1
|
Escobar PA, Sobol Z, Miller RR, Ferry-Martin S, Stermer A, Jacob B, Muniappa N, Sanchez RI, Blanchard KT, Galijatovic-Idrizbegovic A, Amin RP, Troth SP. Comprehensive genotoxicity and carcinogenicity assessment of molnupiravir. Toxicol Sci 2024; 202:278-290. [PMID: 39302733 PMCID: PMC11589102 DOI: 10.1093/toxsci/kfae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Molnupiravir is registered or authorized in several countries as a 5-d oral coronavirus disease 2019 treatment for adults. Molnupiravir is a prodrug of the antiviral ribonucleoside β-D-N4-hydroxycytidine (NHC) that distributes into cells, where it is phosphorylated to its pharmacologically active ribonucleoside triphosphate (NHC-TP) form. NHC-TP incorporates into severe acute respiratory syndrome coronavirus 2 RNA by the viral RNA-dependent RNA polymerase, resulting in an accumulation of errors in the viral genome, leading to inhibition of viral replication and loss of infectivity. The potential of molnupiravir to induce genomic mutations and DNA damage was comprehensively assessed in several in vitro and in vivo genotoxicity assays and a carcinogenicity study, in accordance with international guideline recommendations and expert opinion. Molnupiravir and NHC induced mutations in vitro in bacteria and mammalian cells but did not induce chromosome damage in in vitro or in vivo assays. The in vivo mutagenic and carcinogenic potential of molnupiravir was tested in a series of in vivo mutagenicity studies in somatic and germ cells (Pig-a Assay and Big Blue® TGR Mutation Assay) and in a carcinogenicity study (transgenic rasH2-Tg mouse), using durations of exposure and doses exceeding those used in clinical therapy. In vitro genotoxicity results are superseded by robustly conducted in vivo studies. Molnupiravir did not increase mutations in somatic or germ cells in the in vivo animal studies and was negative in the carcinogenicity study. The interpretation criteria for each study followed established regulatory guidelines. Taken together, these data indicate that molnupiravir use does not present a genotoxicity or carcinogenicity risk for patients.
Collapse
Affiliation(s)
- Patricia A Escobar
- Nonclinical Drug Safety and Pharmacokinetics Dynamics Metabolism and Bioanalysis, Preclinical Development, Merck & Co. Inc., Rahway, NJ 07065, United States
| | - Zhanna Sobol
- Nonclinical Drug Safety and Pharmacokinetics Dynamics Metabolism and Bioanalysis, Preclinical Development, Merck & Co. Inc., Rahway, NJ 07065, United States
| | - Randy R Miller
- Nonclinical Drug Safety and Pharmacokinetics Dynamics Metabolism and Bioanalysis, Preclinical Development, Merck & Co. Inc., Rahway, NJ 07065, United States
| | - Sandrine Ferry-Martin
- Nonclinical Drug Safety and Pharmacokinetics Dynamics Metabolism and Bioanalysis, Preclinical Development, Merck & Co. Inc., Rahway, NJ 07065, United States
| | - Angela Stermer
- Nonclinical Drug Safety and Pharmacokinetics Dynamics Metabolism and Bioanalysis, Preclinical Development, Merck & Co. Inc., Rahway, NJ 07065, United States
| | - Binod Jacob
- Nonclinical Drug Safety and Pharmacokinetics Dynamics Metabolism and Bioanalysis, Preclinical Development, Merck & Co. Inc., Rahway, NJ 07065, United States
| | - Nagaraja Muniappa
- Nonclinical Drug Safety and Pharmacokinetics Dynamics Metabolism and Bioanalysis, Preclinical Development, Merck & Co. Inc., Rahway, NJ 07065, United States
| | - Rosa I Sanchez
- Nonclinical Drug Safety and Pharmacokinetics Dynamics Metabolism and Bioanalysis, Preclinical Development, Merck & Co. Inc., Rahway, NJ 07065, United States
| | - Kerry T Blanchard
- Nonclinical Drug Safety and Pharmacokinetics Dynamics Metabolism and Bioanalysis, Preclinical Development, Merck & Co. Inc., Rahway, NJ 07065, United States
| | - Alema Galijatovic-Idrizbegovic
- Nonclinical Drug Safety and Pharmacokinetics Dynamics Metabolism and Bioanalysis, Preclinical Development, Merck & Co. Inc., Rahway, NJ 07065, United States
| | - Rupesh P Amin
- Nonclinical Drug Safety and Pharmacokinetics Dynamics Metabolism and Bioanalysis, Preclinical Development, Merck & Co. Inc., Rahway, NJ 07065, United States
| | - Sean P Troth
- Nonclinical Drug Safety and Pharmacokinetics Dynamics Metabolism and Bioanalysis, Preclinical Development, Merck & Co. Inc., Rahway, NJ 07065, United States
| |
Collapse
|
2
|
Dobrovolsky VN, Atiq OT, Heflich RH, Maisha M, McKinzie PB, Pearce MG, Robison TW. Erythrocyte PIG-A mutant frequencies in cancer patients receiving cisplatin. Cancer Med 2024; 13:e6895. [PMID: 38214136 PMCID: PMC10905239 DOI: 10.1002/cam4.6895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Cisplatin is a primary chemotherapy choice for various solid tumors. DNA damage caused by cisplatin results in apoptosis of tumor cells. Cisplatin-induced DNA damage, however, may also result in mutations in normal cells and the initiation of secondary malignancies. In the current study, we have used the erythrocyte PIG-A assay to evaluate mutagenesis in non-tumor hematopoietic tissue of cancer patients receiving cisplatin chemotherapy. METHODS Twenty-one head and neck cancer patients undergoing treatment with cisplatin were monitored for the presence of PIG-A mutant total erythrocytes and the young erythrocytes, reticulocytes (RETs), in peripheral blood for up to five and a half months from the initiation of the anti-neoplastic chemotherapy. RESULTS PIG-A mutant frequency (MF) in RETs increased at least two-fold in 15 patients at some point of the monitoring, while the frequency of total mutant RBCs increased at least two-fold in 6 patients. A general trend for an increase in the frequency of mutant RETs and total mutant RBCs was observed in 19 and 18 patients, respectively. Only in one patient did both RET and total RBC PIG-A MFs did not increase at any time-point over the monitoring period. CONCLUSION Cisplatin chemotherapy induces moderate increases in the frequency of PIG-A mutant erythrocytes in head and neck cancer patients. Mutagenicity measured with the flow cytometric PIG-A assay may serve as a tool for predicting adverse outcomes of genotoxic antineoplastic therapy.
