1
|
Oswalt LE, Eichman BF. NEIL3: A unique DNA glycosylase involved in interstrand DNA crosslink repair. DNA Repair (Amst) 2024; 139:103680. [PMID: 38663144 PMCID: PMC11162926 DOI: 10.1016/j.dnarep.2024.103680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/09/2024]
Abstract
Endonuclease VIII-like 3 (NEIL3) is a versatile DNA glycosylase that repairs a diverse array of chemical modifications to DNA. Unlike other glycosylases, NEIL3 has a preference for lesions within single-strand DNA and at single/double-strand DNA junctions. Beyond its canonical role in base excision repair of oxidized DNA, NEIL3 initiates replication-dependent interstrand DNA crosslink repair as an alternative to the Fanconi Anemia pathway. This review outlines our current understanding of NEIL3's biological functions, role in disease, and three-dimensional structure as it pertains to substrate specificity and catalytic mechanism.
Collapse
Affiliation(s)
- Leah E Oswalt
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Brandt F Eichman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
2
|
Kowalczyk P, Madej A, Szymczak M, Ostaszewski R. α-Amidoamids as New Replacements of Antibiotics-Research on the Chosen K12, R2-R4 E. coli Strains. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5169. [PMID: 33207799 PMCID: PMC7697494 DOI: 10.3390/ma13225169] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/03/2020] [Accepted: 11/12/2020] [Indexed: 01/04/2023]
Abstract
A preliminary study of α-amidoamids as new potential antimicrobial drugs was performed. Special emphasis was placed on selection of structure of α-amidoamids with the highest biological activity against different types of Gram-stained bacteria by lipopolysaccharide (LPS). Herein, Escherichia coli model strains K12 (without LPS in its structure) and R1-R4 (with different length LPS in its structure) were used. The presented work showed that the antibacterial activity of α-amidoamids depends on their structure and affects the LPS of bacteria. Moreover, the influence of various newly synthesized α-amidoamids on bacteria possessing smooth and rought LPS and oxidative damage of plasmid DNA caused by all newly obtained compounds was indicated. The presented studies clearly explain that α-amidoamids can be used as substitutes for antibiotics. The chemical and biological activity of the analysed α-amidoamids was associated with short alkyl chain and different isocyanides molecules in their structure such as: tetr-butyl isocyanide or 2,5-dimethoxybenzyl isocyanide. The observed results are especially important in the case of the increasing resistance of bacteria to various drugs and antibiotics.
Collapse
Affiliation(s)
- Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
| | - Arleta Madej
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland;
| | - Mateusz Szymczak
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland;
| | - Ryszard Ostaszewski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland;
| |
Collapse
|
3
|
Rieux C, Goffinont S, Coste F, Tber Z, Cros J, Roy V, Guérin M, Gaudon V, Bourg S, Biela A, Aucagne V, Agrofoglio L, Garnier N, Castaing B. Thiopurine Derivative-Induced Fpg/Nei DNA Glycosylase Inhibition: Structural, Dynamic and Functional Insights. Int J Mol Sci 2020; 21:ijms21062058. [PMID: 32192183 PMCID: PMC7139703 DOI: 10.3390/ijms21062058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 02/06/2023] Open
Abstract
DNA glycosylases are emerging as relevant pharmacological targets in inflammation, cancer and neurodegenerative diseases. Consequently, the search for inhibitors of these enzymes has become a very active research field. As a continuation of previous work that showed that 2-thioxanthine (2TX) is an irreversible inhibitor of zinc finger (ZnF)-containing Fpg/Nei DNA glycosylases, we designed and synthesized a mini-library of 2TX-derivatives (TXn) and evaluated their ability to inhibit Fpg/Nei enzymes. Among forty compounds, four TXn were better inhibitors than 2TX for Fpg. Unexpectedly, but very interestingly, two dithiolated derivatives more selectively and efficiently inhibit the zincless finger (ZnLF)-containing enzymes (human and mimivirus Neil1 DNA glycosylases hNeil1 and MvNei1, respectively). By combining chemistry, biochemistry, mass spectrometry, blind and flexible docking and X-ray structure analysis, we localized new TXn binding sites on Fpg/Nei enzymes. This endeavor allowed us to decipher at the atomic level the mode of action for the best TXn inhibitors on the ZnF-containing enzymes. We discovered an original inhibition mechanism for the ZnLF-containing Fpg/Nei DNA glycosylases by disulfide cyclic trimeric forms of dithiopurines. This work paves the way for the design and synthesis of a new structural class of inhibitors for selective pharmacological targeting of hNeil1 in cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Charlotte Rieux
- Centre de Biophysique Moléculaire, UPR4301 CNRS, rue Charles Sadron, CEDEX 2, F-45071 Orléans, France; (C.R.); (S.G.); (F.C.); (J.C.); (M.G.); (V.G.); (A.B.); (V.A.)
