1
|
Eleamen Oliveira E, Barendji M, Vauthier C. Understanding Nanomedicine Size and Biological Response Dependency: What Is the Relevance of Previous Relationships Established on Only Batch-Mode DLS-Measured Sizes? Pharm Res 2020; 37:161. [DOI: 10.1007/s11095-020-02869-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
|
2
|
Coty JB, Varenne F, Benmalek A, Garsaa O, Le Potier I, Taverna M, Smadja C, Vauthier C. Characterization of nanomedicines’ surface coverage using molecular probes and capillary electrophoresis. Eur J Pharm Biopharm 2018; 130:48-58. [DOI: 10.1016/j.ejpb.2018.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/12/2018] [Accepted: 06/12/2018] [Indexed: 11/17/2022]
|
3
|
Coty JB, Noiray M, Vauthier C. Assessment of Complement Activation by Nanoparticles: Development of a SPR Based Method and Comparison with Current High Throughput Methods. Pharm Res 2018; 35:129. [DOI: 10.1007/s11095-018-2406-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/10/2018] [Indexed: 10/17/2022]
|
4
|
Coty JB, Vauthier C. Characterization of nanomedicines: A reflection on a field under construction needed for clinical translation success. J Control Release 2018; 275:254-268. [DOI: 10.1016/j.jconrel.2018.02.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 12/12/2022]
|
5
|
Coty JB, Eleamen Oliveira E, Vauthier C. Tuning complement activation and pathway through controlled molecular architecture of dextran chains in nanoparticle corona. Int J Pharm 2017; 532:769-778. [DOI: 10.1016/j.ijpharm.2017.04.048] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 10/19/2022]
|
6
|
Nguyễn CH, Putaux JL, Santoni G, Tfaili S, Fourmentin S, Coty JB, Choisnard L, Gèze A, Wouessidjewe D, Barratt G, Lesieur S, Legrand FX. New nanoparticles obtained by co-assembly of amphiphilic cyclodextrins and nonlamellar single-chain lipids: Preparation and characterization. Int J Pharm 2017; 531:444-456. [PMID: 28698068 DOI: 10.1016/j.ijpharm.2017.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/30/2017] [Accepted: 07/02/2017] [Indexed: 01/04/2023]
Abstract
This work aimed at preparing new nanoscale assemblies based on an amphiphilic bio-esterified β-cyclodextrin (β-CD), substituted at the secondary face with n-decanoic fatty acid chains (β-CD-C10), and monoolein (MO) as new carriers for parenteral drug delivery. Stable binary (β-CD-C10/MO) and ternary (β-CD-C10/MO/stabilizer) nanoscale assemblies close to 100nm in size were successfully prepared in water by the solvent displacement method. The generated nanoparticles were fully characterized by dynamic light scattering, transmission electron microscopy, small-angle X-ray scattering, residual solvent analysis, complement activation and the contribution of each formulation parameter was determined by principal component analysis. The β-CD-C10 units were shown to self-organize into nanoparticles with a hexagonal supramolecular packing that was significantly modulated by the molar ratio of the constituents and the presence of a steric or electrostatic stabilizer (DOPE-PEG2000 or DOPA/POPA, respectively). Indeed, nanoparticles differing in morphology and in hexagonal lattice parameters were obtained while the co-existence of multiple mesophases was observed in some formulations, in particular for the β-CD-C10/MO/DOPA and β-CD-C10/MO/POPA systems. The mixed β-CD-C10/MO/DOPE-PEG2000 nanoparticles (49:49:2 in mol%) appeared to be the most suitable for use as a drug delivery system since they contained a very low amount of residual solvent and showed a low level of complement C3 activation.
