1
|
Tramontina R, Ciancaglini I, Roman EKB, Chacón MG, Corrêa TLR, Dixon N, Bugg TDH, Squina FM. Sustainable biosynthetic pathways to value-added bioproducts from hydroxycinnamic acids. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12571-8. [PMID: 37212882 DOI: 10.1007/s00253-023-12571-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/23/2023]
Abstract
The biorefinery concept, in which biomass is utilized for the production of fuels and chemicals, emerges as an eco-friendly, cost-effective, and renewable alternative to petrochemical-based production. The hydroxycinnamic acid fraction of lignocellulosic biomass represents an untapped source of aromatic molecules that can be converted to numerous high-value products with industrial applications, including in the flavor and fragrance sector and pharmaceuticals. This review describes several biochemical pathways useful in the development of a biorefinery concept based on the biocatalytic conversion of the hydroxycinnamic acids ferulic, caffeic, and p-coumaric acid into high-value molecules. KEY POINTS: • The phenylpropanoids bioconversion pathways in the context of biorefineries • Description of pathways from hydroxycinnamic acids to high-value compounds • Metabolic engineering and synthetic biology advance hydroxycinnamic acid-based biorefineries.
Collapse
Affiliation(s)
- Robson Tramontina
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Programa de Processos Tecnológicos E Ambientais, Universidade de Sorocaba (UNISO), Sorocaba, São Paulo, Brazil
| | - Iara Ciancaglini
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Ellen K B Roman
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Micaela G Chacón
- Manchester Institute of Biotechnology (MIB), Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Thamy L R Corrêa
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Neil Dixon
- Manchester Institute of Biotechnology (MIB), Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Timothy D H Bugg
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Fabio Marcio Squina
- Programa de Processos Tecnológicos E Ambientais, Universidade de Sorocaba (UNISO), Sorocaba, São Paulo, Brazil.
| |
Collapse
|
2
|
Lan HN, Liu RY, Liu ZH, Li X, Li BZ, Yuan YJ. Biological valorization of lignin to flavonoids. Biotechnol Adv 2023; 64:108107. [PMID: 36758651 DOI: 10.1016/j.biotechadv.2023.108107] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/12/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
Lignin is the most affluent natural aromatic biopolymer on the earth, which is the promising renewable source for valuable products to promote the sustainability of biorefinery. Flavonoids are a class of plant polyphenolic secondary metabolites containing the benzene ring structure with various biological activities, which are largely applied in health food, pharmaceutical, and medical fields. Due to the aromatic similarity, microbial conversion of lignin derived aromatics to flavonoids could facilitate flavonoid biosynthesis and promote the lignin valorization. This review thereby prospects a novel valorization route of lignin to high-value natural products and demonstrates the potential advantages of microbial bioconversion of lignin to flavonoids. The biodegradation of lignin polymers is summarized to identify aromatic monomers as momentous precursors for flavonoid synthesis. The biosynthesis pathways of flavonoids in both plants and strains are introduced and compared. After that, the key branch points and important intermediates are clearly discussed in the biosynthesis pathways of flavonoids. Moreover, the most significant enzyme reactions including Claisen condensation, cyclization and hydroxylation are demonstrated in the biosynthesis pathways of flavonoids. Finally, current challenges and potential future strategies are also discussed for transforming lignin into various flavonoids. The holistic microbial conversion routes of lignin to flavonoids could make a sustainable production of flavonoids and improve the feasibility of lignin valorization.
Collapse
Affiliation(s)
- Hai-Na Lan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Ruo-Ying Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Zhi-Hua Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Xia Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China.
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
3
|
Valencia LE, Incha MR, Schmidt M, Pearson AN, Thompson MG, Roberts JB, Mehling M, Yin K, Sun N, Oka A, Shih PM, Blank LM, Gladden J, Keasling JD. Engineering Pseudomonas putida KT2440 for chain length tailored free fatty acid and oleochemical production. Commun Biol 2022; 5:1363. [PMID: 36509863 PMCID: PMC9744835 DOI: 10.1038/s42003-022-04336-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Despite advances in understanding the metabolism of Pseudomonas putida KT2440, a promising bacterial host for producing valuable chemicals from plant-derived feedstocks, a strain capable of producing free fatty acid-derived chemicals has not been developed. Guided by functional genomics, we engineered P. putida to produce medium- and long-chain free fatty acids (FFAs) to titers of up to 670 mg/L. Additionally, by taking advantage of the varying substrate preferences of paralogous native fatty acyl-CoA ligases, we employed a strategy to control FFA chain length that resulted in a P. putida strain specialized in producing medium-chain FFAs. Finally, we demonstrate the production of oleochemicals in these strains by synthesizing medium-chain fatty acid methyl esters, compounds useful as biodiesel blending agents, in various media including sorghum hydrolysate at titers greater than 300 mg/L. This work paves the road to produce high-value oleochemicals and biofuels from cheap feedstocks, such as plant biomass, using this host.
