1
|
Squara S, Moraglio S, Caratti A, Fina A, Liberto E, Bicchi C, Weinert CH, Soukup ST, Tavella L, Cordero C. Unrevealing the Halyomorpha halys Damage Fingerprint on Hazelnut Metabolome by Multiomic Platforms and AI-Aided Strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24109-24129. [PMID: 39413774 DOI: 10.1021/acs.jafc.4c06888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
The brown marmorated stink bug (Halyomorpha halys) poses a significant threat to hazelnut crops by affecting kernel development and causing quality defects, reducing the market value. While previous studies have identified bitter-tasting compounds in affected kernels, the impact of stink bug feeding on the hazelnut metabolome, particularly concerning aroma precursors, remains underexplored. This study aims to map the nonvolatile metabolome and volatilome of hazelnut samples obtained by caging H. halys on different cultivars in two locations to identify markers for diagnosing stink bug damage. Using a multiomic approach involving headspace solid-phase microextraction (HS-SPME), comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC-TOF MS), and liquid chromatography-high-resolution mass spectrometry (LC-HRMS), both raw and roasted hazelnuts are analyzed, with artificial intelligence (AI) and machine learning tools employed to explore data correlations. The study finds that the hazelnut metabolome and volatilome exhibit high chemical complexity with significant classes of compounds such as aldehydes, ketones, alcohols, and terpenes identified in both raw and roasted hazelnuts. Multivariate analysis indicates that the orchard location significantly impacts the metabolome, followed by damage type, with cultivar differences being less pronounced. Partial least-squares discriminant analysis (PLS-DA) models achieve high predictive accuracy for orchard location (99%) and damage type (≈80%), with the roasted volatilome showing the highest predictive accuracy. Correlation matrices reveal significant relationships between raw hazelnut metabolites and aroma compounds in roasted samples, suggesting potential markers for stink bug damage that could guide the quality assessment and mitigation strategies. Data fusion techniques further enhance classification performance, particularly in predicting damage type, underscoring the potential of integrating multiple data sets for comprehensive quality assessment.
Collapse
Affiliation(s)
- Simone Squara
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via Pietro Giuria 9, 10125 Torino, Italy
| | - Silvia Moraglio
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università di Torino, Largo P. Braccini 2, 10095 Grugliasco, Torino, Italy
| | - Andrea Caratti
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via Pietro Giuria 9, 10125 Torino, Italy
| | - Angelica Fina
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via Pietro Giuria 9, 10125 Torino, Italy
| | - Erica Liberto
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via Pietro Giuria 9, 10125 Torino, Italy
| | - Carlo Bicchi
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via Pietro Giuria 9, 10125 Torino, Italy
| | - Christoph H Weinert
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131 Karlsruhe, Germany
| | - Sebastian T Soukup
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131 Karlsruhe, Germany
| | - Luciana Tavella
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università di Torino, Largo P. Braccini 2, 10095 Grugliasco, Torino, Italy
| | - Chiara Cordero
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via Pietro Giuria 9, 10125 Torino, Italy
| |
Collapse
|
2
|
Squara S, Caratti A, Fina A, Liberto E, Koljančić N, Špánik I, Genova G, Castello G, Bicchi C, de Villiers A, Cordero C. Artificial intelligence decision making tools in food metabolomics: Data fusion unravels synergies within the hazelnut (Corylus avellana L.) metabolome and improves quality prediction. Food Res Int 2024; 194:114873. [PMID: 39232512 DOI: 10.1016/j.foodres.2024.114873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024]
Abstract
This study investigates the metabolome of high-quality hazelnuts (Corylus avellana L.) by applying untargeted and targeted metabolome profiling techniques to predict industrial quality. Utilizing comprehensive two-dimensional gas chromatography and liquid chromatography coupled with high-resolution mass spectrometry, the research characterizes the non-volatile (primary and specialized metabolites) and volatile metabolomes. Data fusion techniques, including low-level (LLDF) and mid-level (MLDF), are applied to enhance classification performance. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) reveal that geographical origin and postharvest practices significantly impact the specialized metabolome, while storage conditions and duration influence the volatilome. The study demonstrates that MLDF approaches, particularly supervised MLDF, outperform single-fraction analyses in predictive accuracy. Key findings include the identification of metabolites patterns causally correlated to hazelnut's quality attributes, of them aldehydes, alcohols, terpenes, and phenolic compounds as most informative. The integration of multiple analytical platforms and data fusion methods shows promise in refining quality assessments and optimizing storage and processing conditions for the food industry.