Collapse
Affiliation(s)
- Vasily N. Dobrovolsky
- Division of Genetic and Molecular ToxicologyNational Center for Toxicological Research (NCTR), US Food and Drug Administration (FDA)JeffersonArkansasUSA
| | - Omar T. Atiq
- University of Arkansas for Medical Sciences (UAMS) Winthrop P. Rockefeller Cancer InstituteLittle RockArkansasUSA
| | - Robert H. Heflich
- Division of Genetic and Molecular ToxicologyNational Center for Toxicological Research (NCTR), US Food and Drug Administration (FDA)JeffersonArkansasUSA
| | - Mackean Maisha
- Office of Scientific Coordination, NCTR, FDAJeffersonArkansasUSA
| | - Page B. McKinzie
- Division of Genetic and Molecular ToxicologyNational Center for Toxicological Research (NCTR), US Food and Drug Administration (FDA)JeffersonArkansasUSA
| | - Mason G. Pearce
- Division of Genetic and Molecular ToxicologyNational Center for Toxicological Research (NCTR), US Food and Drug Administration (FDA)JeffersonArkansasUSA
| | - Timothy W. Robison
- Office of New Drugs, OII, DPTII, Center for Drug Evaluation and Research (CDER), US FDASilver SpringMarylandUSA
| |
Collapse
|
3
|
Chikura S, Kimoto T, Itoh S, Sanada H, Muto S, Horibata K. Standard protocol for the PIGRET assay, a high-throughput reticulocyte Pig-a assay with an immunomagnetic separation, used in the interlaboratory trial organized by the Mammalian Mutagenicity Study Group of the Japanese Environmental Mutagen and Genome Society. Genes Environ 2021; 43:10. [PMID: 33743813 PMCID: PMC7981892 DOI: 10.1186/s41021-021-00181-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
The PIGRET assay is one of the Pig-a assays targeting reticulocytes (RETs), an in vivo genotoxicity evaluation method using flow cytometry with endogenous reporter glycosylphosphatidylinositol anchor protein. The PIGRET assay with RETs selectively enriched with anti-CD71 antibodies has several desirable features: high-throughput assay system, low background frequency of mutant cells, and early detection of mutation. To verify the potential and usefulness of the PIGRET assay for short-term testing, an interlaboratory trial involving 16 laboratories organized by the Mammalian Mutagenicity Study Group of the Japanese Environmental Mutagen and Genome Society was conducted. The collaborating laboratories assessed the mutagenicities of a total of 24 chemicals in rats using a single-treatment design and standard protocols for conducting the Pig-a assay on the total red blood cell assay and the PIGRET assay. Here the standard protocol for the PIGRET assay was described in detail.
Collapse
Affiliation(s)
- Satsuki Chikura
- Toxicology Research Department, Teijin Institute for Bio-medical Research, Teijin Pharma Limited, 4-3-2 Asahigaoka, Hino-shi, Tokyo, 191-8512, Japan
| | - Takafumi Kimoto
- Toxicology Research Department, Teijin Institute for Bio-medical Research, Teijin Pharma Limited, 4-3-2 Asahigaoka, Hino-shi, Tokyo, 191-8512, Japan.
| | - Satoru Itoh
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo, 134-8630, Japan
| | - Hisakazu Sanada
- Development ADMET Department, Translational Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba-shi, 412-8513, Japan
| | - Shigeharu Muto
- Safety Research Laboratories, Mitsubishi Tanabe Pharma Corporation, Shonan Health Innovation Park, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa, 251-8555, Japan
| | - Katsuyoshi Horibata
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan.
| |
Collapse
|
4
|
van der Leede B, Weiner S, Van Doninck T, De Vlieger K, Schuermans A, Tekle F, Geys H, van Heerden M, De Jonghe S, Van Gompel J. Testing of acetaminophen in support of the international multilaboratory in vivo rat Pig-a assay validation trial. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:508-525. [PMID: 32187737 PMCID: PMC7317746 DOI: 10.1002/em.22368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/09/2020] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
Acetaminophen, a nonmutagenic compound as previously concluded from bacteria, in vitro mammalian cell, and in vivo transgenic rat assays, presented a good profile as a nonmutagenic reference compound for use in the international multilaboratory Pig-a assay validation. Acetaminophen was administered at 250, 500, 1,000, and 2,000 mg·kg-1 ·day-1 to male Sprague Dawley rats once daily in 3 studies (3 days, 2 weeks, and 1 month with a 1-month recovery group). The 3-Day and 1-Month Studies included assessments of the micronucleus endpoint in peripheral blood erythrocytes and the comet endpoint in liver cells and peripheral blood cells in addition to the Pig-a assay; appropriate positive controls were included for each assay. Within these studies, potential toxicity of acetaminophen was evaluated and confirmed by inclusion of liver damage biomarkers and histopathology. Blood was sampled pre-treatment and at multiple time points up to Day 57. Pig-a mutant frequencies were determined in total red blood cells (RBCs) and reticulocytes (RETs) as CD59-negative RBC and CD59-negative RET frequencies, respectively. No increases in DNA damage as indicated through Pig-a, micronucleus, or comet endpoints were seen in treated rats. All positive controls responded as appropriate. Data from this series of studies demonstrate that acetaminophen is not mutagenic in the rat Pig-a model. These data are consistent with multiple studies in other nonclinical models, which have shown that acetaminophen is not mutagenic. At 1,000 mg·kg-1 ·day-1 , Cmax values of acetaminophen on Day 28 were 153,600 ng/ml and 131,500 ng/ml after single and repeat dosing, respectively, which were multiples over that of clinical therapeutic exposures (2.6-6.1 fold for single doses of 4,000 mg and 1,000 mg, respectively, and 11.5 fold for multiple dose of 4,000 mg) (FDA 2002). Data generated were of high quality and valid for contribution to the international multilaboratory validation of the in vivo Rat Pig-a Mutation Assay.
