1
|
Thomson C, Sani MA, White KF, Abrahams BF, White JM. Host-Guest Interactions Facilitated by Chalcogen Bonding within Selenadiazole Functionalised Porphyrin Nanotubes. Chemistry 2025; 31:e202403248. [PMID: 39513595 DOI: 10.1002/chem.202403248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
The structural rigidity of tetrakis(4-pyridyl)porphyrin (TPyP) has been utilised to prepare a robust novel porous coordination polymer of composition Cd2(TPyP)(sez)2 (TPyP=5,10,15,20-tetra(4-pyridyl)porphyrin, sez=1,2,5-benzoselenadiazole-5-carboxylate). The coordination polymer may be described as a hexagonal porphyrin nanotube (PNT) and has the potential to bind guest molecules through chalcogen bonding. Single crystal X-ray diffraction (SCXRD) data indicate an internal pore diameter ~9 Å which represents ~35 % of the crystal volume. Immersion of the PNTs in solvents such as DMSO and CS2 result in the incorporation of these molecules within the nanotubes with chalcogen bonding between host and guest. The crystallographic guest-inclusion investigations are complemented by solid-state 77Se, 13C, 113Cd and 2H NMR studies which provide insights into dynamic behaviour. The porosity of the crystals was further explored using gas adsorption experiments, indicating the reversible uptake of CO2, CH4, H2 and N2. Structure-function relationships are clearly established from complementary crystallographic, NMR and adsorption investigations.
Collapse
Affiliation(s)
- Catriona Thomson
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
- The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Marc-Antoine Sani
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
- The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Keith F White
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Brendan F Abrahams
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Jonathan M White
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
- The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
2
|
Palanisamy P, Anandan M, Raman G, Nutalapati V. Antenna effect on Zn(II) porphyrin-based molecular ensembles for the detection of 2,4-dinitrophenol through energy and electron transfer process. Mikrochim Acta 2024; 192:1. [PMID: 39621083 DOI: 10.1007/s00604-024-06795-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/20/2024] [Indexed: 01/18/2025]
Abstract
Two modular systems were synthesized composed of triphenylamine (ZnTPAP) and pyrene (ZnPyP) covalently linked at meso position of the Zn(II) porphyrins. Both compounds behaved as energy transfer antenna and orthogonal units to enhance the electron donating ability of Zn(II) porphyrins. Detailed photophysical and aggregation studies reveal that an appreciable electronic interaction exists between peripheral units to the porphyrin π-system so that they behave like strong donor materials. The electrochemical and computational studies demonstrate delocalization of the frontier highest occupied molecular orbital (-5.08 eV) over the triphenylamine entities (ZnTPAP) in addition to the porphyrin macrocycle. Fluorescence experiments with ZnTPAP and ZnPyP in the presence of different nitro analytes at various concentrations show turn-off fluorescence behaviour and exhibit superior selectivity towards 2,4-dinitrophenol (DNP) with limit of detection (LOD) of ~ 2.3 and 9.2 ppm for ZnTPAP and ZnPyP. Photoinduced electron transfer process is involved in the static and dynamic fluorescence quenching process. A Stern-Volmer quenching association constant (Ksv) determination revealed that ZnTPAP is more sensitive than the ZnPyP. This is attributed to the strong donating behaviour of TPA units caused by intermolecular interaction through metal center and strong π-π interactions with nitro analytes. The present study provides new insights into the ability to tune the affinity and selectivity of porphyrin-based sensors utilising electronic factors associated with the central Zn(II) ion. Furthermore, a smartphone-interfaced portable fluorimetric method by recognising colour variations in RGB and the luminance (L) values facilitate sensitive and real-time sensing at low concentration levels will have a significant impact on development of a new class of chemosensors.
Collapse
Affiliation(s)
- Prasanth Palanisamy
- Functional Materials Laboratory, Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Tamil, Nadu- 603203, India
| | - Mageshwari Anandan
- Functional Materials Laboratory, Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Tamil, Nadu- 603203, India
| | - Gurusamy Raman
- Department of Life Sciences, Yeungnam University, Gyeongsanbuk-Do, Gyeongsan, 38541, Republic of Korea
| | - Venkatramaiah Nutalapati
- Functional Materials Laboratory, Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Tamil, Nadu- 603203, India.
