insulin signaling component PTPRJ in liver. These findings may inspire new research on the glycosylation of PTPs in metabolic diseases and may open up new therapeutic approaches.
Collapse
Affiliation(s)
- Jannis Ulke
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, 13353 Berlin, Germany; Charité - Universitätsmedizin Berlin, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Berlin, Germany
| | - Christian Schwedler
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Janine Krüger
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, 13353 Berlin, Germany; Charité - Universitätsmedizin Berlin, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Berlin, Germany
| | - Vanessa Stein
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, 13353 Berlin, Germany; Charité - Universitätsmedizin Berlin, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Berlin, Germany
| | - Peter Geserick
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, 13353 Berlin, Germany; Charité - Universitätsmedizin Berlin, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Berlin, Germany
| | - André Kleinridders
- Department of Molecular and Experimental Nutritional Medicine, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Kai Kappert
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, 13353 Berlin, Germany; Charité - Universitätsmedizin Berlin, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Berlin, Germany.
| |
Collapse
|
3
|
Shkunnikova S, Mijakovac A, Sironic L, Hanic M, Lauc G, Kavur MM. IgG glycans in health and disease: Prediction, intervention, prognosis, and therapy. Biotechnol Adv 2023; 67:108169. [PMID: 37207876 DOI: 10.1016/j.biotechadv.2023.108169] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023]
Abstract
Immunoglobulin (IgG) glycosylation is a complex enzymatically controlled process, essential for the structure and function of IgG. IgG glycome is relatively stable in the state of homeostasis, yet its alterations have been associated with aging, pollution and toxic exposure, as well as various diseases, including autoimmune and inflammatory diseases, cardiometabolic diseases, infectious diseases and cancer. IgG is also an effector molecule directly involved in the inflammation processes included in the pathogenesis of many diseases. Numerous recently published studies support the idea that IgG N-glycosylation fine-tunes the immune response and plays a significant role in chronic inflammation. This makes it a promising novel biomarker of biological age, and a prognostic, diagnostic and treatment evaluation tool. Here we provide an overview of the current state of knowledge regarding the IgG glycosylation in health and disease, and its potential applications in pro-active prevention and monitoring of various health interventions.
Collapse
Affiliation(s)
- Sofia Shkunnikova
- Genos Glycoscience Research Laboratory, Borongajska cesta 83H, Zagreb, Croatia
| | - Anika Mijakovac
- University of Zagreb, Faculty of Science, Department of Biology, Horvatovac 102a, Zagreb, Croatia
| | - Lucija Sironic
- Genos Glycoscience Research Laboratory, Borongajska cesta 83H, Zagreb, Croatia
| | - Maja Hanic
- Genos Glycoscience Research Laboratory, Borongajska cesta 83H, Zagreb, Croatia
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Borongajska cesta 83H, Zagreb, Croatia; University of Zagreb, Faculty of Pharmacy and Biochemistry, Ulica Ante Kovačića 1, Zagreb, Croatia
| | | |
Collapse
|
4
|
Chen S, Qin R, Mahal LK. Sweet systems: technologies for glycomic analysis and their integration into systems biology. Crit Rev Biochem Mol Biol 2021; 56:301-320. [PMID: 33820453 DOI: 10.1080/10409238.2021.1908953] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Found in virtually every organism, glycans are essential molecules that play important roles in almost every aspect of biology. The composition of glycome, the repertoire of glycans in an organism or a biological sample, is often found altered in many diseases, including cancer, infectious diseases, metabolic and developmental disorders. Understanding how glycosylation and glycomic changes enriches our knowledge of the mechanisms of disease progression and sheds light on the development of novel therapeutics. However, the inherent diversity of glycan structures imposes challenges on the experimental characterization of glycomes. Advances in high-throughput glycomic technologies enable glycomic analysis in a rapid and comprehensive manner. In this review, we discuss the analytical methods currently used in high-throughput glycomics, including mass spectrometry, liquid chromatography and lectin microarray. Concomitant with the technical advances is the integration of glycomics into systems biology in the recent years. Herein we elaborate on some representative works from this recent trend to underline the important role of glycomics in such integrated approaches to disease.