Collapse
Affiliation(s)
| | - Sandy Weiner
- Janssen Research & DevelopmentSpring House, PennsylvaniaUSA
| | | | | | | | - Fetene Tekle
- Janssen Research & DevelopmentBeerse, AntwerpBelgium
| | - Helena Geys
- Janssen Research & DevelopmentBeerse, AntwerpBelgium
| | | | | | | |
Collapse
|
5
|
Dertinger SD, Avlasevich SL, Torous DK, Bemis JC, Hove TT, O'Connell O, Martus H, Elhajouji A. Intra- and inter-laboratory reproducibility of the rat blood Pig-a gene mutation assay. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:500-507. [PMID: 32187725 DOI: 10.1002/em.22367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/24/2020] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
The in vivo Pig-a assay is being used in safety studies to evaluate the potential of chemicals to induce somatic cell gene mutations. Ongoing work is aimed at developing an Organization for Economic Cooperation and Development (OECD) test guideline to support routine use for regulatory purposes (OECD project number 4.93). Among the requirements for OECD approval are demonstrations of assay reliability, including reproducibility within and among laboratories. Experiments reported herein address the reproducibility of the rat blood Pig-a assay using the reference mutagens chlorambucil and melphalan. These agents were evaluated for their ability to induce Pig-a mutant erythrocytes in three separate studies conducted across two laboratories. Each of the studies utilized a common treatment schedule: 28 consecutive days of exposure via oral gavage. Whereas one laboratory studied Crl:CD(SD) rats, the other laboratory used Wistar Han rats. One or two days after cessation of treatment blood samples were collected for mutant reticulocyte and mutant erythrocyte measurements that were accomplished with the same analytical technique whereby samples were depleted of wildtype erythrocytes via immunomagnetic separation followed by flow cytometric enumeration of mutant phenotype cells (MutaFlow®). Dunnett's test results showed similar qualitative outcomes within and between laboratories, that is, each chemical and each study demonstrated statistically significant, dose-related increases in mutant reticulocyte and erythrocyte frequencies. Benchmark dose analysis (PROAST software) provided a means to quantitatively analyze the results, and the relatively tight, overlapping benchmark dose confidence intervals observed for each of the two chemicals indicate that within and between laboratory reproducibility of the Pig-a assay are high, adding further support for the development of an OECD test guideline.
Collapse
Affiliation(s)
| | | | | | | | - Tamsanqa Tafara Hove
- Preclinical Safety, Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Oliver O'Connell
- Preclinical Safety, Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Hansjoerg Martus
- Preclinical Safety, Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Azeddine Elhajouji
- Preclinical Safety, Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
6
|
Cao Y, Wang X, Liu W, Feng N, Xi J, You X, Chen R, Zhang X, Liu Z, Luan Y. The potential application of human PIG-A assay on azathioprine-treated inflammatory bowel disease patients. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:456-464. [PMID: 31743483 DOI: 10.1002/em.22348] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/25/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
The rodent Pig-a assay has been used extensively as a potential regulatory assay for evaluating the in vivo mutagenicity of test substances. Although the assay can be conducted in different mammalian species, there have been only a few reports describing its use in humans, and rarely in genotoxicant-exposed human populations. In this study, PIG-A mutation frequencies (MFs) were evaluated in 36 azathioprine (AZA; human carcinogen)-treated inflammatory bowel disease (IBD) patients and 36 healthy volunteers. IBD patients exhibited a slight but statistically higher MF (6.10 ± 4.44 × 10-6 ) than healthy volunteers (4.97 ± 2.74 × 10-6 ) (P = 0.0489). The estimated relative risk for the exposed patients was 1.22 which indicated that AZA is a risk factor for inducing PIG-A mutation. However, the PIG-A MF showed no associations with AZA treatment duration or total AZA exposure. In addition, we performed the cytokinesis-block micronucleus test on the same samples. The frequencies of micronuclei (MN) and nuclear buds (NBUD) in IBD patients (MN: 4.70 ± 2.86‰; NBUD: 1.89 ± 0.95‰) were significantly higher than in healthy volunteers (MN: 1.47 ± 0.77‰, P < 0.001; NBUD: 0.90 ± 0.58‰, P = 0.004). MN frequency also had significant correlations with AZA treatment duration (P = 0.011) and total AZA exposure (P = 0.018). Our findings indicate that AZA-treated IBD patients have only a marginally significant increase in PIG-A MF; in contrast, a much stronger AZA-associated increase in genotoxicity was detected with the lymphocyte MN assay. Environ. Mol. Mutagen. 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yiyi Cao
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiaolei Wang
- Shanghai 10th People's Hospital, Shanghai, People's Republic of China
| | - Weiying Liu
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Nannan Feng
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jing Xi
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xinyue You
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Ruixue Chen
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - XinYu Zhang
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Zhanju Liu
- Shanghai 10th People's Hospital, Shanghai, People's Republic of China
| | - Yang Luan
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
7
|
Tian X, Chen Y, Nakamura J. Development of a novel PIG-A gene mutation assay based on a GPI-anchored fluorescent protein sensor. Genes Environ 2019; 41:21. [PMID: 31867084 PMCID: PMC6902599 DOI: 10.1186/s41021-019-0135-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/14/2019] [Indexed: 11/19/2022] Open
Abstract
Background Accumulation of somatic mutations caused by both endogenous and exogenous exposures is a high risk for human health, in particular, cancer. Efficient detection of somatic mutations is crucial for risk assessment of different types of exposures. Due to its requirement in the process of attaching glycosylphatidylinositol- (GPI-) anchored proteins to the cell surface, the PIG-A gene located on the X-chromosome is used in both in vivo and in vitro mutation assays. Loss-of-function mutations in PIG-A lead to the elimination of GPI-anchored proteins such that they can no longer be detected on the cell surface by antibodies. Historically, mutation assays based on the PIG-A gene rely on the staining of these cell-surface proteins by antibodies; however, as with any antibody-based assay, there are major limitations, especially in terms of variability and lack of specific antibodies. Results In the current study, we developed a modified PIG-A mutation assay that uses the expression of GPI-anchored fluorescent proteins (henceforth referred to as a GPI-sensor), whereby the presence of fluorescence on the cell membrane is dependent on the expression of wild-type PIG-A. Using our modified PIG-A mutation assay, we have achieved complete separation of wild type cells and spontaneously mutated cells, in which the presence of PIG-A mutations has been confirmed via proaerolysin resistance and gene sequencing. Conclusion This study establishes a novel PIG-A mutation assay using GPI-anchored fluorescent protein expression that eliminates the need for antibody-based staining. This GPI-sensor PIG-A mutation assay should be widely applicable for accurate and efficient testing of genotoxicity for use in many mammalian and vertebrate cells.