| | - Stéphane Goffinont
- Centre de Biophysique Moléculaire, UPR4301 CNRS, rue Charles Sadron, CEDEX 2, F-45071 Orléans, France; (C.R.); (S.G.); (F.C.); (J.C.); (M.G.); (V.G.); (A.B.); (V.A.)
| | - Franck Coste
- Centre de Biophysique Moléculaire, UPR4301 CNRS, rue Charles Sadron, CEDEX 2, F-45071 Orléans, France; (C.R.); (S.G.); (F.C.); (J.C.); (M.G.); (V.G.); (A.B.); (V.A.)
| | - Zahira Tber
- Institut de Chimie Organique et Analytique, UMR7311 CNRS-Orleans University, Université d’Orléans, Pôle de Chimie, rue de Chartres, F-45100 Orléans, France; (Z.T.); (S.B.); (L.A.)
| | - Julien Cros
- Centre de Biophysique Moléculaire, UPR4301 CNRS, rue Charles Sadron, CEDEX 2, F-45071 Orléans, France; (C.R.); (S.G.); (F.C.); (J.C.); (M.G.); (V.G.); (A.B.); (V.A.)
| | - Vincent Roy
- Institut de Chimie Organique et Analytique, UMR7311 CNRS-Orleans University, Université d’Orléans, Pôle de Chimie, rue de Chartres, F-45100 Orléans, France; (Z.T.); (S.B.); (L.A.)
- Université d’Orléans, UFR Sciences et Techniques, rue de Chartres, 45100 Orléans, France
- Correspondence: (V.R.); (N.G.); (B.C.)
| | - Martine Guérin
- Centre de Biophysique Moléculaire, UPR4301 CNRS, rue Charles Sadron, CEDEX 2, F-45071 Orléans, France; (C.R.); (S.G.); (F.C.); (J.C.); (M.G.); (V.G.); (A.B.); (V.A.)
- Université d’Orléans, UFR Sciences et Techniques, rue de Chartres, 45100 Orléans, France
| | - Virginie Gaudon
- Centre de Biophysique Moléculaire, UPR4301 CNRS, rue Charles Sadron, CEDEX 2, F-45071 Orléans, France; (C.R.); (S.G.); (F.C.); (J.C.); (M.G.); (V.G.); (A.B.); (V.A.)
| | - Stéphane Bourg
- Institut de Chimie Organique et Analytique, UMR7311 CNRS-Orleans University, Université d’Orléans, Pôle de Chimie, rue de Chartres, F-45100 Orléans, France; (Z.T.); (S.B.); (L.A.)
| | - Artur Biela
- Centre de Biophysique Moléculaire, UPR4301 CNRS, rue Charles Sadron, CEDEX 2, F-45071 Orléans, France; (C.R.); (S.G.); (F.C.); (J.C.); (M.G.); (V.G.); (A.B.); (V.A.)
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire, UPR4301 CNRS, rue Charles Sadron, CEDEX 2, F-45071 Orléans, France; (C.R.); (S.G.); (F.C.); (J.C.); (M.G.); (V.G.); (A.B.); (V.A.)
| | - Luigi Agrofoglio
- Institut de Chimie Organique et Analytique, UMR7311 CNRS-Orleans University, Université d’Orléans, Pôle de Chimie, rue de Chartres, F-45100 Orléans, France; (Z.T.); (S.B.); (L.A.)