Collapse
Affiliation(s)
- Shuhui Chen
- Department of Chemistry, New York University, New York City, NY, USA
| | - Rui Qin
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Lara K Mahal
- Department of Chemistry, New York University, New York City, NY, USA.,Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
5
|
Cajic S, Hennig R, Burock R, Rapp E. Capillary (Gel) Electrophoresis-Based Methods for Immunoglobulin (G) Glycosylation Analysis. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:137-172. [PMID: 34687009 DOI: 10.1007/978-3-030-76912-3_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The in-depth characterization of protein glycosylation has become indispensable in many research fields and in the biopharmaceutical industry. Especially knowledge about modulations in immunoglobulin G (IgG) N-glycosylation and their effect on immunity enabled a better understanding of human diseases and the development of new, more effective drugs for their treatment. This chapter provides a deeper insight into capillary (gel) electrophoresis-based (C(G)E) glycan analysis, addressing its impressive performance and possibilities, its great potential regarding real high-throughput for large cohort studies, as well as its challenges and limitations. We focus on the latest developments with respect to miniaturization and mass spectrometry coupling, as well as data analysis and interpretation. The use of exoglycosidase sequencing in combination with current C(G)E technology is discussed, highlighting possible difficulties and pitfalls. The application section describes the detailed characterization of N-glycosylation, utilizing multiplexed CGE with laser-induced fluorescence detection (xCGE-LIF). Besides a comprehensive overview on antibody glycosylation by comparing species-specific IgGs and human immunoglobulins A, D, E, G, and M, the chapter comprises a comparison of therapeutic monoclonal antibodies from different production cell lines, as well as a detailed characterization of Fab and Fc glycosylation. These examples illustrate the full potential of C(G)E, resolving the smallest differences in sugar composition and structure.
Collapse
Affiliation(s)
- Samanta Cajic
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - René Hennig
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
- glyXera GmbH, Magdeburg, Germany.
| | | | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- glyXera GmbH, Magdeburg, Germany
| |
Collapse
|
6
|
Pralow A, Cajic S, Alagesan K, Kolarich D, Rapp E. State-of-the-Art Glycomics Technologies in Glycobiotechnology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 175:379-411. [PMID: 33112988 DOI: 10.1007/10_2020_143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Glycosylation affects the properties of biologics; thus regulatory bodies classified it as critical quality attribute and force biopharma industry to capture and control it throughout all phases, from R&D till end of product lifetime. The shift from originators to biosimilars further increases importance and extent of glycoanalysis, which thus increases the need for technology platforms enabling reliable high-throughput and in-depth glycan analysis. In this chapter, we will first summarize on established glycoanalytical methods based on liquid chromatography focusing on hydrophilic interaction chromatography, capillary electrophoresis focusing on multiplexed capillary gel electrophoresis, and mass spectrometry focusing on matrix-assisted laser desorption; we will then highlight two emerging technologies based on porous graphitized carbon liquid chromatography and on ion-mobility mass spectrometry as both are highly promising tools to deliver an additional level of information for in-depth glycan analysis; additionally we elaborate on the advantages and challenges of different glycoanalytical technologies and their complementarity; finally, we briefly review applications thereof to biopharmaceutical products. This chapter provides an overview of current state-of-the-art analytical approaches for glycan characterization of biopharmaceuticals that can be employed to capture glycoprotein heterogeneity in a biopharmaceutical context.
Collapse
Affiliation(s)
- Alexander Pralow
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Samanta Cajic
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Kathirvel Alagesan
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Daniel Kolarich
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
- ARC Centre of Excellence in Nanoscale Biophotonics, Griffith University, Gold Coast, QLD, Australia
| | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
- glyXera GmbH, Magdeburg, Germany.