Collapse
Affiliation(s)
- Xu Tian
- 1Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Youjun Chen
- 2Department of Neurology, UNC Neuroscience center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina USA
| | - Jun Nakamura
- 1Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC USA.,3Laboratory of Laboratory Animal Science, Graduate School of Life and Environmental Biosciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| |
Collapse
|
8
|
Nicklas JA, Vacek PM, Carter EW, McDiarmid M, Albertini RJ. Molecular analysis of glycosylphosphatidylinositol anchor deficient aerolysin resistant isolates in gulf war i veterans exposed to depleted uranium. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:470-493. [PMID: 30848503 DOI: 10.1002/em.22283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
During the First Gulf War (1991) over 100 servicemen sustained depleted uranium (DU) exposure through wound contamination, inhalation, and shrapnel. The Department of Veterans Affairs has a surveillance program for these Veterans which has included genotoxicity assays. The frequencies of glycosylphosphatidylinositol anchor (GPIa) negative (aerolysin resistant) cells determined by cloning assays for these Veterans are reported in Albertini RJ et al. (2019: Environ Mol Mutagen). Molecular analyses of the GPIa biosynthesis class A (PIGA) gene was performed on 862 aerolysin-resistant T-lymphocyte recovered isolates. The frequencies of different types of PIGA mutations were compared between high and low DU exposure groups. Additional molecular studies were performed on mutants that produced no PIGA mRNA or with deletions of all or part of the PIGA gene to determine deletion size and breakpoint sequence. One mutant appeared to be the result of a chromothriptic event. A significant percentage (>30%) of the aerolysin resistant isolates, which varied by sample year and Veteran, had wild-type PIGA cDNA (no mutation). As described in Albertini RJ et al. (2019: Environ Mol Mutagen), TCR gene rearrangement analysis of these isolates indicated most arose from multiple T-cell progenitors (hence the inability to find a mutation). It is likely that these isolates were the result of failure of complete selection against nonmutant cells in the cloning assays. Real-time studies of GPIa resistant isolates with no PIGA mutation but with a single TCR gene rearrangement found one clone with a PIGV deletion and several others with decreased levels of GPIa pathway gene mRNAs implying mutation in other GPIa pathway genes. Environ. Mol. Mutagen. 60:470-493, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Janice A Nicklas
- Department of Pediatrics, University of Vermont College of Medicine, Burlington, Vermont
| | - Pamela M Vacek
- Medical Biostatistics Unit, University of Vermont College of Medicine, Burlington, Vermont
| | - Elizabeth W Carter
- Jeffords Institute for Quality, University of Vermont Medical Center, Burlington, Vermont
| | - Melissa McDiarmid
- Occupational Health Program, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
- U.S. Department of Veterans Affairs, Washington, District of Columbia
| | - Richard J Albertini
- Department of Pathology, University of Vermont College of Medicine, Burlington, Vermont
| |
Collapse
|
9
|
Chen G, Wen H, Mao Z, Song J, Jiang H, Wang W, Yang Y, Miao Y, Wang C, Huang Z, Wang X. Assessment of the Pig-a, micronucleus, and comet assay endpoints in rats treated by acute or repeated dosing protocols with procarbazine hydrochloride and ethyl carbamate. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:56-71. [PMID: 30240497 DOI: 10.1002/em.22227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/12/2018] [Accepted: 06/24/2018] [Indexed: 06/08/2023]
Abstract
The utility and sensitivity of the newly developed flow cytometric Pig-a gene mutation assay have become a great concern recently. In this study, we have examined the feasibility of integrating the Pig-a assay as well as micronucleus and Comet endpoints into acute and subchronic general toxicology studies. Male Sprague-Dawley rats were treated for 3 or 28 consecutive days by oral gavage with procarbazine hydrochloride (PCZ) or ethyl carbamate (EC) up to the maximum tolerated dose. The induction of CD59-negative reticulocytes and erythrocytes, micronucleated reticulocytes in peripheral blood, micronucleated polychromatic erythrocytes in bone marrow, and Comet responses in peripheral blood, liver, kidney, and lung were evaluated at one, two, or more timepoints. Both PCZ and EC produced positive responses at most analyzed timepoints in all tissue types, both with the 3-day and 28-day treatment regimens. Furthermore, comparison of the magnitude of the genotoxicity responses indicated that the micronucleus and Comet endpoints generally produced greater responses with the higher dose, short-term treatments in the 3-day study, while the Pig-a assay responded better to the cumulative effects of the lower dose, but repeated subchronic dosing in the 28-day study. Collectively, these results indicate that integration of several in vivo genotoxicity endpoints into a single routine toxicology study is feasible and that the Pig-a assay may be particularly suitable for integration into subchronic dose studies based on its ability to accumulate the mutations that result from repeated treatments. This characteristic may be especially important for assaying lower doses of relatively weak genotoxicants. Environ. Mol. Mutagen. 60:56-71, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Gaofeng Chen
- Key Laboratory of Beijing for Safety Evaluation of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, People's Republic of China
- Center of Safety Evaluation on New Drug, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Hairuo Wen
- Key Laboratory of Beijing for Safety Evaluation of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Zhihui Mao
- Key Laboratory of Beijing for Safety Evaluation of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, People's Republic of China
- Center of Safety Evaluation on New Drug, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jie Song
- Key Laboratory of Beijing for Safety Evaluation of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Hua Jiang
- Key Laboratory of Beijing for Safety Evaluation of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Weifan Wang
- Key Laboratory of Beijing for Safety Evaluation of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Ying Yang
- Key Laboratory of Beijing for Safety Evaluation of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Yufa Miao
- Key Laboratory of Beijing for Safety Evaluation of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Chao Wang
- Key Laboratory of Beijing for Safety Evaluation of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Zhiying Huang
- Center of Safety Evaluation on New Drug, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xue Wang
- Key Laboratory of Beijing for Safety Evaluation of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| |
Collapse
|
10
|
Avlasevich SL, Torous DK, Bemis JC, Bhalli JA, Tebbe CC, Noteboom J, Thomas D, Roberts DJ, Barragato M, Schneider B, Prattico J, Richardson M, Gollapudi BB, Dertinger SD. Suitability of Long-Term Frozen Rat Blood Samples for the Interrogation of Pig-a Gene Mutation by Flow Cytometry. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:47-55. [PMID: 30264522 DOI: 10.1002/em.22249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/16/2018] [Accepted: 08/24/2018] [Indexed: 06/08/2023]
Abstract