Collapse
Affiliation(s)
- Luis E. Valencia
- grid.451372.60000 0004 0407 8980Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA ,grid.47840.3f0000 0001 2181 7878Department of Bioengineering, University of California, Berkeley, CA 94720 USA
| | - Matthew R. Incha
- grid.451372.60000 0004 0407 8980Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA ,grid.47840.3f0000 0001 2181 7878Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| | - Matthias Schmidt
- grid.451372.60000 0004 0407 8980Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA ,grid.1957.a0000 0001 0728 696XInstitute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Germany
| | - Allison N. Pearson
- grid.451372.60000 0004 0407 8980Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA ,grid.47840.3f0000 0001 2181 7878Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| | - Mitchell G. Thompson
- grid.451372.60000 0004 0407 8980Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.184769.50000 0001 2231 4551Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Jacob B. Roberts
- grid.451372.60000 0004 0407 8980Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA ,grid.47840.3f0000 0001 2181 7878Department of Bioengineering, University of California, Berkeley, CA 94720 USA
| | - Marina Mehling
- grid.451372.60000 0004 0407 8980Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Kevin Yin
- grid.451372.60000 0004 0407 8980Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA ,grid.47840.3f0000 0001 2181 7878Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| | - Ning Sun
- grid.184769.50000 0001 2231 4551Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA ,Advanced Biofuels and Bioproducts Process Demonstration Unit, Emeryville, CA 94608 USA
| | - Asun Oka
- grid.184769.50000 0001 2231 4551Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA ,Advanced Biofuels and Bioproducts Process Demonstration Unit, Emeryville, CA 94608 USA
| | - Patrick M. Shih
- grid.451372.60000 0004 0407 8980Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA ,grid.47840.3f0000 0001 2181 7878Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA ,grid.184769.50000 0001 2231 4551Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Lars M. Blank
- grid.1957.a0000 0001 0728 696XInstitute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Germany
| | - John Gladden
- grid.451372.60000 0004 0407 8980Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.474523.30000000403888279Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA 94550 USA
| | - Jay D. Keasling
- grid.451372.60000 0004 0407 8980Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA ,grid.47840.3f0000 0001 2181 7878Department of Bioengineering, University of California, Berkeley, CA 94720 USA ,grid.47840.3f0000 0001 2181 7878Department of Chemical & Biomolecular Engineering, University of California, Berkeley, CA 94720 USA ,grid.5170.30000 0001 2181 8870Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark ,Center for Synthetic Biochemistry, Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technologies, Shenzhen, China
| |
Collapse
|
4
|
Liu ZH, Li BZ, Yuan JS, Yuan YJ. Creative biological lignin conversion routes toward lignin valorization. Trends Biotechnol 2022; 40:1550-1566. [PMID: 36270902 DOI: 10.1016/j.tibtech.2022.09.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/18/2022] [Accepted: 09/22/2022] [Indexed: 11/05/2022]
Abstract
Lignin, the largest renewable aromatic resource, is a promising alternative feedstock for the sustainable production of various chemicals, fuels, and materials. Despite this potential, lignin is characterized by heterogeneous and macromolecular structures that must be addressed. In this review, we present biological lignin conversion routes (BLCRs) that offer opportunities for overcoming these challenges, making lignin valorization feasible. Funneling heterogeneous aromatics via a 'biological funnel' offers a high-specificity bioconversion route for aromatic platform chemicals. The inherent aromaticity of lignin drives atom-economic functionalization routes toward aromatic natural product generation. By harnessing the ligninolytic capacities of specific microbial systems, powerful aromatic ring-opening routes can be developed to generate various value-added products. Thus, BLCRs hold the promise to make lignin valorization feasible and enable a lignocellulose-based bioeconomy.