| |
Collapse
|
7
|
Wieczorek M, Braicu EI, Oliveira-Ferrer L, Sehouli J, Blanchard V. Immunoglobulin G Subclass-Specific Glycosylation Changes in Primary Epithelial Ovarian Cancer. Front Immunol 2020; 11:654. [PMID: 32477323 PMCID: PMC7242562 DOI: 10.3389/fimmu.2020.00654] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 03/23/2020] [Indexed: 12/18/2022] Open
Abstract
Epithelial ovarian cancer (EOC) was previously shown to be associated with glycosylation changes of total serum and total IgG proteins. However, as a majority of previous studies analyzed released glycan profiles, still little is known about IgG subclass-specific alterations in ovarian cancer. Hence, in this study, we investigated EOC-related glycosylation changes of the three most abundant IgG subclasses, namely, IgG1, IgG2 and IgG3 isolated from sera of 87 EOC patients and 74 age-matched healthy controls. In order to separate IgG2 and IgG3, we performed a two-step affinity purification employing Protein A and Protein G Sepharose. After tryptic digestion, IgG glycopeptides were enriched and measured by MALDI-TOF-MS. Finally, EOC-related glycosylation changes were monitored at the level of total agalactosylation, monogalactosylation, digalactosylation, sialylation, bisection and fucosylation, which were calculated separately for each IgG subclass. Interestingly, aside from an EOC-related increase in agalactosylation/decrease in monogalactosylation and digalactosylation observed in all IgG subclasses, some subclass-specific trends were detected. Glycosylation of IgG1 was found to be most strongly affected in EOC, as it exhibited the highest number of significant differences between healthy controls and EOC patients. Specifically, IgG1 was the only subclass that showed a significant decrease in sialylation and a significant increase in fucosylation in EOC patients. Interestingly, IgG2 and IgG3 that were often investigated collectively in previous studies, were found to have distinct glycosylation patterns. IgG3 displayed stronger EOC-related increase in agalactosylation/decrease in digalactosylation and was characterized by notably higher sialylation, which consequently decreased in EOC patients. In conclusion, our study indicates that IgG subclasses exhibit subtly distinct glycosylation patterns of EOC-related alterations and that IgG1 and IgG3 agalactosylation show the strongest association with CA125, the routine diagnostic marker. Additionally, our results show that simultaneous analyses of IgG2 and IgG3 might lead to wrong conclusions as these two subclasses exhibit noticeably different glycosylation phenotypes.
Collapse
Affiliation(s)
- Marta Wieczorek
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Elena Ioana Braicu
- Department of Gynecology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, NOGGO Group, Berlin, Germany
| | | | - Jahid Sehouli
- Department of Gynecology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, NOGGO Group, Berlin, Germany
| | - Véronique Blanchard
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
8
|
Expanding the Reaction Space of Linkage-Specific Sialic Acid Derivatization. Molecules 2019; 24:molecules24193617. [PMID: 31597281 PMCID: PMC6803949 DOI: 10.3390/molecules24193617] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/04/2019] [Accepted: 10/06/2019] [Indexed: 12/22/2022] Open
Abstract
The human glycome is characterized by a high degree of sialylation, affecting, amongst others, cell-cell interactions and protein half-life. An established method for the linkage isomer-specific characterization of N-glycan sialylation is based on the linkage-specific derivatization of sialylated glycoconjugates, inducing ethyl esterification of α2,6-linked sialic acids and lactonization of α2,3-linked sialic acids. While the carboxylic acid activator and nucleophile used in this reaction received extensive investigation, the role of the catalyst was never thoroughly explored. A frequently used catalyst for the linkage-specific esterification of sialic acids is 1-hydroxybenzotriazole (HOBt). Here, a systematic evaluation was performed of five HOBt alternatives in combination with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) in ethanol for the linkage-specific derivatization of sialic acids. Derivatized glycans were analyzed by MALDI-TOF-MS and the catalyst performance was evaluated based on the completeness of the reactions and the linkage-specificity obtained. The use of both 6-Cl-HOBt and 6-CF3-HOBt resulted in high linkage-specificity and minimal byproduct formation, similar to the benchmark method using HOBt. Performing the reaction with these catalysts at neutral or acidic pH showed comparable efficiencies on both sialyllactose and complex-type N-glycans. The reported investigations resulted in an expansion of the reaction space for linkage-specific sialic acid derivatization.