The rodent blood Pig-a assay has been undergoing international validation for use as an in vivo hematopoietic cell gene mutation assay, and given the promising results an Organization for Economic Co-operation and Development (OECD) Test Guideline is currently under development. Enthusiasm for the assay stems in part from its alignment with 3Rs principles permitting combination with other genotoxicity endpoint(s) and integration into repeat-dose toxicology studies. One logistical requirement and experimental design limitation has been that blood samples required antibody labeling and flow cytometric analysis within one week of collection. In the current report, we describe the performance of freeze-thaw reagents that enable storage and subsequent labeling and analysis of rat blood samples for at least seven months. Data generated from three laboratories are presented that demonstrate rat erythrocyte recoveries in the range of 80-90%. Despite some loss of erythrocytes, Pearson coefficients and Bland-Altman analyses based on fresh blood vs. frozen/thawed matched pairs indicate that mutant cell and reticulocyte frequencies are not significantly affected, as the measurements are highly correlated and exhibit low bias. Collectively, these data support the effectiveness and suitability of a freeze-thaw procedure that endows the assay with several new advantageous characteristics that include: flexibility in scheduling personnel/instrumentation; reliability when shipping samples from in-life facilities to analytical sites; 3Rs-friendly, as blood from positive control animals can be stored frozen to serve as analytical controls; and ability to defer a decision to generate Pig-a data until more toxicological information becomes available on a test substance. Environ. Mol. Mutagen. 60:47-55, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
|
11
|
Application of the in vivo Pig-a gene mutation assay to test the potential genotoxicity of p-phenylenediamine. Food Chem Toxicol 2018; 123:424-430. [PMID: 30439388 DOI: 10.1016/j.fct.2018.10.061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/17/2018] [Accepted: 10/27/2018] [Indexed: 11/21/2022]
Abstract
Currently, it remains controversial whether p-phenylenediamine (PPD) is genotoxic. In this study, we evaluated the potential genotoxicity of PPD using the newly-developed Pig-a gene mutation assay. The results of three classical genetic toxicity tests (bacterial reverse mutation assay, mammalian cell chromosomal aberration test, and mammalian erythrocyte micronucleus test) are all positive, suggesting that PPD is potentially genotoxic. In Pig-a assay, Sprague-Dawley rats are orally administered with PPD for 28 consecutive days at three doses (12.5, 25, and 50 mg/kg/day). Our result shows that PPD (25 and 50 mg/kg/day) dose-dependently increases RETCD59- value over controls on Day 8. RETCD59- keeps increasing to the maximum on Day 15 and then decreases until Day 29. PPD also dose-dependently increase RBCCD59- value on Day 15, which keeps elevating until Day 29. The time-course of RETCD59- and RBCCD59- induced by PPD are similar with that induced by N-ethyl-N-nitrosourea (ENU) treatment for 3 days. Our data suggests that PPD has potential genotoxic effects, and the Pig-a assay is sensitive to assess mutagenicity. However, further investigation of the changes of RETCD59- and RBCCD59- induced by hair dyes containing PPD should be detected by Pig-a assay in occupational exposure population to confirm the safety of PPD usage.
Collapse
|
12
|
Revollo JR, Pearce MG, Dad A, Petibone DM, Robison TW, Roberts D, Dobrovolsky VN. Analysis of mutation in the rat Pig-a assay: I) studies with bone marrow erythroid cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:722-732. [PMID: 30091272 DOI: 10.1002/em.22211] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 06/08/2023]
Abstract
We have established a flow cytometry-based Pig-a assay for rat bone marrow erythroid cells (BMEs). The BME Pig-a assay uses a DNA-specific stain and two antibodies: one against the transmembrane transferrin receptor (CD71 marker) and the other against the GPI-anchored complement inhibitory protein (CD59 marker). In F344 male rats treated acutely with a total of 120 mg/kg of N-ethyl-N-nitrosourea (ENU) the frequency of CD59-deficient phenotypically mutant BMEs increased approximately 24-fold compared to the rats concurrently treated with the vehicle. Such an increase of mutant BMEs coincides with increases of CD59-deficient reticulocytes measured in rats treated with similar doses of ENU. Sequence analysis of the endogenous X-linked Pig-a gene of CD59-deficient BMEs revealed that they are Pig-a mutants. The spectrum of ENU-induced Pig-a mutations in these BMEs was consistent with the in vivo mutagenic signature of ENU: 73% of mutations occurred at A:T basepairs, with the mutated T on the nontranscribed strand of the gene. T→A transversion was the most frequent mutation followed by T→C transition; no deletion or insertion mutations were present in the spectrum. Since BMEs are precursors of peripheral red blood cells, our findings suggest that CD59-deficient erythrocytes measured in the flow cytometric erythrocyte Pig-a assay develop from BMEs containing mutations in the Pig-a gene. Thus, the erythrocyte Pig-a assay detects mutation in the Pig-a gene. Environ. Mol. Mutagen. 59:722-732, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Javier R Revollo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas
| | - Mason G Pearce
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas
| | - Azra Dad
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas
| | - Dayton M Petibone
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas
| | - Timothy W Robison
- Division of Pulmonary, Allergy, and Rheumatology Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Daniel Roberts
- Charles River Laboratories, Skokie, Illinois; Joint Graduate Program of Toxicology, Rutgers University, Piscataway, New Jersey
| | - Vasily N Dobrovolsky
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas
| |
Collapse
|
13
|
Multi-laboratory evaluation of 1,3-propane sultone, N -propyl- N -nitrosourea, and mitomycin C in the Pig-a mutation assay in vivo. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 831:62-68. [DOI: 10.1016/j.mrgentox.2018.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/13/2018] [Accepted: 05/13/2018] [Indexed: 12/12/2022]
|
14
|
Igl BW, Dertinger SD, Dobrovolsky VN, Raschke M, Sutter A, Vonk R. A statistical approach for analyzing data from the in vivo Pig-a gene mutation assay. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 831:33-44. [PMID: 29875075 DOI: 10.1016/j.mrgentox.2018.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/29/2018] [Accepted: 05/04/2018] [Indexed: 10/17/2022]
Abstract
The in vivo Pig-a gene mutation assay serves to evaluate the genotoxic potential of chemicals. In the rat blood-based assay, the lack of CD59 on the surface of erythrocytes is quantified via fluorophore-labeled antibodies in conjunction with flow cytometric analysis to determine the frequency of Pig-a mutant phenotype cells. The assay has achieved regulatory relevance as it is suggested as an in vivo follow-up test for Ames mutagens in the recent ICH M7 [25] step 4 document. However, very little work exists regarding suitable statistical approaches for analyzing Pig-a data. In the current report, we present a statistical strategy based on a two factor model involving 'treatment' and 'time' incl. their interaction and a baseline covariate for log proportions to compare treatment and vehicle data per time point as well as in time. In doing so, multiple contrast tests allow us to discover time-related changes within and between treatment groups in addition to multiple treatment comparisons to a control group per single time point. We compare our proposed strategy with the results of classical Dunnett and Wilcoxon-Mann-Whitney tests using two data sets describing the mode of action of Chlorambucil and Glycidyl methacrylate both analyzed in a 28-day treatment schedule.
