1
|
Gavard P, Gavard A, Perquis L, Collin F, Couderc F. Recent advances in lipid analysis by capillary electromigration methods, 2019-2024. J Chromatogr A 2025; 1746:465756. [PMID: 39970683 DOI: 10.1016/j.chroma.2025.465756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/07/2025] [Accepted: 02/07/2025] [Indexed: 02/21/2025]
Abstract
Following a long period during which Capillary Electrophoresis (CE) was little used for lipid analysis (see Poinsot et al., Electrophoresis, 40, 2019, 190-211), the last five years have seen an increase in publications on this subject. Micellar Electrokinetic Chromatography (MEKC) can now compete with Gas Chromatography (GC) for the analysis of fatty acids, while non-aqueous capillary electrophoresis (NACE) now allows the study of fatty acids as well as phospholipids or glycolipids. As NACE also allows easy coupling to Mass Spectrometry (MS) in both positive and negative Electrospray Ionization (ESI), the technique has now become sufficiently robust, and for laboratories equipped with GC or Liquid Chromatography (LC) to consider using CE, particularly as it presents the advantage of much faster sample preparation than with GC for fatty acids and a resolution identical to LC for phospholipids and glycolipids. In this article, we will therefore describe the advances made in this area over the last five years.
Collapse
Affiliation(s)
- Pierre Gavard
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623. France
| | - Amélie Gavard
- Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Lucie Perquis
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623. France
| | - Fabrice Collin
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623. France
| | - François Couderc
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623. France.
| |
Collapse
|
2
|
Li Y, Miao S, Tan J, Zhang Q, Chen DDY. Capillary Electrophoresis: A Three-Year Literature Review. Anal Chem 2024; 96:7799-7816. [PMID: 38598751 DOI: 10.1021/acs.analchem.4c00857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Affiliation(s)
- Yueyang Li
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Siyu Miao
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Jiahua Tan
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Qi Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - David Da Yong Chen
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
3
|
Geraldo PA, Velasco AWDC, Berlande BM, Souza JCQD, Candido JMB, Adriano LHC, Brito MADAE, do Nascimento MP, Moreira OBDO, de Oliveira MAL. Fatty acids analysis by capillary electrophoresis: Fundamentals, advantages and applications. Electrophoresis 2024; 45:35-54. [PMID: 37946578 DOI: 10.1002/elps.202300144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
This review covers the know-how of the Grupo de Química Analítica e Quimiometria regarding the analysis of fatty acids by capillary electrophoresis acquired over its 20 years of existence. Therefore, the fundamentals, advantages, and applications of this technique for analyzing different fatty acids in samples such as food, oils, cosmetics, and biological matrices are presented and discussed. Capillary electrophoresis is, thus, shown as an interesting and valuable separation technique for the target analysis of these analytes as an alternative to the gas chromatography coupled to flame ionization detection, as it offers advantages over the latter such as low analysis times, low sample and reagent consumption, the use of a nondedicated column, and simpler sample preparation. In addition, the methods shown in this literature review can be useful for quality control, adulteration, and health-related research by regulatory agencies.