Collapse
Affiliation(s)
- Zhi-Hua Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China.
| | - Joshua S Yuan
- Department of Energy, Environmental, and Chemical Engineering, The McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
5
|
Singh W, Santos SF, James P, Black GW, Huang M, Dubey KD. Single-Site Mutation Induces Water-Mediated Promiscuity in Lignin Breaking Cytochrome P450 GcoA. ACS OMEGA 2022; 7:21109-21118. [PMID: 35755387 PMCID: PMC9219061 DOI: 10.1021/acsomega.2c00524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/19/2022] [Indexed: 05/10/2023]
Abstract
Cytochrome P450GcoA is an enzyme that catalyzes the guaiacol unit of lignin during the lignin breakdown via an aryl-O-demethylation reaction. This reaction is intriguing and is of commercial importance for its potential applications in the production of biofuel and plastic from biomass feedstock. Recently, the F169A mutation in P450GcoA elicits a promiscuous activity for syringol while maintaining the native activity for guaiacol. Using comprehensive MD simulations and hybrid QM/MM calculations, we address, herein, the origin of promiscuity in P450GcoA and its relevance to the specific activity toward lignin-derived substrates. Our study shows a crucial role of an aromatic dyad of F169 and F395 by regulating the water access to the catalytic center. The F169A mutation opens a water aqueduct and hence increases the native activity for G-lignin. We show that syringol binds very tightly to the WT enzyme, which blocks the conformational rearrangement needed for the second step of O-demethylation. The F169A creates an extra room favoring the conformational rearrangement in the 3-methoxycatechol (3MC) and second dose of the dioxygen insertion. Therefore, using MD simulations and complemented by thorough QM/MM calculations, our study shows how a single-site mutation rearchitects active site engineering for promiscuous syringol activity.
Collapse
Affiliation(s)
- Warispreet Singh
- Department
of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1
8ST, United Kingdom
- Hub
for Biotechnology in Build Environment, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Sónia F.
G. Santos
- Department
of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1
8ST, United Kingdom
- Hub
for Biotechnology in Build Environment, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Paul James
- Department
of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1
8ST, United Kingdom
- Hub
for Biotechnology in Build Environment, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Gary W. Black
- Department
of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1
8ST, United Kingdom
- Hub
for Biotechnology in Build Environment, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Meilan Huang
- Department
of Chemistry & Chemical Engineering, Queen’s University, Belfast BT9 5AG, United Kingdom
| | - Kshatresh Dutta Dubey
- Department
of Chemistry and Centre for Informatics, Shiv Nadar University Delhi NCR, Gautam Buddha Nagar, U.P. 201314, India
| |
Collapse
|
6
|
Jiang W, Gao H, Sun J, Yang X, Jiang Y, Zhang W, Jiang M, Xin F. Current status, challenges and prospects for lignin valorization by using Rhodococcus sp. Biotechnol Adv 2022; 60:108004. [PMID: 35690272 DOI: 10.1016/j.biotechadv.2022.108004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 11/18/2022]
Abstract
Lignin represents the most abundant renewable aromatics in nature, which has complicated and heterogeneous structure. The rapid development of biotransformation technology has brought new opportunities to achieve the complete lignin valorization. Especially, Rhodococcus sp. possesses excellent capabilities to metabolize aromatic hydrocarbons degraded from lignin. Furthermore, it can convert these toxic compounds into high value added bioproducts, such as microbial lipids, polyhydroxyalkanoate and carotenoid et al. Accordingly, this review will discuss the potentials of Rhodococcus sp. as a cell factory for lignin biotransformation, including phenol tolerance, lignin depolymerization and lignin-derived aromatic hydrocarbon metabolism. The detailed metabolic mechanism for lignin biotransformation and bioproducts spectrum of Rhodococcus sp. will be comprehensively discussed. The available molecular tools for the conversion of lignin by Rhodococcus sp. will be reviewed, and the possible direction for lignin biotransformation in the future will also be proposed.
Collapse
Affiliation(s)
- Wankui Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Haiyan Gao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Jingxiang Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Xinyi Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China.