Collapse
|
9
|
Measurement of Neutral and Sialylated IgG N-Glycome at Asn-297 by CE-LIF to Assess Hypogalactosylation in Rheumatoid Arthritis. Methods Mol Biol 2019; 1972:77-93. [PMID: 30847785 DOI: 10.1007/978-1-4939-9213-3_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Modulations in immunoglobulin G (IgG) N-glycosylation have been observed in many human diseases including chronic inflammatory diseases such as rheumatoid arthritis and also cancer. In this chapter, we describe how to determine hypogalactosylation for clinical samples, namely the sample preparation of IgG N-glycans at Asn-297 as well as the measurement of neutral and sialylated N-glycans by capillary electrophoresis coupled with laser-induced fluorescence (CE-LIF).This semiautomated protocol describes the isolation polyclonal antibodies from serum, the separation of IgG-Fc glycopeptides from IgG antigen-binding fragment by pepsin digestion. Afterward, enzymatically released IgG-Fc N-glycans are cleaned up using a polyaromatic adsorbent resin followed by carbon purification. Sialic acids are then derivatized prior to glycan labeling. As a result, the agalactosylated N-glycan A2 does not co-migrate with sialylated N-glycans, which refines the measurement of hypogalactosylation by CE-LIF.
Collapse
|
10
|
Lu G, Crihfield CL, Gattu S, Veltri LM, Holland LA. Capillary Electrophoresis Separations of Glycans. Chem Rev 2018; 118:7867-7885. [PMID: 29528644 PMCID: PMC6135675 DOI: 10.1021/acs.chemrev.7b00669] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Indexed: 01/04/2023]
Abstract
Capillary electrophoresis has emerged as a powerful approach for carbohydrate analyses since 2014. The method provides high resolution capable of separating carbohydrates by charge-to-size ratio. Principle applications are heavily focused on N-glycans, which are highly relevant to biological therapeutics and biomarker research. Advances in techniques used for N-glycan structural identification include migration time indexing and exoglycosidase and lectin profiling, as well as mass spectrometry. Capillary electrophoresis methods have been developed that are capable of separating glycans with the same monosaccharide sequence but different positional isomers, as well as determining whether monosaccharides composing a glycan are alpha or beta linked. Significant applications of capillary electrophoresis to the analyses of N-glycans in biomarker discovery and biological therapeutics are emphasized with a brief discussion included on carbohydrate analyses of glycosaminoglycans and mono-, di-, and oligosaccharides relevant to food and plant products. Innovative, emerging techniques in the field are highlighted and the future direction of the technology is projected based on the significant contributions of capillary electrophoresis to glycoscience from 2014 to the present as discussed in this review.
Collapse
Affiliation(s)
- Grace Lu
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Cassandra L. Crihfield
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Srikanth Gattu
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Lindsay M. Veltri
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Lisa A. Holland
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
11
|
Keser T, Pavić T, Lauc G, Gornik O. Comparison of 2-Aminobenzamide, Procainamide and RapiFluor-MS as Derivatizing Agents for High-Throughput HILIC-UPLC-FLR-MS N-glycan Analysis. Front Chem 2018; 6:324. [PMID: 30094234 PMCID: PMC6070730 DOI: 10.3389/fchem.2018.00324] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/11/2018] [Indexed: 12/12/2022] Open
Abstract
Rising awareness of the universal importance of protein N-glycosylation governs the development of further advances in N-glycan analysis. Nowadays it is well known that correct glycosylation is essential for proper protein function, which emanates from its important role in many physiological processes. Furthermore, glycosylation is involved in pathophysiology of multiple common complex diseases. In the vast majority of cases, N-glycosylation profiles are analyzed from enzymatically released glycans, which can be further derivatized in order to enhance the sensitivity of the analysis. Techniques wherein derivatized N-glycans are profiled using hydrophilic interaction chromatography (HILIC) with fluorescence (FLR) and mass spectrometry (MS) detection are now routinely performed in a high-throughput manner. Therefore, we aimed to examine the performance of frequently used labeling compounds -2-aminiobenzamide (2-AB) and procainamide (ProA), and the recently introduced RapiFluor-MS (RF-MS) fluorescent tag. In all experiments N-glycans were released by PNGase F, fluorescently derivatized, purified by HILIC solid phase extraction and profiled using HILIC-UPLC-FLR-MS. We assessed sensitivity, linear range, limit of quantification (LOQ), repeatability and labeling efficiency for all three labels. For this purpose, we employed in-house prepared IgG and a commercially available IgG as a model glycoprotein. All samples were analyzed in triplicates using different amounts of starting material. We also tested the performance of all three labels in a high-throughput setting on 68 different IgG samples, all in duplicates and 22 identical IgG standards. In general, ProA labeled glycans had the highest FLR sensitivity (15-fold and 4-fold higher signal intensities compared to 2-AB and RF-MS respectively) and RF-MS had the highest MS sensitivity (68-fold and 2-fold higher signal intensities compared to 2-AB and ProA, respectively). ProA and RF-MS showed comparable limits of quantification with both FLR and MS detection, whilst 2-AB exhibited the lowest sensitivity. All labeling procedures showed good and comparable repeatability. Furthermore, the results indicated that labeling efficiency was very similar for all three labels. In conclusion, all three labels are a good choice for N-glycan derivatization in high-throughput HILIC-UPLC-FLR-MS N-glycan analysis, although ProA and RF-MS are a better option when higher sensitivity is needed.