| |
Collapse
|
3
|
Chaves I, Morais FMP, Vieira C, Bartolomeu M, Faustino MAF, Neves MGMS, Almeida A, Moura NMM. Can Porphyrin-Triphenylphosphonium Conjugates Enhance the Photosensitizer Performance Toward Bacterial Strains? ACS APPLIED BIO MATERIALS 2024; 7:5541-5552. [PMID: 39008849 PMCID: PMC11337165 DOI: 10.1021/acsabm.4c00659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024]
Abstract
Antimicrobial photodynamic treatment (aPDT) offers an alternative option for combating microbial pathogens, and in this way, addressing the challenges of growing antimicrobial resistance. In this promising and effective approach, cationic porphyrins and related macrocycles have emerged as leading photosensitizers (PS) for aPDT. In general, their preparation occurs via N-alkylation of nitrogen-based moieties with alkyl halides, which limits the ability to fine-tune the features of porphyrin-based PS. Herein, is reported that the conjugation of porphyrin macrocycles with triphenylphosphonium units created a series of effective cationic porphyrin-based PS for aPDT. The presence of positive charges at both the porphyrin macrocycle and triphenylphosphonium moieties significantly enhances the photodynamic activity of porphyrin-based PS against both Gram-positive and Gram-negative bacterial strains. Moreover, bacterial photoinactivation is achieved with a notable reduction in irradiation time, exceeding 50%, compared to 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin (TMPyP), used as the reference and known as good PS. The improved capability of the porphyrin macrocycle to generate singlet oxygen combined with the enhanced membrane interaction promoted by the presence of triphenylphosphonium moieties represents a promising approach to developing porphyrin-based PS with enhanced photosensitizing activity.
Collapse
Affiliation(s)
- Inês Chaves
- CESAM,
Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal
| | - Filipe M. P. Morais
- LAQV-REQUIMTE,
Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - Cátia Vieira
- CESAM,
Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal
| | - Maria Bartolomeu
- CESAM,
Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal
| | - M. Amparo F. Faustino
- LAQV-REQUIMTE,
Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | | | - Adelaide Almeida
- CESAM,
Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal
| | - Nuno M. M. Moura
- LAQV-REQUIMTE,
Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| |
Collapse
|
4
|
Kim JH, Wu S, Zdrazil L, Denisov N, Schmuki P. 2D Metal-Organic Framework Nanosheets based on Pd-TCPP as Photocatalysts for Highly Improved Hydrogen Evolution. Angew Chem Int Ed Engl 2024; 63:e202319255. [PMID: 38157446 DOI: 10.1002/anie.202319255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
In this report, a 2D MOF nanosheet derived Pd single-atom catalyst, denoted as Pd-MOF, was fabricated and examined for visible light photocatalytic hydrogen evolution reaction (HER). This Pd-MOF can provide a remarkable photocatalytic activity (a H2 production rate of 21.3 mmol/gh in the visible range), which outperforms recently reported Pt-MOFs (with a H2 production rate of 6.6 mmol/gh) with a similar noble metal loading. Notably, this high efficiency of Pd-MOF is not due to different chemical environment of the metal center, nor by changes in the spectral light absorption. The higher performance of the Pd-MOF in comparison to the analogue Pt-MOF is attributed to the longer lifetime of the photogenerated electron-hole pairs and higher charge transfer efficiency.
Collapse
Affiliation(s)
- Ji Hyeon Kim
- Department of Materials Science WW4-LKO, Friedrich-Alexander-University of Erlangen-Nuremberg, Martensstrasse 7, 91058, Erlangen, Germany
| | - Siming Wu
- Department of Materials Science WW4-LKO, Friedrich-Alexander-University of Erlangen-Nuremberg, Martensstrasse 7, 91058, Erlangen, Germany
| | - Lukas Zdrazil
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, 78371, Olomouc, Czech Republic
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Nikita Denisov
- Department of Materials Science WW4-LKO, Friedrich-Alexander-University of Erlangen-Nuremberg, Martensstrasse 7, 91058, Erlangen, Germany
| | - Patrik Schmuki
- Department of Materials Science WW4-LKO, Friedrich-Alexander-University of Erlangen-Nuremberg, Martensstrasse 7, 91058, Erlangen, Germany
- Regional Centre of Advanced Technologies and Materials, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| |
Collapse
|
5
|
Fan L, Wang C, Wang J, Zhang X, Li Q, Wang H, Zhao YH. Photolysis and photo-enhanced toxicity of three novel designed neonicotinoids: Impact of novel modifying groups. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132132. [PMID: 37494794 DOI: 10.1016/j.jhazmat.2023.132132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/29/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023]
Abstract
Three novel neonicotinoids (cycloxaprid, flupyradifurone and sulfoxaflor) were designed to reduce the biotoxicity for non-target organisms. These neonicotinoids were photolyzed under light radiation, but it was unclear for the photo-enhanced toxicity and influences of the novel modifying group of the three neonicotinoids. The photolysis and photo-enhanced toxicity experiments were performed for the three neonicotinoids, coupled with quantum chemistry calculation, the mechanisms of photolysis, photo-enhanced toxicity and the influences of novel modifying groups were analyzed. The results showed the photolysis pathways were enriched as compared with previous neonicotinoids due to the composition of modifying groups, singlet oxygen and hydroxyl participated the photolysis of cycloxaprid and flupyradifurone. All tested neonicotinoids exhibited photo-enhanced toxicity to Vibrio fischeri. Due to the difference of photolysis mechanism and toxicity to V. fischeri, the photo-enhanced toxicity curves showed diverse variation when histidine, tert-butanol or dissolved organic matters was in presence of the test solutions. The impact of novel modifying groups over photolysis and photo-enhanced toxicity were analyzed based on the comparison with previous neonicotinoids, theoretically predicted UV-Vis spectra and photo-physical/chemical property descriptors. The data showed the composition of novel modifying group increased the light absorption and photo-chemical activities for the three neonicotinoids.