Collapse
Affiliation(s)
| | | | - Vasily N Dobrovolsky
- National Center for Toxicological Research/U.S. Food and Drug Administration, Jefferson, AR, USA
| | | | | | - Richardus Vonk
- Research and Clinical Sciences Statistics, Bayer AG, Berlin, Germany
| |
Collapse
|
15
|
David R, Talbot E, Allen B, Wilson A, Arshad U, Doherty A. The development of an in vitro Pig-a assay in L5178Y cells. Arch Toxicol 2018; 92:1609-1623. [PMID: 29362862 DOI: 10.1007/s00204-018-2157-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/17/2018] [Indexed: 12/01/2022]
Abstract
A recent flow cytometry-based in vivo mutagenicity assay involves the hemizygous phosphatidylinositol class A (Pig-a) gene. Pig-a forms the catalytic subunit of N-acetylglucosaminyltransferase required for glycophosphatidylinositol (GPI) anchor biosynthesis. Mutations in Pig-a prevent GPI-anchor synthesis resulting in loss of cell-surface GPI-linked proteins. The aim of the current study was to develop and validate an in vitro Pig-a assay in L5178Y mouse lymphoma cells. Ethyl methanesulfonate (EMS)-treated cells (186.24-558.72 µg/ml; 24 h) were used for method development and antibodies against GPI-linked CD90.2 and stably expressed CD45 were used to determine GPI-status by flow cytometry. Antibody concentration and incubation times were optimised (0.18 µg/ml, 30 min, 4 °C) and Zombie Violet™ (viability marker; 0.5%, 30 min, RT) was included. The optimum phenotypic expression period was 8 days. The low background mutation frequency of GPI-deficiency [GPI(-)] in L5178Y cells (0.1%) constitutes a rare event, thus flow cytometry acquisition parameters were optimised; 104 cells were measured at medium flow rate to ensure a CV ≤ 30%. Spiking known numbers of GPI(-) cells into a wild-type population gave high correlation between measured and spiked numbers (R2 0.999). We applied the in vitro Pig-a assay to a selection of well-validated genotoxic and non-genotoxic compounds. EMS, N-ethyl-N-nitrosourea and 4-nitroquinoline-N-oxide dose dependently increased numbers of GPI(-) cells, while etoposide, mitomycin C, and a bacterial-specific mutagen did not. Cycloheximide and sodium chloride were negative. Sanger sequencing revealed Pig-a mutations in the GPI(-) clones. In conclusion, this in vitro Pig-a assay could complement the in vivo version, and follow up weak Ames positives and late-stage human metabolites or impurities.
Collapse
Affiliation(s)
- Rhiannon David
- Genetic Toxicology, Discovery Safety, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK.