- Université d’Orléans, UFR Sciences et Techniques, rue de Chartres, 45100 Orléans, France
| | - Norbert Garnier
- Centre de Biophysique Moléculaire, UPR4301 CNRS, rue Charles Sadron, CEDEX 2, F-45071 Orléans, France; (C.R.); (S.G.); (F.C.); (J.C.); (M.G.); (V.G.); (A.B.); (V.A.)
- Université d’Orléans, UFR Sciences et Techniques, rue de Chartres, 45100 Orléans, France
- Correspondence: (V.R.); (N.G.); (B.C.)
| | - Bertrand Castaing
- Centre de Biophysique Moléculaire, UPR4301 CNRS, rue Charles Sadron, CEDEX 2, F-45071 Orléans, France; (C.R.); (S.G.); (F.C.); (J.C.); (M.G.); (V.G.); (A.B.); (V.A.)
- Correspondence: (V.R.); (N.G.); (B.C.)
| |
Collapse
|
4
|
Yuen PK, Green SA, Ashby J, Lay KT, Santra A, Chen X, Horvath MP, David SS. Targeting Base Excision Repair Glycosylases with DNA Containing Transition State Mimics Prepared via Click Chemistry. ACS Chem Biol 2019; 14:27-36. [PMID: 30500207 DOI: 10.1021/acschembio.8b00771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
DNA glycosylases of the base excision repair (BER) pathway are front-line defenders in removing compromising modifications of the DNA nucleobases. Aberrantly modified nucleobases mediate genomic mutations and inhibit DNA replication leading to adverse health consequences such as cancer, neurological diseases, and aging. In an effort to develop high-affinity transition state (TS) analogues as chemical biology probes for DNA glycosylases, oligonucleotides containing a propargyl-modified pyrrolidine TS mimic nucleotide were synthesized. A small library of TS mimic-containing oligonucleotides was generated using a structurally diverse set of five azides via copper(I)-catalyzed azide-alkyne cycloaddition "click" chemistry. The relative affinity ( Kd) was evaluated for BER glycosylases Escherichia coli MutY, bacterial formamidopyrimidine glycosylase (Fpg), and human OG glycosylase 1 (hOGG1) with the library of TS mimic DNA duplexes. All of the BER glycosylases were found to exhibit extremely high affinities (approximately picomolar Kd values) for the TS mimics. However, binding preferences, distinct for each glycosylase, for the TS mimic library members were observed, suggesting different modes of binding and transition state stabilization among the three glycosylases. Fpg bound all of the TS mimics with exceptionally high affinities, while the MutY binding affinity correlated inversely with the size of the appended moiety. Of note, we identified one member of the small TS mimic library that exhibited a particularly high affinity for hOGG1. These results strongly support the use of the propargyl-TS mimic oligonucleotides and elaboration via click chemistry in screening and identification of high-affinity ligands for BER glycosylases of interest.
Collapse
Affiliation(s)
- Philip K. Yuen
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Sydnee A. Green
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Jonathan Ashby
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Kori T. Lay
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Abhishek Santra
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Xi Chen
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Martin P. Horvath
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, United States
| | - Sheila S. David
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
5
|
Krokeide SZ, Laerdahl JK, Salah M, Luna L, Cederkvist FH, Fleming AM, Burrows CJ, Dalhus B, Bjørås M. Human NEIL3 is mainly a monofunctional DNA glycosylase removing spiroimindiohydantoin and guanidinohydantoin. DNA Repair (Amst) 2013; 12:1159-64. [PMID: 23755964 DOI: 10.1016/j.dnarep.2013.04.026] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 04/23/2013] [Accepted: 04/25/2013] [Indexed: 10/26/2022]
Abstract
Base excision repair is the major pathway for removal of oxidative DNA base damage. This pathway is initiated by DNA glycosylases, which recognize and excise damaged bases from DNA. In this work, we have purified the glycosylase domain (GD) of human DNA glycosylase NEIL3. The substrate specificity has been characterized and we have elucidated the catalytic mechanisms. GD NEIL3 excised the hydantoin lesions spiroiminodihydantoin (Sp) and guanidinohydantoin (Gh) in single-stranded (ss) and double-stranded (ds) DNA efficiently. NEIL3 also removed 5-hydroxy-2'-deoxycytidine (5OHC) and 5-hydroxy-2'-deoxyuridine (5OHU) in ssDNA, but less efficiently than hydantoins. Unlike NEIL1 and NEIL2, which possess a β,δ-elimination activity, NEIL3 mainly incised damaged DNA by β-elimination. Further, the base excision and strand incision activities of NEIL3 exhibited a non-concerted action, indicating that NEIL3 mainly operate as a monofunctional DNA glycosylase. The site-specific NEIL3 mutant V2P, however, showed a concerted action, suggesting that the N-terminal amino group in Val2 is critical for the monofunctional modus. Finally, we demonstrated that residue Lys81 is essential for catalysis.