Collapse
Affiliation(s)
- Simone Squara
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9, Torino 10125, Italy
| | - Andrea Caratti
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9, Torino 10125, Italy
| | - Angelica Fina
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9, Torino 10125, Italy
| | - Erica Liberto
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9, Torino 10125, Italy
| | - Nemanja Koljančić
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9, Torino 10125, Italy; Institute of Analytical Chemistry, Slovak University of Technology, Radlinského 9, Bratislava 812 37, Slovakia
| | - Ivan Špánik
- Institute of Analytical Chemistry, Slovak University of Technology, Radlinského 9, Bratislava 812 37, Slovakia
| | - Giuseppe Genova
- Soremartec Italia Srl, Piazzale Ferrero 1, Alba, Cuneo 12051, Italy
| | | | - Carlo Bicchi
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9, Torino 10125, Italy
| | - André de Villiers
- Department of Chemistry and Polymer Science, Stellenbosch University, Matieland, Stellenbosch, Western Cape 7602, South Africa.
| | - Chiara Cordero
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9, Torino 10125, Italy.
| |
Collapse
|
3
|
Fu M, Tello E, Hatzakis E, Peterson DG. Identification of Compounds That Impact Consumer Flavor Liking of American-European Hazelnut Hybrids Using Nontargeted LC/MS Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8092-8102. [PMID: 38536005 DOI: 10.1021/acs.jafc.4c00304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
American-European (Corylus americana × Corylus avellana) hazelnut hybrids are being developed for the Midwest-growing region of the United States. However, an inadequate understanding of the compounds that impact the consumer acceptance of hazelnuts limits breeding programs. Nontargeted liquid chromatography/mass spectrometry (LC/MS) chemical profiles of 12 roasted hybrid hazelnut samples and the corresponding consumer flavor liking scores were modeled by orthogonal partial least squares with good fit and predictive ability (R2Y > 0.9, Q2 > 0.9) to identify compounds that impact nut liking. The five most predictive compounds (1-5) were negatively correlated to flavor liking, selected as putative markers, purified by multidimensional preparative LC/MS, structurally elucidated (nuclear magnetic resonance, MS), quantified, and validated for sensory relevance. Compound 1 was identified as 1″-O-3'-b-glucofuranosyl-1'-O-1-b-glucofuranosyl-(2,6-dihydroxyphenyl)-ethan-4-one. Compounds 2 and 4 were identified as rotamers of 2-(3-hydroxy-2-oxoindolin-3-yl) acetic acid 3-O-6'-galactopyranosyl-2″-(2″oxoindolin-3″yl) acetate, whereas compounds 3 and 5 were identified as rotamers of 1″-O-1'-b-glucofuranosyl-9-O-6'-b-glucopyranosyl-2″-(2″-oxoindolin-3″yl) acetate. Sensory evaluation determined that all compounds were characterized by bitterness and/or astringency. The sensory threshold values of compounds 1-5 were determined to be below the concentrations reported in 91, 83, 41, 25, and 41% of all 12 hybrid hazelnut samples, respectively, indicating they contributed to aversive flavor attributes.