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
7
|
Zong QJ, Xu T, Liu H, Xu L, Zhang RK, Li BZ, Liu ZH, Yuan YJ. Microbial Valorization of Lignin to Bioplastic by Genome-Reduced Pseudomonas putida. Front Microbiol 2022; 13:923664. [PMID: 35707171 PMCID: PMC9189415 DOI: 10.3389/fmicb.2022.923664] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
As the most abundant natural aromatic resource, lignin valorization will contribute to a feasible biobased economy. Recently, biological lignin valorization has been advocated since ligninolytic microbes possess proficient funneling pathways of lignin to valuable products. In the present study, the potential to convert an actual lignin stream into polyhydroxyalkanoates (PHAs) had been evaluated using ligninolytic genome-reduced Pseudomonas putida. The results showed that the genome-reduced P. putida can grow well on an actual lignin stream to successfully yield a high PHA content and titer. The designed fermentation strategy almost eliminated the substrate effects of lignin on PHA accumulation. Employing a fed-batch strategy produced the comparable PHA contents and titers of 0.35 g/g dried cells and 1.4 g/L, respectively. The molecular mechanism analysis unveiled that P. putida consumed more small and hydrophilic lignin molecules to stimulate cell growth and PHA accumulation. Overall, the genome-reduced P. putida exhibited a superior capacity of lignin bioconversion and promote PHA accumulation, providing a promising route for sustainable lignin valorization.
Collapse
|
8
|
Zhu D, Qaria MA, Zhu B, Sun J, Yang B. Extremophiles and extremozymes in lignin bioprocessing. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2022; 157:112069. [DOI: 10.1016/j.rser.2021.112069] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
9
|
Zhou Y, Wu S, Bornscheuer UT. Recent advances in (chemo)enzymatic cascades for upgrading bio-based resources. Chem Commun (Camb) 2021; 57:10661-10674. [PMID: 34585190 DOI: 10.1039/d1cc04243b] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Developing (chemo)enzymatic cascades is very attractive for green synthesis, because they streamline multistep synthetic processes. In this Feature Article, we have summarized the recent advances in in vitro or whole-cell cascade reactions with a focus on the use of renewable bio-based resources as starting materials. This includes the synthesis of rare sugars (such as ketoses, L-ribulose, D-tagatose, myo-inositol or aminosugars) from readily available carbohydrate sources (cellulose, hemi-cellulose, starch), in vitro enzyme pathways to convert glucose to various biochemicals, cascades to convert 5-hydroxymethylfurfural and furfural obtained from lignin or xylose into novel precursors for polymer synthesis, the syntheses of phenolic compounds, cascade syntheses of aliphatic and highly reduced chemicals from plant oils and fatty acids, upgrading of glycerol or ethanol as well as cascades to transform natural L-amino acids into high-value (chiral) compounds. In several examples these processes have demonstrated their efficiency with respect to high space-time yields and low E-factors enabling mature green chemistry processes. Also, the strengths and limitations are discussed and an outlook is provided for improving the existing and developing new cascades.
Collapse
Affiliation(s)
- Yi Zhou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, P. R. China.
| | - Shuke Wu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, P. R. China. .,Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany.
| | - Uwe T Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany.
| |
Collapse
|
10
|
Bai X, Lin T, Liang N, Li BZ, Song H, Yuan YJ. Engineering synthetic microbial consortium for efficient conversion of lactate from glucose and xylose to generate electricity. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Jenkins MC, Lutz S. Encapsulin Nanocontainers as Versatile Scaffolds for the Development of Artificial Metabolons. ACS Synth Biol 2021; 10:857-869. [PMID: 33769792 DOI: 10.1021/acssynbio.0c00636] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The construction of non-native biosynthetic pathways represents a powerful, modular strategy for the production of valuable synthons and fine chemicals. Accordingly, artificially affixing enzymes that catalyze sequential reactions onto DNAs, proteins, or synthetic scaffolds has proven to be an effective route for generating de novo metabolons with novel functionalities and superior efficiency. In recent years, nanoscale microbial compartments known as encapsulins have emerged as a class of robust and highly engineerable proteinaceous containers with myriad applications in biotechnology and synthetic biology. Herein we report the concurrent surface functionalization and internal packaging of encapsulins from Thermotoga maritima to generate a catalytically competent two-enzyme metabolon. Encapsulins were engineered to covalently sequester up to 60 copies of a dihydrofolate reductase (DHFR) enzyme variant on their exterior surfaces using the SpyCatcher bioconjugation system, while their lumens were packaged with a tetrahydrofolate-dependent demethylase enzyme using short peptide affinity tags abstracted from the encapsulin's native protein cargo. Successful cross-talk between the two colocalized enzymes was confirmed as tetrahydrofolate produced by externally tethered DHFR was capable of driving the demethylation of a lignin-derived aryl substrate by packaged demethylases, albeit slowly. The subsequent introduction of a previously reported pore-enlarging deletion in the encapsulin shell was shown to enhance metabolite exchange such that the encapsulin-based metabolon functioned at speeds equivalent to those of the two enzymes freely dispersed in solution. Our work thus further emphasizes the engineerability of encapsulins and their potential use as flexile scaffolds for biocatalytic applications.