Collapse
Affiliation(s)
- Patrícia Abranches Geraldo
- Grupo de Química Analítica e Quimiometria-GQAQ, Chemistry Department, Institute of Exact Sciences, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil
| | - Arthur Woyames de Castro Velasco
- Grupo de Química Analítica e Quimiometria-GQAQ, Chemistry Department, Institute of Exact Sciences, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil
| | - Bruna Marchiori Berlande
- Grupo de Química Analítica e Quimiometria-GQAQ, Chemistry Department, Institute of Exact Sciences, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil
| | - Jéssica Cordeiro Queiroz de Souza
- Grupo de Química Analítica e Quimiometria-GQAQ, Chemistry Department, Institute of Exact Sciences, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil
| | - João Marcos Beraldo Candido
- Grupo de Química Analítica e Quimiometria-GQAQ, Chemistry Department, Institute of Exact Sciences, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil
| | - Luiz Henrique Cantarino Adriano
- Grupo de Química Analítica e Quimiometria-GQAQ, Chemistry Department, Institute of Exact Sciences, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil
| | - Marco Antônio Domingues Assad E Brito
- Grupo de Química Analítica e Quimiometria-GQAQ, Chemistry Department, Institute of Exact Sciences, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil
| | - Maria Patrícia do Nascimento
- Grupo de Química Analítica e Quimiometria-GQAQ, Chemistry Department, Institute of Exact Sciences, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil
| | - Olívia Brito de Oliveira Moreira
- Grupo de Química Analítica e Quimiometria-GQAQ, Chemistry Department, Institute of Exact Sciences, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil
| | - Marcone Augusto Leal de Oliveira
- Grupo de Química Analítica e Quimiometria-GQAQ, Chemistry Department, Institute of Exact Sciences, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil
- National Institute of Science and Technology for Bioanalytics-INCTBio, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
4
|
Krebs F, Zagst H, Stein M, Ratih R, Minkner R, Olabi M, Hartung S, Scheller C, Lapizco-Encinas BH, Sänger-van de Griend C, García CD, Wätzig H. Strategies for capillary electrophoresis: Method development and validation for pharmaceutical and biological applications-Updated and completely revised edition. Electrophoresis 2023; 44:1279-1341. [PMID: 37537327 DOI: 10.1002/elps.202300158] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023]
Abstract
This review is in support of the development of selective, precise, fast, and validated capillary electrophoresis (CE) methods. It follows up a similar article from 1998, Wätzig H, Degenhardt M, Kunkel A. "Strategies for capillary electrophoresis: method development and validation for pharmaceutical and biological applications," pointing out which fundamentals are still valid and at the same time showing the enormous achievements in the last 25 years. The structures of both reviews are widely similar, in order to facilitate their simultaneous use. Focusing on pharmaceutical and biological applications, the successful use of CE is now demonstrated by more than 600 carefully selected references. Many of those are recent reviews; therefore, a significant overview about the field is provided. There are extra sections about sample pretreatment related to CE and microchip CE, and a completely revised section about method development for protein analytes and biomolecules in general. The general strategies for method development are summed up with regard to selectivity, efficiency, precision, analysis time, limit of detection, sample pretreatment requirements, and validation.
Collapse
Affiliation(s)
- Finja Krebs
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Holger Zagst
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Matthias Stein
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Ratih Ratih
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Surabaya, Surabaya, East Java, Indonesia
| | - Robert Minkner
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Mais Olabi
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Sophie Hartung
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Christin Scheller
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Blanca H Lapizco-Encinas
- Department of Biomedical Engineering, Kate Gleason College of Engineering, Rochester Institute of Technology, Rochester, New York, USA
| | - Cari Sänger-van de Griend
- Kantisto BV, Baarn, The Netherlands
- Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala Universitet, Uppsala, Sweden
| | - Carlos D García
- Department of Chemistry, Clemson University, Clemson, South Carolina, USA
| | - Hermann Wätzig
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| |
Collapse
|
5
|
de Oliveira Moreira OB, Queiroz de Souza JC, Beraldo Candido JM, do Nascimento MP, Chellini PR, de Lemos LM, de Oliveira MAL. Determination of creatinine in urine and blood serum human samples by CZE-UV using on-column internal standard injection. Talanta 2023; 258:124465. [PMID: 36965416 DOI: 10.1016/j.talanta.2023.124465] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/27/2023]
Abstract
Creatinine is a well-stablished biomarker for kidney malfunctions and for normalization parameter of urinary quantitative information. Recently, metabolic studies have been discovering other functionalities for creatinine tests in human urine and blood serum. In this work we present an enhanced capillary electrophoresis (CE) based protocol for determination of creatinine. CE is a high-throughput separation technique that have been getting attention through the last decades and might be considered to be adopted as an analytical instrumentation for clinical purposes. In the proposed method, we performed a short injection program with on-column addition of internal standard. Additionally, the method allows a simultaneous screening of non-proteinogenic amino acids that could be considered for metabolomics purposes. We design a pilot study that successfully estimated the creatinine value in 100 urine samples with (2.85 ± 1.78) mg dL-1 LOD; (8.24 ± 5.93) mg dL-1 LOQ and 82.4% accuracy. Considering that serum creatinine is also included in the clinical laboratory routines for estimated Glomerular Filtration Rate dosage, the method was complementary applied to 10 blood serum samples, which resulted in a model with (0.4 ± 0.2) mg dL-1 LOD; (2.0 ± 0.6) mg dL-1 LOQ and 83.8% of accuracy. All results were in agreement with reference values. The proposed method promotes a great analytical frequency and reproducibility with enhanced specificity compared with the ongoing protocol by Jaffe's reaction, thereby proving to be useful as an alternative for creatinine exams that might help complete a diagnosis of a series of health-related issues.