Collapse
Affiliation(s)
- Mengying Fu
- Department of Food Science and Technology, 110 Parker Building, The Ohio State University, 2015 Fyffe Road, Columbus, Ohio 43210, United States
| | - Edisson Tello
- Department of Food Science and Technology, 110 Parker Building, The Ohio State University, 2015 Fyffe Road, Columbus, Ohio 43210, United States
| | - Emmanuel Hatzakis
- Department of Food Science and Technology, 110 Parker Building, The Ohio State University, 2015 Fyffe Road, Columbus, Ohio 43210, United States
| | - Devin G Peterson
- Department of Food Science and Technology, 110 Parker Building, The Ohio State University, 2015 Fyffe Road, Columbus, Ohio 43210, United States
| |
Collapse
|
4
|
Subbiah V, Ebrahimi F, Agar OT, Dunshea FR, Barrow CJ, Suleria HAR. Comparative Study on the Effect of Phenolics and Their Antioxidant Potential of Freeze-Dried Australian Beach-Cast Seaweed Species upon Different Extraction Methodologies. Pharmaceuticals (Basel) 2023; 16:ph16050773. [PMID: 37242556 DOI: 10.3390/ph16050773] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Brown seaweed is rich in phenolic compounds and has established health benefits. However, the phenolics present in Australian beach-cast seaweed are still unclear. This study investigated the effect of ultrasonication and conventional methodologies using four different solvents on free and bound phenolics of freeze-dried brown seaweed species obtained from the southeast Australian shoreline. The phenolic content and their antioxidant potential were determined using in vitro assays followed by identification and characterization by LC-ESI-QTOF-MS/MS and quantified by HPLC-PDA. The Cystophora sp. displayed high total phenolic content (TPC) and phlorotannin content (FDA) when extracted using 70% ethanol (ultrasonication method). Cystophora sp., also exhibited strong antioxidant potential in various assays, such as DPPH, ABTS, and FRAP in 70% acetone through ultrasonication. TAC is highly correlated to FRAP, ABTS, and RPA (p < 0.05) in both extraction methodologies. LC-ESI-QTOF-MS/MS analysis identified 94 and 104 compounds in ultrasound and conventional methodologies, respectively. HPLC-PDA quantification showed phenolic acids to be higher for samples extracted using the ultrasonication methodology. Our findings could facilitate the development of nutraceuticals, pharmaceuticals, and functional foods from beach-cast seaweed.
Collapse
Affiliation(s)
- Vigasini Subbiah
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, VIC 3217, Australia
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Faezeh Ebrahimi
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Osman T Agar
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Frank R Dunshea
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
- Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JKT, UK
| | - Colin J Barrow
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, VIC 3217, Australia
| | - Hafiz A R Suleria
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, VIC 3217, Australia
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
5
|
Spagnuolo L, Della Posta S, Fanali C, Dugo L, De Gara L. Chemical Composition of Hazelnut Skin Food Waste and Protective Role against Advanced Glycation End-Products (AGEs) Damage in THP-1-Derived Macrophages. Molecules 2023; 28:molecules28062680. [PMID: 36985650 PMCID: PMC10054400 DOI: 10.3390/molecules28062680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023] Open
Abstract
Glycation and the accumulation of advanced glycation end-products (AGEs) are known to occur during aging, diabetes and neurodegenerative diseases. Increased glucose or methylglyoxal (MGO) levels in the blood of diabetic patients result in increased AGEs. A diet rich in bioactive food compounds, like polyphenols, has a protective effect. The aim of this work is to evaluate the capacity of hazelnut skin polyphenolic extract to protect THP-1-macrophages from damage induced by AGEs. The main polyphenolic subclass was identified and quantified by means of HPLC/MS and the Folin–Ciocalteu method. AGEs derived from incubation of bovine serum albumin (BSA) and MGO were characterized by fluorescence. Cell viability measurement was performed to evaluate the cytotoxic effect of the polyphenolic extract in macrophages. Reactive oxygen species’ (ROS) production was assessed by the H2-DCF-DA assay, the inflammatory response by real-time PCR for gene expression, and the ELISA assay for protein quantification. We have shown that the polyphenolic extract protected cell viability from damage induced by AGEs. After treatment with AGEs, macrophages expressed high levels of pro-inflammatory cytokines and ROS, whereas in co-treatment with polyphenol extract there was a reduction in either case. Our study suggests that hazelnut skin polyphenol-rich extracts have positive effects and could be further investigated for nutraceutical applications.