Collapse
Affiliation(s)
- Silje Z Krokeide
- Department of Microbiology, University of Oslo, Oslo University Hospital, Rikshospitalet, PO Box 4950, Nydalen, NO-0424 Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Vik ES, Alseth I, Forsbring M, Helle IH, Morland I, Luna L, Bjørås M, Dalhus B. Biochemical mapping of human NEIL1 DNA glycosylase and AP lyase activities. DNA Repair (Amst) 2012; 11:766-73. [PMID: 22858590 DOI: 10.1016/j.dnarep.2012.07.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 07/02/2012] [Accepted: 07/11/2012] [Indexed: 11/29/2022]
Abstract
Base excision repair of oxidized DNA in human cells is initiated by several DNA glycosylases with overlapping substrate specificity. The human endonuclease VIII homologue NEIL1 removes a broad spectrum of oxidized pyrimidine and purine lesions. In this study of NEIL1 we have identified several key residues, located in three loops lining the DNA binding cavity, important for lesion recognition and DNA glycosylase/AP lyase activity for oxidized bases in double-stranded and single-stranded DNA. Single-turnover kinetics of NEIL1 revealed that removal of 5-hydroxycytosine (5-OHC) and 5-hydroxyuracil (5-OHU) is ∼25 and ∼10-fold faster in duplex DNA compared to single-stranded DNA, respectively, and also faster than removal of dihydrothymine (DHT) and dihydrouracil (DHU), both in double-stranded and single-stranded DNA. NEIL1 excised 8-oxoguanine (8-oxoG) only from double-stranded DNA and analysis of site-specific mutants revealed that Met81, Arg119 and Phe120 are essential for removal of 8-oxoG. Further, several arginine and histidine residues located in the loop connecting the two β-strands forming the zincless finger motif and projecting into the DNA major groove, were shown to be imperative for lesion processing for both single- and double-stranded substrates. Trapping experiments of active site mutants revealed that the N-terminal Pro2 and Lys54 can alternate to form a Schiff-base complex between the protein and DNA. Hence, both Pro2 and Lys54 are involved in the AP lyase activity. While wildtype NEIL1 activity almost exclusively generated a δ-elimination product when processing single-stranded substrates, substitution of Lys54 changed this in favor of a β-elimination product. These results suggest that Pro2 and Lys54 are both essential for the concerted action of the β,δ-elimination in NEIL1.
Collapse
Affiliation(s)
- Erik Sebastian Vik
- Department of Medical Biochemistry, Clinic for Diagnostics and Intervention, Oslo University Hospital, Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Barrantes-Reynolds R, Wallace SS, Bond JP. Using shifts in amino acid frequency and substitution rate to identify latent structural characters in base-excision repair enzymes. PLoS One 2011; 6:e25246. [PMID: 21998646 PMCID: PMC3188539 DOI: 10.1371/journal.pone.0025246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Accepted: 08/30/2011] [Indexed: 12/30/2022] Open
Abstract
Protein evolution includes the birth and death of structural motifs. For example, a zinc finger or a salt bridge may be present in some, but not all, members of a protein family. We propose that such transitions are manifest in sequence phylogenies as concerted shifts in substitution rates of amino acids that are neighbors in a representative structure. First, we identified rate shifts in a quartet from the Fpg/Nei family of base excision repair enzymes using a method developed by Xun Gu and coworkers. We found the shifts to be spatially correlated, more precisely, associated with a flexible loop involved in bacterial Fpg substrate specificity. Consistent with our result, sequences and structures provide convincing evidence that this loop plays a very different role in other family members. Second, then, we developed a method for identifying latent protein structural characters (LSC) given a set of homologous sequences based on Gu's method and proximity in a high-resolution structure. Third, we identified LSC and assigned states of LSC to clades within the Fpg/Nei family of base excision repair enzymes. We describe seven LSC; an accompanying Proteopedia page (http://proteopedia.org/wiki/index.php/Fpg_Nei_Protein_Family) describes these in greater detail and facilitates 3D viewing. The LSC we found provided a surprisingly complete picture of the interaction of the protein with the DNA capturing familiar examples, such as a Zn finger, as well as more subtle interactions. Their preponderance is consistent with an important role as phylogenetic characters. Phylogenetic inference based on LSC provided convincing evidence of independent losses of Zn fingers. Structural motifs may serve as important phylogenetic characters and modeling transitions involving structural motifs may provide a much deeper understanding of protein evolution.