Collapse
Affiliation(s)
- Lingyun Fan
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China; Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, School of Geographical Sciences, Harbin Normal University, Harbin 150025, China
| | - Chen Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Jia Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Xujia Zhang
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, School of Geographical Sciences, Harbin Normal University, Harbin 150025, China
| | - Qi Li
- School of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Hanxi Wang
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, School of Geographical Sciences, Harbin Normal University, Harbin 150025, China.
| | - Yuan Hui Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
6
|
Sharma VK, Assaraf YG, Gross Z. Hallmarks of anticancer and antimicrobial activities of corroles. Drug Resist Updat 2023; 67:100931. [PMID: 36739808 DOI: 10.1016/j.drup.2023.100931] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Corroles provide a remarkable opportunity for the development of cancer theranostic agents among other porphyrinoids. While most transition metal corrole complexes are only therapeutic, post-transition metallocorroles also find their applications in bioimaging. Moreover, corroles exhibit excellent photo-physicochemical properties, which can be harnessed for antitumor and antimicrobial interventions. Nevertheless, these intriguing, yet distinct properties of corroles, have not attained sufficient momentum in cancer research. The current review provides a comprehensive summary of various cancer-relevant features of corroles ranging from their structural and photophysical properties, chelation, protein/corrole interactions, to DNA intercalation. Another aspect of the paper deals with the studies of corroles conducted in vitro and in vivo with an emphasis on medical imaging (optical and magnetic resonance), photo/sonodynamic therapies, and photodynamic inactivation. Special attention is also given to a most recent finding that shows the development of pH-responsive phosphorus corrole as a potent antitumor drug for organelle selective antitumor cytotoxicity in preclinical studies. Another biomedical application of corroles is also highlighted, signifying the application of water-soluble and completely lipophilic corroles in the photodynamic inactivation of microorganisms. We strongly believe that future studies will offer a greater possibility of utilizing advanced corroles for selective tumor targeting and antitumor cytotoxicity. In the line with future developments, an ideal pipeline is envisioned on grounds of cancer targeting nanoparticle systems upon decoration with tumor-specific ligands. Hence, we envision that a bright future lies ahead of corrole anticancer research and therapeutics.
Collapse
Affiliation(s)
- Vinay K Sharma
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Zeev Gross
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
7
|
Myltykbayeva ZK, Seysembekova A, Moreno BM, Sánchez-Tovar R, Fernández-Domene RM, Vidal-Moya A, Solsona B, López Nieto JM. V-Porphyrins Encapsulated or Supported on Siliceous Materials: Synthesis, Characterization, and Photoelectrochemical Properties. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7473. [PMID: 36363063 PMCID: PMC9658604 DOI: 10.3390/ma15217473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Metalloporphyrin-containing mesoporous materials, named VTPP@SBA, were prepared via a simple anchoring of vanadyl porphyrin (5,10,15,20-Tetraphenyl-21H,23H-porphine vanadium(IV) oxide) through a SBA-15-type mesoporous material. For comparison, vanadyl porphyrin was also impregnated on SiO2 (VTPP/SiO2). The characterization results of catalysts by XRD, FTIR, DR-UV-vis, and EPR confirm the incorporation of vanadyl porphyrin within the mesoporous SBA-15. These catalysts have also been studied using electrochemical and photoelectrochemical methods. Impedance measurements confirmed that supporting the porphyrin in silica improved the electrical conductivity of samples. In fact, when using mesoporous silica, current densities associated with oxidation/reduction processes appreciably increased, implying an enhancement in charge transfer processes and, therefore, in electrochemical performance. All samples presented n-type semiconductivity and provided an interesting photoelectrocatalytic response upon illumination, especially silica-supported porphyrins. This is the first time that V-porphyrin-derived materials have been tested for photoelectrochemical applications, showing good potential for this use.
Collapse
Affiliation(s)
- Zhannur K. Myltykbayeva
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
- Al-Farabi Kazakh National University, 71 Al-Farabi Ave., Almaty 050040, Kazakhstan
| | - Anar Seysembekova
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
- Al-Farabi Kazakh National University, 71 Al-Farabi Ave., Almaty 050040, Kazakhstan
| | - Beatriz M. Moreno
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Rita Sánchez-Tovar
- Departament d’Enginyeria Química, Universitat de València, Av. de les Universitats, s/n, 46100 Burjassot, Spain
| | - Ramón M. Fernández-Domene
- Departament d’Enginyeria Química, Universitat de València, Av. de les Universitats, s/n, 46100 Burjassot, Spain
| | - Alejandro Vidal-Moya
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Benjamín Solsona
- Departament d’Enginyeria Química, Universitat de València, Av. de les Universitats, s/n, 46100 Burjassot, Spain
| | - José M. López Nieto
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| |
Collapse
|