Collapse
Affiliation(s)
| | | | | | - Laura Dugo
- Correspondence: ; Tel.: +39-06-22541-9470
| | | |
Collapse
|
6
|
Wang Y, Zhao W, Li Y, Zhao H, Ye X, Li T, Wang Z, Huang L. Optimization of ultrasound-assisted extraction method for phytochemical compounds and antioxidant activities of sour jujube extracts. Food Sci Nutr 2022; 10:3736-3748. [PMID: 36348776 PMCID: PMC9632212 DOI: 10.1002/fsn3.2971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 06/21/2022] [Accepted: 07/01/2022] [Indexed: 12/03/2022] Open
Abstract
Ultrasonic-assisted extraction is a rapid and effective extraction method that uses ultrasound energy and solvents to extract target compounds from various plant matrices. In this study, the ultrasonic-assisted extraction conditions of sour jujube were optimized. A five-level central composite design (CCD) with four variables was used to evaluate ultrasonic treatment variables influencing the total saponin content (TSC), total flavonoid content (TFC), and total phenolic content (TPC) extracted from sour jujube. The solvent concentration, extraction time, ultrasonic power, and solid-to-liquid (S/L) ratio were optimized using aqueous ethanol and methanol solutions as extraction solvents. A central composite design (CCD) was used for an in-depth study, and then the optimal value that could produce the maximum TPC, TFC, TSC, and four in vitro antioxidant activities (scavenging activity of hydroxyl free radicals, ferric-reducing antioxidant power (FRAP), phosphomolybdic acid reduction method, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity) was determined. Hydrogen peroxide-induced oxidative stress experiment confirmed that the Jujube extract could have an antioxidant role in vivo. The relationship between the contents of three compounds and the antioxidant activity in vitro and in vivo was further studied. The results showed that optimizing methanol and ethanol extraction process parameters could improve target components' extraction efficiency. Under the optimum conditions, the TFC and TPC yields of sour jujube by ethanol are better than methanol, while the yield of TSC by methanol is better than ethanol. In vivo data showed that Jujube extract protects against the adverse effects of oxidative stress and improves the life span of female and male Drosophila. This study provides a valuable reference for the full use of Ziziphus jujube, as well as a new direction in food development.
Collapse
Affiliation(s)
- Yanyan Wang
- Department of Pharmacology of Traditional Chinese MedicineHeilongjiang University of Chinese MedicineHarbinChina
| | - Wan Zhao
- Department of Pharmacology of Traditional Chinese MedicineHeilongjiang University of Chinese MedicineHarbinChina
| | - Yixiang Li
- Department of Pharmacology of Traditional Chinese MedicineHeilongjiang University of Chinese MedicineHarbinChina
| | - Hang Zhao
- Department of PharmacyHeilongjiang Provincial HospitalHarbinChina
| | - Xiaonan Ye
- Department of Pharmacology of Traditional Chinese MedicineHeilongjiang University of Chinese MedicineHarbinChina
| | - Tingli Li
- Department of Pharmacology of Traditional Chinese MedicineHeilongjiang University of Chinese MedicineHarbinChina
| | - Zhibin Wang
- Department of Pharmacology of Traditional Chinese MedicineHeilongjiang University of Chinese MedicineHarbinChina
| | - Lili Huang
- Department of Pharmacology of Traditional Chinese MedicineHeilongjiang University of Chinese MedicineHarbinChina
| |
Collapse
|
7
|
Abeyrathne EDNS, Nam K, Huang X, Ahn DU. Plant- and Animal-Based Antioxidants' Structure, Efficacy, Mechanisms, and Applications: A Review. Antioxidants (Basel) 2022; 11:antiox11051025. [PMID: 35624889 PMCID: PMC9137533 DOI: 10.3390/antiox11051025] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023] Open
Abstract
Antioxidants are compounds that normally prevent lipid and protein oxidation. They play a major role in preventing many adverse conditions in the human body, including inflammation and cancer. Synthetic antioxidants are widely used in the food industry to prevent the production of adverse compounds that harm humans. However, plant- and animal-based antioxidants are more appealing to consumers than synthetic antioxidants. Plant-based antioxidants are mainly phenolic compounds, carotenoids, and vitamins, while animal-based antioxidants are mainly whole protein or the peptides of meat, fish, egg, milk, and plant proteins. Plant-based antioxidants mainly consist of aromatic rings, while animal-based antioxidants mainly consist of amino acids. The phenolic compounds and peptides act differently in preventing oxidation and can be used in the food and pharmaceutical industries. Therefore, compared with animal-based antioxidants, plant-based compounds are more practical in the food industry. Even though plant-based antioxidant compounds are good sources of antioxidants, animal-based peptides (individual peptides) cannot be considered antioxidant compounds to add to food. However, they can be considered an ingredient that will enhance the antioxidant capacity. This review mainly compares plant- and animal-based antioxidants’ structure, efficacy, mechanisms, and applications.