Collapse
Affiliation(s)
- Ramiro Barrantes-Reynolds
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| | - Susan S. Wallace
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| | - Jeffrey P. Bond
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
- * E-mail:
| |
Collapse
|
8
|
Nevinsky GA. Structural, thermodynamic, and kinetic basis for the activities of some nucleic acid repair enzymes. J Mol Recognit 2011; 24:656-77. [PMID: 21584877 DOI: 10.1002/jmr.1096] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
X-ray structural analysis provides no quantitative estimate of the relative contribution of specific and nonspecific or strong and weak interactions to the total affinity of enzymes for nucleic acids. We have shown that the interaction between enzymes and long nucleic acids at the molecular level can be successfully analyzed by the method of stepwise increase in ligand complexity (SILC). In the present review we summarize our studies of human uracil DNA glycosylase and apurinic/apyrimidinic endonuclease, E. coli 8-oxoguanine DNA glycosylase and RecA protein using the SILC approach. The relative contribution of structural (X-ray analysis data), thermodynamic, and catalytic factors to the discrimination of specific and nonspecific DNA by these enzymes at the stages of complex formation, the following changes in DNA and enzyme conformations and especially the catalysis of the reactions is discussed.
Collapse
Affiliation(s)
- Georgy A Nevinsky
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Novosibirsk 63009, Russia.
| |
Collapse
|
9
|
Shim EJ, Przybylski JL, Wetmore SD. Effects of nucleophile, oxidative damage, and nucleobase orientation on the glycosidic bond cleavage in deoxyguanosine. J Phys Chem B 2010; 114:2319-26. [PMID: 20095611 DOI: 10.1021/jp9113656] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Deglycosylation of nucleotides occurs during many essential biological processes, including DNA repair, and is initiated by a variety of nucleophiles. In the present work, density functional theory (B3LYP) was used to investigate the thermodynamics and kinetics of the glycosidic bond cleavage reaction in the model nucleoside forms of guanine and its major oxidation product, 8-oxoguanine. Base excision facilitated by four different nucleophiles (hydroxyl anion (fully activated water), formate-water complex (partially activated water), lysine, and proline) was considered, which spans nucleophiles involved in a collection of spontaneous and enzyme-catalyzed processes. Because some enzymes that catalyze deglycosylation can accommodate more than one orientation of the base with respect to the sugar moiety, the effects of the (anti/syn) base orientation on the barrier height were also considered. We find that the nucleophile has a very large effect on the overall (gas-phase) reaction energetics. Although this effect decreases in different (polar) environments, the nucleophile has the greatest influence on the overall reaction as compared to whether the base is damaged or to the base orientation. Furthermore, the effects are significant in environments that most closely resemble (nonpolar) enzymatic active sites. Our results provide a greater understanding of the relative effects of the nucleophile, damage to the nucleobase, and the nucleobase orientation with respect to the sugar moiety on the deglycosylation pathway, which provide qualitative explanations for relative base excision rates observed in some biological systems.