| | - Emily Talbot
- Genetic Toxicology, Discovery Safety, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Bethany Allen
- Genetic Toxicology, Discovery Safety, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Amy Wilson
- Genetic Toxicology, Discovery Safety, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Usman Arshad
- Genetic Toxicology, Discovery Safety, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Ann Doherty
- Genetic Toxicology, Discovery Safety, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| |
Collapse
|
16
|
Wang Y, Revollo J, McKinzie P, Pearce MG, Dad A, Yucesoy B, Rosenfeldt H, Heflich RH, Dobrovolsky VN. Establishing a novel Pig-a gene mutation assay in L5178YTk +/- mouse lymphoma cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:4-17. [PMID: 29098723 DOI: 10.1002/em.22152] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 06/07/2023]
Abstract
The X-linked Pig-a gene encodes an enzyme required for the biosynthesis of glycosyl phosphatidylinositol (GPI) anchors. Pig-a mutant cells fail to synthesize GPI and to express GPI-anchored protein markers (e.g., CD90) on their surface. Marker deficiency serves as a phenotypic indicator of Pig-a mutation in various in vivo assays. Here, we describe an in vitro Pig-a mutation assay in L5178YTk+/- mouse lymphoma cells, in which mutant-phenotype cells are measured by flow cytometry using a fluorescent anti-CD90 antibody. Increased frequencies of CD90-deficient mutants were detected in cells treated with benzo[a]pyrene (B[a]P), N-ethyl-N-nitrosourea (ENU), ethyl methanesulphonate, and 7,12-dimethylbenz[a]anthracene, with near maximum mutant frequencies measured eight days after treatment. The CD90 deficiency in mutant cells quantified by flow cytometry was shown to be due to loss of GPI anchors in a limiting-dilution cloning assay using proaerolysin selection. Individual CD90-deficient cells from cultures treated with ENU, B[a]P, and vehicle were sorted and clonally expanded for molecular analysis of their Pig-a gene. Pig-a mutations with agent-specific signatures were found in nearly all clones that developed from sorted CD90-deficient cells. These results indicate that a Pig-a mutation assay can be successfully conducted in L5178YTk+/- cells. The assay may be useful for mutagenicity screening of environmental agents as well as for testing hypotheses in vitro before committing to in vivo Pig-a assays. Environ. Mol. Mutagen. 59:4-17, 2018. Published 2017. This article is a US Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Yiying Wang
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Javier Revollo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Page McKinzie
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Mason G Pearce
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Azra Dad
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Berran Yucesoy
- Division of Nonclinical Science, Center for Tobacco Products, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Hans Rosenfeldt
- Division of Nonclinical Science, Center for Tobacco Products, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Robert H Heflich
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Vasily N Dobrovolsky
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| |
Collapse
|
17
|
Avlasevich SL, Labash C, Torous DK, Bemis JC, MacGregor JT, Dertinger SD. In vivo pig-a and micronucleus study of the prototypical aneugen vinblastine sulfate. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:30-37. [PMID: 28833575 PMCID: PMC5773054 DOI: 10.1002/em.22122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/12/2017] [Accepted: 07/15/2017] [Indexed: 05/05/2023]
Abstract
The Pig-a assay is being used in regulatory studies to evaluate the potential of agents to induce somatic cell gene mutations and an OECD test guideline is under development. A working group involved with establishing the guideline recently noted that representative aneugenic agents had not been evaluated, and to help fill this data gap Pig-a mutant phenotype and micronucleated reticulocyte frequencies were measured in an integrated study design to assess the mutagenic and cytogenetic damage responses to vinblastine sulfate exposure. Male Sprague Dawley rats were treated for twenty-eight consecutive days with vinblastine dose levels from 0.0156 to 0.125 mg/kg/day. Micronucleated reticulocyte frequencies in peripheral blood were determined at Days 4 and 29, and mutant cell frequencies were determined at Days -4, 15, 29, and 46. Vinblastine affected reticulocyte frequencies, with reductions noted during the treatment phase and increases observed following cessation of treatment. Micronucleated reticulocyte frequencies were significantly elevated at Day 4 in the high dose group. Although a statistically significant increase in mutant reticulocyte frequencies were found for one dose group at a single time point (Day 46), it was not deemed biologically relevant because there was no analogous finding in mutant RBCs, it occurred at the lowest dose tested, and only 1 rat exceeded an upper bound tolerance interval established with historical negative control rats. Therefore, whereas micronucleus induction reflects vinblastine's well-established aneugenic effect on hematopoietic cells, the lack of a Pig-a response indicates that this tubulin-binding agent does not cause appreciable mutagenicity in this same cell type. Environ. Mol. Mutagen. 59:30-37, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
|
18
|
Bemis JC, Avlasevich SL, Labash C, McKinzie P, Revollo J, Dobrovolsky VN, Dertinger SD. Glycosylphosphatidylinositol (GPI) anchored protein deficiency serves as a reliable reporter of Pig-a gene Mutation: Support from an in vitro assay based on L5178Y/Tk +/- cells and the CD90.2 antigen. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:18-29. [PMID: 29115020 PMCID: PMC5771857 DOI: 10.1002/em.22154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/11/2017] [Accepted: 10/14/2017] [Indexed: 06/07/2023]
Abstract
Lack of cell surface glycosylphosphatidylinositol (GPI)-anchored protein(s) has been used as a reporter of Pig-a gene mutation in several model systems. As an extension of this work, our laboratory initiated development of an in vitro mutation assay based on the flow cytometric assessment of CD90.2 expression on the cell surface of the mouse lymphoma cell line L5178Y/Tk+/- . Cells were exposed to mutagenic and nonmutagenic compounds for 24 hr followed by washout and incubation for an additional 7 days. Following this mutant manifestation time, cells were labeled with fluorescent antibodies against CD90.2 and CD45 antigens. These reagents indicated the presence of GPI-anchored proteins and general cell surface membrane receptor integrity, respectively. Instrument set-up was aided by parallel processing of a GPI anchor-deficient subclone. Results show that the mutagens reproducibly caused increased frequencies of mutant phenotype cells, while the nonmutagens did not. Further modifications to the method, including application of a viability dye and an isotype control for instrument set-up, were investigated. As a means to verify that the GPI-anchored protein-negative phenotype reflects bona fide Pig-a gene mutation, sequencing was performed on 38 CD90.2-negative L5178Y/Tk+/- clones derived from cultures treated with ethyl methanesulfonate. All clones were found to have mutation(s) within the Pig-a gene. The continued investigation of L5178Y/Tk+/- cells, CD90.2 labeling, and flow cytometric analysis as the basis of an in vitro mutation assay is clearly supported by this work. These data also provide evidence of the reliability of using GPI anchor-deficiency as a valid reporter of Pig-a gene mutation. Environ. Mol. Mutagen. 59:18-29, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | | | | | - Page McKinzie
