1
|
Jin HF, Shi Y, Jiao YH, Fei TH, Cao J, Ye LH. Two-step pressure injection-assisted online enrichment of herbicides from foods with affinity micelle sweeping by micellar electrokinetic chromatography. J Chromatogr A 2023; 1706:464258. [PMID: 37544236 DOI: 10.1016/j.chroma.2023.464258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/09/2023] [Accepted: 07/28/2023] [Indexed: 08/08/2023]
Abstract
A novel online two-step pressure injection-assisted stacking preconcentration method, which involves sweeping and affinity micelles in micellar electrokinetic chromatography was developed to simultaneously measure various organic anions. The micellar solution was a mixed solution that contained 0.3 mM didodecyldimethylammonium bromide and 20 mM borax. After the micellar solution was injected for 60 s, the tested analytes prepared in 20 mM borax were introduced into the capillary for 150 s. The key experimental factors that influenced the separation and sensitivity were investigated and optimized, including the concentration and injection time of the micellar solution, the concentration of borax in the sample solution, the concentration of sodium dodecyl sulfate and borax in the background electrolyte (BGE), the content of acetonitrile in the BGE and the injection time of the sample solution. Compared with typical injection methods, this method achieved sensitivity enhancement factors ranging from 85 to 97 under optimized conditions. Good linearity for matrix-matched calibration was established for all analytes with R2 values of 0.9986-0.9996. The intraday (n = 6) and interday (n = 6) precisions of the method were less than 2.85% when expressed as relative standard deviations. When the method was applied to analyze rice and dried ginger samples, analyte recoveries ranged from 85.81% to 106.59%. Through sweeping and affinity micelles, stacking preconcentration method was successfully employed to analyze trace amounts of fenoprop and 2,4-dichlorophenoxyacetic acid in rice and dried ginger samples.
Collapse
Affiliation(s)
- Huang-Fei Jin
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Ying Shi
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Yan-Hua Jiao
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Ting-Hong Fei
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jun Cao
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Li-Hong Ye
- Department of Traditional Chinese Medicine, Hangzhou Red Cross Hospital, Hangzhou 310003, PR China.
| |
Collapse
|
2
|
Krebs F, Zagst H, Stein M, Ratih R, Minkner R, Olabi M, Hartung S, Scheller C, Lapizco-Encinas BH, Sänger-van de Griend C, García CD, Wätzig H. Strategies for capillary electrophoresis: Method development and validation for pharmaceutical and biological applications-Updated and completely revised edition. Electrophoresis 2023; 44:1279-1341. [PMID: 37537327 DOI: 10.1002/elps.202300158] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023]
Abstract
This review is in support of the development of selective, precise, fast, and validated capillary electrophoresis (CE) methods. It follows up a similar article from 1998, Wätzig H, Degenhardt M, Kunkel A. "Strategies for capillary electrophoresis: method development and validation for pharmaceutical and biological applications," pointing out which fundamentals are still valid and at the same time showing the enormous achievements in the last 25 years. The structures of both reviews are widely similar, in order to facilitate their simultaneous use. Focusing on pharmaceutical and biological applications, the successful use of CE is now demonstrated by more than 600 carefully selected references. Many of those are recent reviews; therefore, a significant overview about the field is provided. There are extra sections about sample pretreatment related to CE and microchip CE, and a completely revised section about method development for protein analytes and biomolecules in general. The general strategies for method development are summed up with regard to selectivity, efficiency, precision, analysis time, limit of detection, sample pretreatment requirements, and validation.
Collapse
Affiliation(s)
- Finja Krebs
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Holger Zagst
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Matthias Stein
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Ratih Ratih
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Surabaya, Surabaya, East Java, Indonesia
| | - Robert Minkner
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Mais Olabi
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Sophie Hartung
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Christin Scheller
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Blanca H Lapizco-Encinas
- Department of Biomedical Engineering, Kate Gleason College of Engineering, Rochester Institute of Technology, Rochester, New York, USA
| | - Cari Sänger-van de Griend
- Kantisto BV, Baarn, The Netherlands
- Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala Universitet, Uppsala, Sweden
| | - Carlos D García
- Department of Chemistry, Clemson University, Clemson, South Carolina, USA
| | - Hermann Wätzig
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| |
Collapse
|
3
|
Nguyen NTT, Nguyen TTT, Nguyen DTC, Tran TV. Green synthesis of ZnFe 2O 4 nanoparticles using plant extracts and their applications: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162212. [PMID: 36796693 DOI: 10.1016/j.scitotenv.2023.162212] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/18/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Magnetic nanoparticles, particularly ZnFe2O4 are of enormous significance in biomedical and water treatment fields. However, chemical synthesis of ZnFe2O4 nanoparticles endures some major limitations, e.g., the use of toxic substances, unsafe procedure, and cost-ineffectiveness. Biological methods are more preferable approaches since they take advantages of biomolecules available in plant extract serving as reducing, capping, and stabilizing agents. Herein, we review plant-mediated synthesis and properties of ZnFe2O4 nanoparticles for multiple applications in catalytic and adsorption performance, biomedical, catalyst, and others. Effect of several factors such as Zn2+/Fe3+/extract ratio, and calcination temperature on morphology, surface chemistry, particle size, magnetism and bandgap energy of obtained ZnFe2O4 nanoparticles was discussed. The photocatalytic activity and adsorption for removal of toxic dyes, antibiotics, and pesticides were also evaluated. Main results of antibacterial, antifungal and anticancer activities for biomedical applications were summarized and compared. Several limitations and prospects of green ZnFe2O4 as an alternative to traditional luminescent powders have been proposed.
Collapse
Affiliation(s)
- Ngoan Thi Thao Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam
| | - Thuy Thi Thanh Nguyen
- Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Viet Nam
| | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam.
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam.
| |
Collapse
|
4
|
Xia J, Qian M, Zhou J, Wang Z, Li H, Zhou L, Pu Q. Integrated strategy of derivatization and separation for sensitive analysis of salvianolic acids using capillary electrophoresis with laser-induced fluorescence detection. J Chromatogr A 2022; 1685:463607. [DOI: 10.1016/j.chroma.2022.463607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 11/07/2022]
|