Collapse
Affiliation(s)
- Toma Keser
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Tamara Pavić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Gordan Lauc
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia.,Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Olga Gornik
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
12
|
Schwedler C, Häupl T, Kalus U, Blanchard V, Burmester GR, Poddubnyy D, Hoppe B. Hypogalactosylation of immunoglobulin G in rheumatoid arthritis: relationship to HLA-DRB1 shared epitope, anticitrullinated protein antibodies, rheumatoid factor, and correlation with inflammatory activity. Arthritis Res Ther 2018. [PMID: 29540200 PMCID: PMC5853146 DOI: 10.1186/s13075-018-1540-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Galactosylation of immunoglobulin G (IgG) is reduced in rheumatoid arthritis (RA) and assumed to correlate with inflammation and altered humoral immunity. IgG hypogalactosylation also increases with age. To investigate dependencies in more detail, we compared IgG hypogalactosylation between patients with RA, patients with axial spondyloarthritis (axSpA), and healthy control subjects (HC), and we studied it in RA on the background of HLA-DRB1 shared epitope (SE), anticitrullinated protein antibodies (ACPA), and/or rheumatoid factor (RF) status. Methods Patients with RA (n = 178), patients with axSpA (n = 126), and HC (n = 119) were characterized clinically, and serum IgG galactosylation was determined by capillary electrophoresis. Markers of disease activity, genetic susceptibility, and serologic response included C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), DAS28, SE, HLA-B27, ACPA, and RF. Expression of glycosylation enzymes, including beta 1–4 galactosyltransferase (B4GALT3) activity, were estimated from transcriptome data for B-cell development (GSE19599) and differentiation to plasma cells (GSE12366). Results IgG hypogalactosylation was restricted to RA and associated with increasing CRP levels (p < 0.0001). In axSpA, IgG hypogalactosylation was comparable to HC and only marginally increased upon elevated CRP. Restriction to RA was maintained after correction for CRP and age. Treatment with sulfasalazine resulted in significantly reduced IgG hypogalactosylation (p = 0.003) even after adjusting for age, sex, and CRP (p = 0.009). SE-negative/ACPA-negative RA exhibited significantly less IgG hypogalactosylation than all other strata (vs SE-negative/ACPA-positive, p = 0.009; vs SE-positive/ACPA-negative, p = 0.04; vs SE-positive/ACPA-positive, p < 0.02); however, this indicated a trend only after Bonferroni correction for multiple testing. In SE-positive/ACPA-negative RA IgG hypogalactosylation was comparable to ACPA-positive subsets. The relationship between IgG hypogalactosylation and disease activity was significantly different between strata defined by SE (CRP, p = 0.0003, pBonferroni = 0.0036) and RF (CRP, p < 0.0001, pBonferroni < 0.0012), whereas ACPA strata revealed only a nonsignificant trend (p = 0.15). Gene expression data indicated that the key enzyme for galactosylation of immunoglobulins, B4GALT3, is expressed at lower levels in B cells than in plasma cells. Conclusions Increased IgG hypogalactosylation in RA but not in axSpA points to humoral immune response as a precondition. Reduced B4GALT3 expression in B cells compared with plasma cells supports relatedness to early B-cell triggering. The differential influence of RA treatment on IgG hypogalactosylation renders it a potential diagnostic target for further studies. Electronic supplementary material The online version of this article (10.1186/s13075-018-1540-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christian Schwedler
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.,Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Takustraße 3, 14195, Berlin, Germany
| | - Thomas Häupl
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Ulrich Kalus
- Institute of Transfusion Medicine, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Véronique Blanchard
- Institute of Laboratory Medicine, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Gerd-Rüdiger Burmester
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Denis Poddubnyy
- Department of Gastroenterology, Infectiology and Rheumatology, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, 12203, Berlin, Germany.,German Rheumatism Research Centre, Charitéplatz 1, 10117, Berlin, Germany
| | - Berthold Hoppe
- Institute of Laboratory Medicine, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany. .,Institute of Laboratory Medicine, Unfallkrankenhaus Berlin, Warener Straße 7, 12683, Berlin, Germany.