Collapse
Affiliation(s)
- Eun Jung Shim
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada
| | | | | |
Collapse
|
10
|
Baker DJ, Wuenschell G, Xia L, Termini J, Bates SE, Riggs AD, O'Connor TR. Nucleotide Excision Repair Eliminates Unique DNA-Protein Cross-links from Mammalian Cells. J Biol Chem 2007; 282:22592-604. [PMID: 17507378 DOI: 10.1074/jbc.m702856200] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA-protein cross-links (DPCs) present a formidable obstacle to cellular processes because they are "superbulky" compared with the majority of chemical adducts. Elimination of DPCs is critical for cell survival because their persistence can lead to cell death or halt cell cycle progression by impeding DNA and RNA synthesis. To study DPC repair, we have used DNA methyltransferases to generate unique DPC adducts in oligodeoxyribonucleotides or plasmids to monitor both in vitro excision and in vivo repair. We show that HhaI DNA methyltransferase covalently bound to an oligodeoxyribonucleotide is not efficiently excised by using mammalian cell-free extracts, but protease digestion of the full-length HhaI DNA methyltransferase-DPC yields a substrate that is efficiently removed by a process similar to nucleotide excision repair (NER). To examine the repair of that unique DPC, we have developed two plasmid-based in vivo assays for DPC repair. One assay shows that in nontranscribed regions, DPC repair is greater than 60% in 6 h. The other assay based on host cell reactivation using a green fluorescent protein demonstrates that DPCs in transcribed genes are also repaired. Using Xpg-deficient cells (NER-defective) with the in vivo host cell reactivation assay and a unique DPC indicates that NER has a role in the repair of this adduct. We also demonstrate a role for the 26 S proteasome in DPC repair. These data are consistent with a model for repair in which the polypeptide chain of a DPC is first reduced by proteolysis prior to NER.
Collapse
Affiliation(s)
- David J Baker
- Biology Division, Beckman Research Institute, City of Hope National Medical Center, Duarte, California 91010, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Blaisdell JO, Wallace SS. Rapid determination of the active fraction of DNA repair glycosylases: a novel fluorescence assay for trapped intermediates. Nucleic Acids Res 2007; 35:1601-11. [PMID: 17289752 PMCID: PMC1865064 DOI: 10.1093/nar/gkm021] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Current methods to measure the fraction of active glycosylase molecules in a given enzyme preparation are slow and cumbersome. Here we report a novel assay for rapidly determining the active fraction based on molecular accessibility of a fluorescent DNA minor groove binder, 4′,6-diamidino-2-phenylindole (DAPI). Several 5,6-dihydrouracil-containing (DHU) DNA substrates were designed with sequence-dependent DAPI-binding sites to which base excision repair glycosylases were covalently trapped by reduction. Trapped complexes impeded the association of DAPI in a manner dependent on the enzyme used and the location of the DAPI-binding site in relation to the lesion. Of the sequences tested, one was shown to give an accurate measure of the fraction of active molecules for each enzyme tested from both the Fpg/Nei family and HhH-GPD Nth superfamily of DNA glycosylases. The validity of the approach was demonstrated by direct comparison with current gel-based methods. Additionally, the results are supported by in silico modeling based on available crystal structures.
Collapse
Affiliation(s)
| | - Susan S. Wallace
- *To whom correspondence should be addressed. +1 802 656 2164+1 802 656 8749
| |
Collapse
|
12
|
Rogacheva M, Ishchenko A, Saparbaev M, Kuznetsova S, Ogryzko V. High resolution characterization of formamidopyrimidine-DNA glycosylase interaction with its substrate by chemical cross-linking and mass spectrometry using substrate analogs. J Biol Chem 2006; 281:32353-65. [PMID: 16928690 DOI: 10.1074/jbc.m606217200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg) and human 8-oxoguanine-DNA glycosylase (hOgg1) initiate the base excision repair pathway for 7,8-dihydro-8-oxoguanine (8-oxoG) residues present in DNA. Recent structural and biochemical studies of Fpg-DNA and hOgg1-DNA complexes point to the existence of extensive interactions between phosphate groups and amino acids. However, the role of these contacts and their physiological relevance remains unclear. In the present study, we combined chemical cross-linking and electrospray ionization mass spectrometry (ESI/MS/MS) approaches to identify interacting residues in the Fpg-DNA and hOgg1-DNA complexes. The active centers of Fpg and hOgg1 were cross-linked with a series of reactive oligonucleotide duplexes containing both a single 8-oxoG residue and an O-ethyl-substituted pyrophosphate internucleotide (SPI) group at different positions in duplex DNA. The cross-linking efficiency reached 50% for Fpg and 30% for hOgg1. We have identified seven phosphate groups on both strands of the DNA duplex specifically interacting with nucleophilic amino acids in Fpg, and eight in hOgg1. MS/MS analysis of the purified proteolytic fragments suggests that lysine 56 of Fpg and lysine 249 of hOgg1 cross-link to the phosphate located 3' to the 8-oxoG residue. Site-specific mutagenesis analysis of Fpg binding to DNA substrate confirms the conclusions of our approach. Our results are consistent with crystallographic data on the Fpg-DNA complex and provide new data on the hOgg1-DNA interaction. The approach developed in this work provides a useful tool to study pro- and eukaryotic homologues of Fpg as well as other repair enzymes.