Collapse
Affiliation(s)
- Olívia Brito de Oliveira Moreira
- Grupo de Química Analítica e Quimiometria - GQAQ, Chemistry Department, Institute of Exact Sciences, Federal University of Juiz de Fora (UFJF), 36036-900, Juiz de Fora, MG, Brazil
| | - Jéssica Cordeiro Queiroz de Souza
- Grupo de Química Analítica e Quimiometria - GQAQ, Chemistry Department, Institute of Exact Sciences, Federal University of Juiz de Fora (UFJF), 36036-900, Juiz de Fora, MG, Brazil
| | - João Marcos Beraldo Candido
- Grupo de Química Analítica e Quimiometria - GQAQ, Chemistry Department, Institute of Exact Sciences, Federal University of Juiz de Fora (UFJF), 36036-900, Juiz de Fora, MG, Brazil
| | - Maria Patrícia do Nascimento
- Grupo de Química Analítica e Quimiometria - GQAQ, Chemistry Department, Institute of Exact Sciences, Federal University of Juiz de Fora (UFJF), 36036-900, Juiz de Fora, MG, Brazil
| | - Paula Rocha Chellini
- Grupo de Química Analítica e Quimiometria - GQAQ, Chemistry Department, Institute of Exact Sciences, Federal University of Juiz de Fora (UFJF), 36036-900, Juiz de Fora, MG, Brazil; Faculdade de Farmácia, Federal University of Juiz de Fora (UFJF), 36036-900, Juiz de Fora, MG, Brazil
| | | | - Marcone Augusto Leal de Oliveira
- Grupo de Química Analítica e Quimiometria - GQAQ, Chemistry Department, Institute of Exact Sciences, Federal University of Juiz de Fora (UFJF), 36036-900, Juiz de Fora, MG, Brazil; National Institute of Science and Technology for Bioanalytics - INCTBio, Institute of Chemistry, University of Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil.
| |
Collapse
|
6
|
Ta HY, Perquis L, Balayssac S, Déjugnat C, Wodrinski A, Collin F, Gilard V, Couderc F. Separation of unsaturated C18 fatty acids using perfluorinated-micellar electrokinetic chromatography: I. Optimization and separation process. Electrophoresis 2023; 44:431-441. [PMID: 36398472 PMCID: PMC10098715 DOI: 10.1002/elps.202200151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/27/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022]
Abstract
Ammonium perfluorooctanoate (APFOA) was used as a surfactant for the separation of free unsaturated C18 fatty acids by micellar electrokinetic chromatography. A simple background electrolyte of 50 mM APFOA water/methanol (90:10, v/v) at pH = 10 enabled the repeatable separation of oleic acid, elaidic acid, linoleic acid, and alpha-linolenic acid in less than 20 min. Separation conditions were optimized regarding various parameters (organic solvent, counterion, APFOA concentration, and pH). Because the repulsive interactions between fluorocarbon chains and hydrogenated chains are known to lead to segregation and phase separation, the choice of perfluorinated micelles to separate such perhydrogenated long-chain acids could appear astonishing. Therefore, the critical micelle concentration, the charge density, and the mobility of the micelles have been determined, resulting in a first description of the separation process.
Collapse
Affiliation(s)
- Hai Yen Ta
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, Toulouse, France
| | - Lucie Perquis
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, Toulouse, France
| | - Stéphane Balayssac
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, Toulouse, France
| | - Christophe Déjugnat
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, Toulouse, France
| | - Alexandre Wodrinski
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, Toulouse, France
| | - Fabrice Collin
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, Toulouse, France
| | - Véronique Gilard
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, Toulouse, France
| | - François Couderc
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, Toulouse, France
| |
Collapse
|