Collapse
Affiliation(s)
- Cảnh Hưng Nguyễn
- Institut Galien Paris-Sud, CNRS UMR 8612, Univ. Paris-Sud, Université Paris-Saclay, 5 rue Jean-Baptiste Clément, F-92290 Châtenay-Malabry, France
| | - Jean-Luc Putaux
- Centre de Recherches sur les Macromolécules Végétales, CNRS UPR 5301, Univ. Grenoble Alpes, BP 53, F-38401 Grenoble Cedex 9, France
| | - Gianluca Santoni
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, F-38000 Grenoble, France
| | - Sana Tfaili
- Lip(Sys)², EA 7357, Chimie Analytique Pharmaceutique, Univ. Paris-Sud, Université Paris-Saclay, 5 rue Jean-Baptiste Clément, F-92290 Châtenay-Malabry, France
| | - Sophie Fourmentin
- Unité de Chimie Environnementale et Interactions sur le Vivant, EA 4492, SFR Condorcet FR CNRS 3417, Université Littoral Côte d'Opale, 145 avenue Maurice Schumann, F-59140 Dunkerque, France
| | - Jean-Baptiste Coty
- Institut Galien Paris-Sud, CNRS UMR 8612, Univ. Paris-Sud, Université Paris-Saclay, 5 rue Jean-Baptiste Clément, F-92290 Châtenay-Malabry, France
| | - Luc Choisnard
- Département de Pharmacochimie Moléculaire, CNRS UMR 5063, Univ. Grenoble Alpes, F-38000 Grenoble, France
| | - Annabelle Gèze
- Département de Pharmacochimie Moléculaire, CNRS UMR 5063, Univ. Grenoble Alpes, F-38000 Grenoble, France
| | - Denis Wouessidjewe
- Département de Pharmacochimie Moléculaire, CNRS UMR 5063, Univ. Grenoble Alpes, F-38000 Grenoble, France
| | - Gillian Barratt
- Institut Galien Paris-Sud, CNRS UMR 8612, Univ. Paris-Sud, Université Paris-Saclay, 5 rue Jean-Baptiste Clément, F-92290 Châtenay-Malabry, France
| | - Sylviane Lesieur
- Institut Galien Paris-Sud, CNRS UMR 8612, Univ. Paris-Sud, Université Paris-Saclay, 5 rue Jean-Baptiste Clément, F-92290 Châtenay-Malabry, France
| | - François-Xavier Legrand
- Institut Galien Paris-Sud, CNRS UMR 8612, Univ. Paris-Sud, Université Paris-Saclay, 5 rue Jean-Baptiste Clément, F-92290 Châtenay-Malabry, France.
| |
Collapse
|
7
|
Fornaguera C, Solans C. Methods for the In Vitro Characterization of Nanomedicines-Biological Component Interaction. J Pers Med 2017; 7:jpm7010002. [PMID: 28134833 PMCID: PMC5374392 DOI: 10.3390/jpm7010002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/25/2017] [Indexed: 02/06/2023] Open
Abstract
The design of colloidal nanosystems intended for biomedical applications, specifically in the field of personalized medicine, has increased notably in the last years. Consequently, a variety of characterization techniques devoted to studying nanomedicine interactions with proteins and cells have been developed, since a deep characterization of nanosystems is required before starting preclinical and clinical studies. In this context, this review aims to summarize the main techniques used to assess the interaction of nanomedicines with biological systems, highlighting their advantages and disadvantages. Testing designed nanomaterials with these techniques is required in order to have more information about their behavior on a physiological environment. Moreover, techniques used to study the interaction of nanomedicines with proteins, such as albumin and fibrinogen, are summarized. These interactions are not desired, since they usually are the first signal to the body for the activation of the immune system, which leads to the clearance of the exogenous components. On the other hand, techniques for studying the cell toxicity of nanosystems are also summarized, since this information is required before starting preclinical steps. The translation of knowledge from novel designed nanosystems at a research laboratory scale to real human therapies is usually a limiting or even a final point due to the lack of systematic studies regarding these two aspects: nanoparticle interaction with biological components and nanoparticle cytotoxicity. In conclusion, this review will be a useful support for those scientists aiming to develop nanosystems for nanomedicine purposes.
Collapse
Affiliation(s)
| | - Conxita Solans
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC) and Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, 08034, Spain.
| |
Collapse
|