| |
Collapse
|
13
|
Mantovani V, Galeotti F, Maccari F, Volpi N. Recent advances in capillary electrophoresis separation of monosaccharides, oligosaccharides, and polysaccharides. Electrophoresis 2017; 39:179-189. [DOI: 10.1002/elps.201700290] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 01/26/2023]
Affiliation(s)
- Veronica Mantovani
- Department of Life Sciences; University of Modena and Reggio Emilia; Modena Italy
| | - Fabio Galeotti
- Department of Life Sciences; University of Modena and Reggio Emilia; Modena Italy
| | - Francesca Maccari
- Department of Life Sciences; University of Modena and Reggio Emilia; Modena Italy
| | - Nicola Volpi
- Department of Life Sciences; University of Modena and Reggio Emilia; Modena Italy
| |
Collapse
|
14
|
Mitra I, Snyder CM, Zhou X, Campos MI, Alley WR, Novotny MV, Jacobson SC. Structural Characterization of Serum N-Glycans by Methylamidation, Fluorescent Labeling, and Analysis by Microchip Electrophoresis. Anal Chem 2016; 88:8965-71. [PMID: 27504786 DOI: 10.1021/acs.analchem.6b00882] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To characterize the structures of N-glycans derived from human serum, we report a strategy that combines microchip electrophoresis, standard addition, enzymatic digestion, and matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). We compared (i) electrophoretic mobilities of known N-glycans from well-characterized (standard) glycoproteins through standard addition, (ii) the electrophoretic mobilities of N-glycans with their molecular weights determined by MALDI-MS, and (iii) electrophoretic profiles of N-glycans enzymatically treated with fucosidase. The key step to identify the sialylated N-glycans was to quantitatively neutralize the negative charge on both α2,3- and α2,6-linked sialic acids by covalent derivatization with methylamine. Both neutralized and nonsialylated N-glycans from these samples were then reacted with 8-aminopyrene-1,3,6-trisulfonic acid (APTS) to provide a fluorescent label and a triple-negative charge, separated by microchip electrophoresis, and detected by laser-induced fluorescence. The methylamidation step leads to a 24% increase in the peak capacity of the separation and direct correlation of electrophoretic and MALDI-MS results. In total, 37 unique N-glycan structures were assigned to 52 different peaks recorded in the electropherograms of the serum samples. This strategy ensures the needed separation efficiency and detectability, easily resolves linkage and positional glycan isomers, and is highly reproducible.