Collapse
Affiliation(s)
- Matthew C. Jenkins
- Department of Chemistry, Emory University, Atlanta, Georgia 30084, United States
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30306, United States
| | - Stefan Lutz
- Department of Chemistry, Emory University, Atlanta, Georgia 30084, United States
- Codexis Inc., 200 Penobscot Drive, Redwood City, California 94063, United States
| |
Collapse
|
12
|
|
13
|
Robinson CJ, Carbonell P, Jervis AJ, Yan C, Hollywood KA, Dunstan MS, Currin A, Swainston N, Spiess R, Taylor S, Mulherin P, Parker S, Rowe W, Matthews NE, Malone KJ, Le Feuvre R, Shapira P, Barran P, Turner NJ, Micklefield J, Breitling R, Takano E, Scrutton NS. Rapid prototyping of microbial production strains for the biomanufacture of potential materials monomers. Metab Eng 2020; 60:168-182. [PMID: 32335188 PMCID: PMC7225752 DOI: 10.1016/j.ymben.2020.04.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/09/2020] [Accepted: 04/16/2020] [Indexed: 12/11/2022]
Abstract
Bio-based production of industrial chemicals using synthetic biology can provide alternative green routes from renewable resources, allowing for cleaner production processes. To efficiently produce chemicals on-demand through microbial strain engineering, biomanufacturing foundries have developed automated pipelines that are largely compound agnostic in their time to delivery. Here we benchmark the capabilities of a biomanufacturing pipeline to enable rapid prototyping of microbial cell factories for the production of chemically diverse industrially relevant material building blocks. Over 85 days the pipeline was able to produce 17 potential material monomers and key intermediates by combining 160 genetic parts into 115 unique biosynthetic pathways. To explore the scale-up potential of our prototype production strains, we optimized the enantioselective production of mandelic acid and hydroxymandelic acid, achieving gram-scale production in fed-batch fermenters. The high success rate in the rapid design and prototyping of microbially-produced material building blocks reveals the potential role of biofoundries in leading the transition to sustainable materials production.
Collapse
Affiliation(s)
- Christopher J Robinson
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, UK.
| | - Pablo Carbonell
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, UK.
| | - Adrian J Jervis
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, UK.
| | - Cunyu Yan
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, UK.
| | - Katherine A Hollywood
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, UK.
| | - Mark S Dunstan
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, UK.
| | - Andrew Currin
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, UK.
| | - Neil Swainston
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, UK.
| | - Reynard Spiess
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, UK.
| | - Sandra Taylor
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, UK.
| | - Paul Mulherin
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, UK.
| | - Steven Parker
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, UK.
| | - William Rowe
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, UK.
| | - Nicholas E Matthews
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, UK; Manchester Institute of Innovation Research, Alliance Manchester Business School, The University of Manchester, Manchester, M15 6PB, UK.
| | - Kirk J Malone
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, UK.
| | - Rosalind Le Feuvre
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, UK.
| | - Philip Shapira
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, UK; Manchester Institute of Innovation Research, Alliance Manchester Business School, The University of Manchester, Manchester, M15 6PB, UK.
| | - Perdita Barran
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, UK; Department of Chemistry, The University of Manchester, Manchester, M13 9PL, UK.
| | - Nicholas J Turner
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, UK; Department of Chemistry, The University of Manchester, Manchester, M13 9PL, UK.
| | - Jason Micklefield
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, UK; Department of Chemistry, The University of Manchester, Manchester, M13 9PL, UK.
| | - Rainer Breitling
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, UK; Department of Chemistry, The University of Manchester, Manchester, M13 9PL, UK.
| | - Eriko Takano
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, UK; Department of Chemistry, The University of Manchester, Manchester, M13 9PL, UK.
| | - Nigel S Scrutton
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, UK; Department of Chemistry, The University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|