Collapse
Affiliation(s)
- Edirisinghe Dewage Nalaka Sandun Abeyrathne
- Department of Animal Science, Uva Wellassa University, Badulla 90000, Sri Lanka;
- Department of Animal Science & Technology, Suncheon National University, Suncheon 57922, Korea;
| | - Kichang Nam
- Department of Animal Science & Technology, Suncheon National University, Suncheon 57922, Korea;
| | - Xi Huang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Dong Uk Ahn
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
- Correspondence:
| |
Collapse
|
8
|
Arena K, Trovato E, Cacciola F, Spagnuolo L, Pannucci E, Guarnaccia P, Santi L, Dugo P, Mondello L, Dugo L. Phytochemical Characterization of Rhus coriaria L. Extracts by Headspace Solid-Phase Micro Extraction Gas Chromatography, Comprehensive Two-Dimensional Liquid Chromatography, and Antioxidant Activity Evaluation. Molecules 2022; 27:1727. [PMID: 35268827 PMCID: PMC8912007 DOI: 10.3390/molecules27051727] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 12/10/2022] Open
Abstract
Rhus coriaria L. (Anacardiaceae), commonly known as sumac, has been used since ancient times for many different applications, and nowadays is used mostly as a spice obtained from its in the Mediterranean and the Middle ground fruits and employed for flavoring and garnishing food, predominantly Eastern regions. Traditionally, sumac has been also used in popular medicine for the treatment of many ailments including hemorrhoids, wound healing, diarrhea, ulcers, and eye inflammation. Sumac drupes are indeed rich in various classes of phytochemicals including organic acids, flavonoids, tannins, and others, which are responsible of their powerful antioxidant capacity, from which treatment of many common diseases such as cardiovascular disease, diabetes, and cancer could benefit. In this work we evaluated the influence of fruit ripeness, conservation, and processing. To this aim, a phytochemical characterization of six different samples of Rhus coriaria L. was carried out. Specifically, headspace solid-phase micro extraction gas chromatography coupled to mass spectrometry and comprehensive two-dimensional liquid chromatography coupled to photodiode array and mass spectrometry detection, were employed. A total of 263 volatile compounds, including terpene hydrocarbons, acids, and aldehydes, as well as 83 polyphenolic compounds, mainly gallic acid derivatives, were positively identified. All samples showed a significant antioxidant activity by means of oxygen radical absorbance capacity, in line with their polyphenolic content and composition. Such findings set a solid ground to support the utilization of this plant as an attractive target for novel nutraceutical approaches and for drug discovery.
Collapse
Affiliation(s)
- Katia Arena
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (K.A.); (E.T.); (P.D.); (L.M.)
| | - Emanuela Trovato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (K.A.); (E.T.); (P.D.); (L.M.)
| | - Francesco Cacciola
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy
| | - Ludovica Spagnuolo
- Department of Sciences and Technologies for Human and Environment, University Campus Bio-Medico of Rome, 00128 Rome, Italy; (L.S.); (E.P.); (L.D.)
| | - Elisa Pannucci
- Department of Sciences and Technologies for Human and Environment, University Campus Bio-Medico of Rome, 00128 Rome, Italy; (L.S.); (E.P.); (L.D.)
| | - Paolo Guarnaccia
- Department of Agriculture, Food Science and Environment (Di3A), University of Catania, 95124 Catania, Italy;
| | - Luca Santi
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy;
| | - Paola Dugo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (K.A.); (E.T.); (P.D.); (L.M.)
- Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Luigi Mondello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (K.A.); (E.T.); (P.D.); (L.M.)
- Department of Sciences and Technologies for Human and Environment, University Campus Bio-Medico of Rome, 00128 Rome, Italy; (L.S.); (E.P.); (L.D.)
- Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Laura Dugo
- Department of Sciences and Technologies for Human and Environment, University Campus Bio-Medico of Rome, 00128 Rome, Italy; (L.S.); (E.P.); (L.D.)
| |
Collapse
|
9
|
Squara S, Stilo F, Cialiè Rosso M, Liberto E, Spigolon N, Genova G, Castello G, Bicchi C, Cordero C. Corylus avellana L. Aroma Blueprint: Potent Odorants Signatures in the Volatilome of High Quality Hazelnuts. FRONTIERS IN PLANT SCIENCE 2022; 13:840028. [PMID: 35310662 PMCID: PMC8929135 DOI: 10.3389/fpls.2022.840028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/24/2022] [Indexed: 05/24/2023]
Abstract
The volatilome of hazelnuts (Corylus avellana L.) encrypts information about phenotype expression as a function of cultivar/origin, post-harvest practices, and their impact on primary metabolome, storage conditions and shelf-life, spoilage, and quality deterioration. Moreover, within the bulk of detectable volatiles, just a few of them play a key role in defining distinctive aroma (i.e., aroma blueprint) and conferring characteristic hedonic profile. In particular, in raw hazelnuts, key-odorants as defined by sensomics are: 2,3-diethyl-5-methylpyrazine (musty and nutty); 2-acetyl-1,4,5,6-tetrahydropyridine (caramel); 2-acetyl-1-pyrroline (popcorn-like); 2-acetyl-3,4,5,6-tetrahydropyridine (roasted, caramel); 3-(methylthio)-propanal (cooked potato); 3-(methylthio)propionaldehyde (musty, earthy); 3,7-dimethylocta-1,6-dien-3-ol/linalool (citrus, floral); 3-methyl-4-heptanone (fruity, nutty); and 5-methyl-(E)-2-hepten-4-one (nutty, fruity). Dry-roasting on hazelnut kernels triggers the formation of additional potent odorants, likely contributing to the pleasant aroma of roasted nuts. Whiting the newly formed aromas, 2,3-pentanedione (buttery); 2-propionyl-1-pyrroline (popcorn-like); 3-methylbutanal; (malty); 4-hydroxy-2,5-dimethyl-3(2H)-furanone (caramel); dimethyl trisulfide (sulfurous, cabbage) are worthy to be mentioned. The review focuses on high-quality hazelnuts adopted as premium primary material by the confectionery industry. Information on primary and secondary/specialized metabolites distribution introduces more specialized sections focused on volatilome chemical dimensions and their correlation to cultivar/origin, post-harvest practices and storage, and spoilage phenomena. Sensory-driven studies, based on sensomic principles, provide insights on the aroma blueprint of raw and roasted hazelnuts while robust correlations between non-volatile precursors and key-aroma compounds pose solid foundations to the conceptualization of aroma potential.
Collapse
Affiliation(s)
- Simone Squara
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Turin, Italy
| | - Federico Stilo
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Turin, Italy
- Laemmegroup - A Tentamus Company, Turin, Italy
| | - Marta Cialiè Rosso
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Turin, Italy
| | - Erica Liberto
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Turin, Italy
| | | | | | | | - Carlo Bicchi
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Turin, Italy
| | - Chiara Cordero
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Turin, Italy
| |
Collapse
|
10
|
Zeb A. A comprehensive review on different classes of polyphenolic compounds present in edible oils. Food Res Int 2021; 143:110312. [PMID: 33992331 DOI: 10.1016/j.foodres.2021.110312] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 02/25/2021] [Accepted: 03/11/2021] [Indexed: 12/14/2022]
Abstract
Edible oils are used as a frying medium and in the preparation of several food products. They are mainly constituting triacylglycerols as major components, while other compounds are classified as minor constituents, which include polyphenols. This class of compounds plays an important role in the thermal stability and quality attributes of the finished industrial food products. In addition to other antioxidants, the desired thermal stability of edible is achieved by either fortification or mixing of edible oils. This comprehensive review was therefore aimed to review the different classes of polyphenolic compounds present in commonly consumed edible oils. The edible oils reviewed include soybean, olive, rapeseed, canola, sunflower, flaxseed, sesame, cottonseed, palm, almond, peanut, chestnut, coconut, and hazelnut oils. The identified classes of polyphenolic compounds such as simple phenols, hydroxybenzoic acids, phenylethanoids, hydroxycinnamic acid, esters of hydroxycinnamic acids, coumarins & chromans, stilbenes, flavonoids, anthocyanins, and lignans were discussed. It was observed that a single edible from different origins showed the varied composition of the different classes of phenolic compounds. Among the oils, soybean, sunflower, olive, and brassica oils received higher attention in terms of polyphenol composition. Some classes of phenolic compounds were either not reported or absent in one edible oil, while present in others. Among the different classes of phenolics, hydroxybenzoic acids, hydroxycinnamic acid and flavonoids were the most widely present compounds. Phenolic compounds in edible oils possess several health benefits such as antioxidant, antibacterial, anti-viral, anti-inflammatory, anti-tumour, antioxidants, cardioprotective, neuroprotective, anti-diabetic properties and anti-obesity.