Collapse
Affiliation(s)
- Indranil Mitra
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States
| | - Christa M Snyder
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States
| | - Xiaomei Zhou
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States
| | - Margit I Campos
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States
| | - William R Alley
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States
| | - Milos V Novotny
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States
| | - Stephen C Jacobson
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States
| |
Collapse
|
15
|
Weiz S, Wieczorek M, Schwedler C, Kaup M, Braicu EI, Sehouli J, Tauber R, Blanchard V. Acute-phase glycoprotein N-glycome of ovarian cancer patients analyzed by CE-LIF. Electrophoresis 2016; 37:1461-7. [DOI: 10.1002/elps.201500518] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/29/2015] [Accepted: 01/04/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Stefan Weiz
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry; Charité Medical University; Berlin Germany
- Department of Biology, Chemistry and Pharmacy; Freie Universität Berlin; Berlin Germany
| | - Marta Wieczorek
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry; Charité Medical University; Berlin Germany
| | - Christian Schwedler
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry; Charité Medical University; Berlin Germany
- Department of Biology, Chemistry and Pharmacy; Freie Universität Berlin; Berlin Germany
| | - Matthias Kaup
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry; Charité Medical University; Berlin Germany
| | - Elena Iona Braicu
- Department of Gynecology; Charité Medical University; Berlin Germany
| | - Jalid Sehouli
- Department of Gynecology; Charité Medical University; Berlin Germany
| | - Rudolf Tauber
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry; Charité Medical University; Berlin Germany
| | - Véronique Blanchard
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry; Charité Medical University; Berlin Germany
| |
Collapse
|
16
|
Ruhaak LR, Stroble C, Dai J, Barnett M, Taguchi A, Goodman GE, Miyamoto S, Gandara D, Feng Z, Lebrilla CB, Hanash S. Serum Glycans as Risk Markers for Non-Small Cell Lung Cancer. Cancer Prev Res (Phila) 2016; 9:317-23. [PMID: 26813970 DOI: 10.1158/1940-6207.capr-15-0033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 01/18/2016] [Indexed: 11/16/2022]
Abstract
Previous studies have suggested occurrence of altered serum glycan profiles in patients with lung cancer. Here, we aimed to determine the predictive value of serum glycans to distinguish non-small cell lung cancer (NSCLC) cases from controls in prediagnostic samples using a previously validated predictive protein marker pro-SFTPB, as anchor. Blinded prediagnostic serum samples were obtained from the Carotene and Retinol Efficacy Trial (CARET), and included a discovery set of 100 NSCLC cases and 199 healthy controls. A second test set consisted of 108 cases and 216 controls. Cases and controls were matched for age at baseline (5-year groups), sex, smoking status (current vs. former), study enrollment cohort, and date of blood draw. Serum glycan profiles were determined by mass spectrometry. Twelve glycan variables were identified to have significant discriminatory power between cases and controls in the discovery set (AUC > 0.6). Of these, four were confirmed in the independent validation set. A combination marker yielded AUCs of 0.74 and 0.64 in the discovery and test set, respectively. Four glycan variables exhibited significant incremental value when combined with pro-SFTPB compared with pro-SFTPB alone with AUCs of 0.73, 0.72, 0.72, and 0.72 in the test set, indicating that serum glycan signatures have relevance to risk assessment for NSCLC.
Collapse
Affiliation(s)
- L Renee Ruhaak
- Department of Chemistry, University of California Davis, Davis, California. Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Carol Stroble
- Department of Chemistry, University of California Davis, Davis, California. Division of Hematology and Oncology, University of California Davis Comprehensive Cancer Center, Sacramento, California
| | - Jianliang Dai
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Matt Barnett
- Division of Public Health Sciences, Fred Hutchison Cancer Research Center, Seattle, Washington
| | - Ayumu Taguchi
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gary E Goodman
- Division of Public Health Sciences, Fred Hutchison Cancer Research Center, Seattle, Washington
| | - Suzanne Miyamoto
- Division of Hematology and Oncology, University of California Davis Comprehensive Cancer Center, Sacramento, California
| | - David Gandara
- Division of Hematology and Oncology, University of California Davis Comprehensive Cancer Center, Sacramento, California
| | - Ziding Feng