Collapse
Affiliation(s)
- Maria Rogacheva
- Laboratory of Nucleic Acids Chemistry, Department of Chemistry, Moscow State University, Moscow 119992, Russia
| | | | | | | | | |
Collapse
|
13
|
Dou H, Mitra S, Hazra TK. Repair of oxidized bases in DNA bubble structures by human DNA glycosylases NEIL1 and NEIL2. J Biol Chem 2003; 278:49679-84. [PMID: 14522990 DOI: 10.1074/jbc.m308658200] [Citation(s) in RCA: 278] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Repair of oxidatively damaged bases in the genome via the base excision repair pathway is initiated with excision of these lesions by DNA glycosylases with broad substrate range. The newly discovered human DNA glycosylases, NEIL1 and NEIL2, are distinct in structural features and reaction mechanism from the previously characterized NTH1 and OGG1 but act on many of the same substrates. However, NEIL2 shows a unique preference for excising lesions from a DNA bubble, whereas NTH1 and OGG1 are only active with duplex DNA. NEIL1 also excises efficiently 5-hydroxyuracil, an oxidation product of cytosine, from the bubble and single-stranded DNA but does not have strong activity toward 8-oxoguanine in the bubble. The dichotomy in the activity of NEILs versus NTH1/OGG1 for bubble versus duplex DNA substrates is consistent with higher affinity of the NEILs for the bubble structures of both damaged and undamaged DNA relative to duplex structure. These observations suggest that the NEILs are functionally distinct from OGG1/NTH1 in vivo. OGG1/NTH1-independent repair of oxidized bases in the transcribed sequences supports the possibility that NEILs are preferentially involved in repair of lesions in DNA bubbles generated during transcription and/or replication.
Collapse
Affiliation(s)
- Hong Dou
- Sealy Center for Molecular Science and Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | |
Collapse
|
14
|
Abstract
A number of intrinsic and extrinsic mutagens induce structural damage in cellular DNA. These DNA damages are cytotoxic, miscoding or both and are believed to be at the origin of cell lethality, tissue degeneration, ageing and cancer. In order to counteract immediately the deleterious effects of such lesions, leading to genomic instability, cells have evolved a number of DNA repair mechanisms including the direct reversal of the lesion, sanitation of the dNTPs pools, mismatch repair and several DNA excision pathways including the base excision repair (BER) nucleotide excision repair (NER) and the nucleotide incision repair (NIR). These repair pathways are universally present in living cells and extremely well conserved. This review is focused on the repair of lesions induced by free radicals and ionising radiation. The BER pathway removes most of these DNA lesions, although recently it was shown that other pathways would also be efficient in the removal of oxidised bases. In the BER pathway the process is initiated by a DNA glycosylase excising the modified and mismatched base by hydrolysis of the glycosidic bond between the base and the deoxyribose of the DNA, generating a free base and an abasic site (AP-site) which in turn is repaired since it is cytotoxic and mutagenic.
Collapse
Affiliation(s)
- Laurent Gros
- Groupe Réparation de l'ADN, UMR 8532 CNRS, LBPA-ENS Cachan, Institut Gustave Roussy, 39, rue Camille Desmoulins, 94805 Villejuif Cedex, France
| | | | | |
Collapse
|