Collapse
Affiliation(s)
- Alam Zeb
- Department of Biochemistry, University of Malakand, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
11
|
Antioxidant and Antiglycation Effects of Polyphenol Compounds Extracted from Hazelnut Skin on Advanced Glycation End-Products (AGEs) Formation. Antioxidants (Basel) 2021; 10:antiox10030424. [PMID: 33802107 PMCID: PMC7999557 DOI: 10.3390/antiox10030424] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 11/16/2022] Open
Abstract
The advanced glycation end-products (AGEs) arise from non-enzymatic reactions of sugar with protein side chains, some of which are oxido-reductive in nature. Enhanced production of AGEs plays an important role in the pathogenesis of diabetic complications as well as in natural aging, renal failure, oxidative stress, and chronic inflammation. The aim of this work is to study antiglycation effects of polyphenol compounds extracted by hazelnut skin that represents an example of polyphenols-rich food industry by-product, on AGEs formation. AGEs derived from incubation of bovine serum albumin (BSA) and methylglyoxal (MGO) were characterized by fluorescence. The phenolics identification and total polyphenol content in hazelnut skin extracts were analyzed by HPLC-MS and the Folin–Ciocalteu method, respectively. Antioxidant efficacy was evaluated by monitoring total antioxidant activity to assess the ABTS radical scavenging activity of samples by TEAC assay and oxygen radical absorbance capacity (ORAC) assay, expressed as millimoles of Trolox equivalents per gram of sample. Data here presented suggest that phenolic compounds in hazelnut skin have an inhibitory effect on the BSA-AGEs model in vitro, and this effect is concentration-dependent. The putative role of the hazelnut skin antioxidative properties for hindering AGEs formation is also discussed. Because of AGEs contribution to the pathogenesis of several chronic diseases, foods enriched, or supplements containing natural bioactive molecules able to inhibit their production could be an interesting new strategy for supporting therapeutic approaches with a positive effect on human health.
Collapse
|
12
|
|
13
|
Abstract
Interest in the content of natural antioxidants in plant-based foods can be from the human health perspective, in terms of how these compounds might help promote one's health and wellness, or from the storage point-of-view, as the endogenous antioxidant constituents aid to extend a foodstuff's shelf-life. This chapter reports essential information about the mechanism of antioxidant action and methods employed for determination of their activity, classes of phenolic compounds (phenolic acids, flavonoids, lignans, stilbenes, tannins), sources of plant antioxidants (oil seeds, cereals, legumes, plants of the Lamiaceae family, tea and coffee, tree nuts, fruits, and berries), extraction strategies of phenolic compounds from plant material, and the influence of processing and storage on the content of natural antioxidants in foods and their antioxidant activity. Thermal processing, if not releasing bound phenolics from the structural matrices of the food, tends to decrease the antioxidant potential or, in the best case scenario, has no significant negative impact. Gentler sterilization processes such as high-pressure processing tend to better retain the antioxidant potential of a foodstuff than thermal treatments such as steaming, boiling, or frying. The impact of processing can be assessed by determining the antioxidant potential of foodstuffs either at the point of formulation or after different periods of storage under specified conditions.
Collapse
Affiliation(s)
- Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland.
| | - Ronald B Pegg
- Department of Food Science & Technology, The University of Georgia, Athens, United States
| |
Collapse
|