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carlito B Lebrilla
- Department of Chemistry, University of California Davis, Davis, California
| | - Samir Hanash
- Department of Clinical Cancer Prevention - Research, Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
17
|
Weiz S, Kamalakumar A, Biskup K, Blanchard V. Enhanced detection of in-gel releasedN-glycans by MALDI-TOF-MS. Proteomics 2015; 15:1503-7. [DOI: 10.1002/pmic.201400210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 10/17/2014] [Accepted: 12/15/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Stefan Weiz
- Institute of Laboratory Medicine; Clinical Chemistry, and Pathobiochemistry; Charité Medical University; Berlin Germany
- Department of Biology; Chemistry and Pharmacy, Freie Universität Berlin; Berlin Germany
| | - Aryaline Kamalakumar
- Institute of Laboratory Medicine; Clinical Chemistry, and Pathobiochemistry; Charité Medical University; Berlin Germany
- Department of Biology; Chemistry and Pharmacy, Freie Universität Berlin; Berlin Germany
| | - Karina Biskup
- Institute of Laboratory Medicine; Clinical Chemistry, and Pathobiochemistry; Charité Medical University; Berlin Germany
- Department of Biology; Chemistry and Pharmacy, Freie Universität Berlin; Berlin Germany
| | - Véronique Blanchard
- Institute of Laboratory Medicine; Clinical Chemistry, and Pathobiochemistry; Charité Medical University; Berlin Germany
| |
Collapse
|
18
|
O'Regan NL, Steinfelder S, Schwedler C, Rao GB, Srikantam A, Blanchard V, Hartmann S. Filariasis asymptomatically infected donors have lower levels of disialylated IgG compared to endemic normals. Parasite Immunol 2014; 36:713-20. [DOI: 10.1111/pim.12137] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 08/07/2014] [Indexed: 12/12/2022]
Affiliation(s)
- N. L. O'Regan
- Institute of Immunology; Center for Infection Medicine; Freie Universität Berlin; Berlin Germany
| | - S. Steinfelder
- Institute of Immunology; Center for Infection Medicine; Freie Universität Berlin; Berlin Germany
| | - C. Schwedler
- Clinical Chemistry and Pathobiochemistry; Institute of Laboratory Medicine; Charité Medical University; Berlin Germany
| | - G. B. Rao
- Blue Peter Public Health and Research Centre-LEPRA Society; Hyderabad Andhra Pradesh India
| | - A. Srikantam
- Blue Peter Public Health and Research Centre-LEPRA Society; Hyderabad Andhra Pradesh India
| | - V. Blanchard
- Clinical Chemistry and Pathobiochemistry; Institute of Laboratory Medicine; Charité Medical University; Berlin Germany
| | - S. Hartmann
- Institute of Immunology; Center for Infection Medicine; Freie Universität Berlin; Berlin Germany
| |
Collapse
|
19
|
Schwedler C, Kaup M, Weiz S, Hoppe M, Braicu EI, Sehouli J, Hoppe B, Tauber R, Berger M, Blanchard V. Identification of 34 N-glycan isomers in human serum by capillary electrophoresis coupled with laser-induced fluorescence allows improving glycan biomarker discovery. Anal Bioanal Chem 2014; 406:7185-93. [PMID: 25234305 DOI: 10.1007/s00216-014-8168-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 09/03/2014] [Accepted: 09/05/2014] [Indexed: 02/06/2023]
Abstract
Alterations in glycosylation have been observed in many human diseases and specific changes in glycosylation have been proposed as relevant diagnostic information. Capillary electrophoresis coupled with laser-induced fluorescence (CE-LIF) is a robust method to quantify desialylated N-glycans that are labeled with 8-aminopyrene-1,3,6-trisulfonic acid prior to analysis. To date, only a maximum of 12 glycan structures, the most abundant ones, have been identified by CE-LIF to characterize glycome modulations of total serum in the course of the diseases. In most forms of cancer, findings using CE-LIF were limited to the increase of triantennary structures carrying a Lewis(x) epitope. In this work, we identified 32 linkage and positional glycan isomers in healthy human serum using exoglycosidase digestions as well as standard glycoproteins, for which we report the assignment of novel structures. It was possible to identify and quantify 34 glycan isomers in the serum of primary epithelial ovarian cancer patients (EOC). Reduced levels of diantennary structures and of high-mannose 5 were statistically significant in the EOC samples, and also, elevated branching as well as increased antennary fucosylation were observed. For the first time, we could demonstrate that not only antennary fucosylation was of relevance in tetraantennary structures but also core-fucosylated tetraantennary N-glycans were statistically increased in EOC patients. The results of the current study provide an improved dataset to be used in glycan biomarker discovery.
Collapse
Affiliation(s)
- Christian Schwedler
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité Medical University, Augustenburger Platz 1, 13353, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|