- US Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas
| | - Javier Revollo
- US Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas
| | - Vasily N Dobrovolsky
- US Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas
| | | |
Collapse
|
19
|
Ji Z, LeBaron MJ. Applying the erythrocyte Pig-a assay concept to rat epididymal sperm for germ cell mutagenicity evaluation. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:485-493. [PMID: 28714084 DOI: 10.1002/em.22109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 05/18/2017] [Accepted: 05/18/2017] [Indexed: 06/07/2023]
Abstract
The Pig-a assay, a recently developed in vivo somatic gene mutation assay, is based on the identification of mutant erythrocytes that have an altered repertoire of glycosylphosphatidylinositol (GPI)-anchored cell surface markers. We hypothesized that the erythrocyte Pig-a assay concept could be applied to rat cauda epididymal spermatozoa (sperm) for germ cell mutagenicity evaluation. We used GPI-anchored CD59 as the Pig-a mutation marker and examined the frequency of CD59-negative sperm using flow cytometry. A reconstruction experiment that spiked un-labeled sperm (mutant-mimic) into labeled sperm at specific ratios yielded good agreement between the detected and expected frequencies of mutant-mimic sperm, demonstrating the analytical ability for CD59-negative sperm detection. Furthermore, this methodology was assessed in F344/DuCrl rats administered N-ethyl-N-nitrosourea (ENU), a prototypical mutagen, or clofibrate, a lipid-lowering drug. Rats treated with 1, 10, or 20 mg/kg body weight/day (mkd) ENU via daily oral garage for five consecutive days showed a dose-dependent increase in the frequency of CD59-negative sperm on study day 63 (i.e., 58 days after the last ENU dose). This ENU dosing regimen also increased the frequency of CD59-negative erythrocytes. In rats treated with 300 mkd clofibrate via daily oral garage for consecutive 28 days, no treatment-related changes were detected in the frequency of CD59-negative sperm on study day 85 (i.e., 57 days after the last dose) or in the frequency of CD59-negative erythrocytes on study day 29. In conclusion, these data suggest that the epidiymal sperm Pig-a assay in rats is a promising method for evaluating germ cell mutagenicity. Environ. Mol. Mutagen. 58:485-493, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Zhiying Ji
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, Michigan, 48674
| | - Matthew J LeBaron
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, Michigan, 48674
| |
Collapse
|
20
|
Rees BJ, Tate M, Lynch AM, Thornton CA, Jenkins GJ, Walmsley RM, Johnson GE. Development of an in vitro PIG-A gene mutation assay in human cells. Mutagenesis 2017; 32:283-297. [PMID: 28057708 PMCID: PMC5907909 DOI: 10.1093/mutage/gew059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 11/15/2016] [Indexed: 11/12/2022] Open
Abstract
Mutagens can be carcinogens, and traditionally, they have been identified in vitro using the Salmonella 'Ames' reverse mutation assay. However, prokaryotic DNA packaging, replication and repair systems are mechanistically very different to those in the humans we inevitably seek to protect. Therefore, for many years, mammalian cell line genotoxicity assays that can detect eukaryotic mutagens as well as clastogens and aneugens have been used. The apparent lack of specificity in these largely rodent systems, due partly to their mutant p53 status, has contributed to the use of animal studies to resolve data conflicts. Recently, silencing mutations at the PIG-A locus have been demonstrated to prevent glycophosphatidylinositol (GPI) anchor synthesis and consequentially result in loss of GPI-anchored proteins from the cell's extracellular surface. The successful exploitation of this mutant phenotype in animal studies has triggered interest in the development of an analogous in vitro PIG-A mutation screening assay. This article describes the development of a robust assay design using metabolically active human cells. The assay includes viability and cell membrane integrity assessment and conforms to the future ideas of the 21st-century toxicology testing.
Collapse
Affiliation(s)
- Benjamin J Rees
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, UK
| | - Matthew Tate
- Gentronix Ltd BioHub at Alderley Park, Alderley Edge, Cheshire, UK
| | | | - Catherine A Thornton
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, UK
| | - Gareth J Jenkins
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, UK
| | - Richard M Walmsley
- Gentronix Ltd BioHub at Alderley Park, Alderley Edge, Cheshire, UK
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - George E Johnson
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, UK
| |
Collapse
|
21
|
Raschke M, Igl BW, Kenny J, Collins J, Dertinger SD, Labash C, Bhalli JA, Tebbe CCM, McNeil KM, Sutter A. In Vivo Pig-a gene mutation assay: Guidance for 3Rs-friendly implementation. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:678-686. [PMID: 27770464 DOI: 10.1002/em.22060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/15/2016] [Indexed: 06/06/2023]
Abstract
The rodent Pig-a assay is an in vivo method for the detection of gene mutation, where lack of glycosylphosphatidylinositol-anchored proteins on the surface of circulating red blood cells (RBCs) serves as a reporter for Pig-a gene mutation. In the case of rats, the frequency of mutant phenotype RBCs is measured via fluorescent anti-CD59 antibodies and flow cytometry. The Pig-a assay meets the growing expectations for novel approaches in animal experimentation not only focusing on the scientific value of the assay but also on animal welfare aspects (3Rs principles), for example, amenable to integration into pivotal rodent 28-day general toxicology studies. However, as recommended in the Organisation for Economic Co-operation and Development Test Guidelines for genotoxicity testing, laboratories are expected to demonstrate their proficiency. While this has historically involved the extensive use of animals, here we describe an alternative approach based on a series of blood dilutions covering a range of mutant frequencies. The experiments described herein utilized either non-fluorescent anti-CD59 antibodies to provide elevated numbers of mutant-like cells, or a low volume blood sample from a single N-ethyl-N-nitrosourea treated animal. Results from these so-called reconstruction experiments from four independent laboratories showed good overall precision (correlation coefficients: 0.9979-0.9999) and accuracy (estimated slope: 0.71-1.09) of mutant cell scoring, which was further confirmed by Bland-Altman analysis. These data strongly support the use of reconstruction experiments for training purposes and demonstrating laboratory proficiency with very few animals, an ideal situation given the typically conflicting goals of demonstrating laboratory proficiency and reducing the use of animals. Environ. Mol. Mutagen. 57:678-686, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marian Raschke
- Bayer Pharma AG, Muellerstrasse 178, Berlin, 13353, Germany
| | - Bernd-W Igl
- Bayer Pharma AG, Muellerstrasse 178, Berlin, 13353, Germany
| | - Julia Kenny
- GlaxoSmithKline, Park Road, Ware, Hertfordshire, SG12 0DP, United Kingdom
| | - Joanne Collins
- GlaxoSmithKline, Park Road, Ware, Hertfordshire, SG12 0DP, United Kingdom
| | | | - Carson Labash
- Litron Laboratories, 3500 Winton Place, Rochester, New York, 14623
| | - Javed A Bhalli
- Covance Laboratories Inc, 671 S. Meridian Rd, Greenfield, Indiana, 46140
| | - Cameron C M Tebbe
- Covance Laboratories Inc, 671 S. Meridian Rd, Greenfield, Indiana, 46140
| | - Kylie M McNeil
- Covance Laboratories Inc, 671 S. Meridian Rd, Greenfield, Indiana, 46140
| | - Andreas Sutter
- Bayer Pharma AG, Muellerstrasse 178, Berlin, 13353, Germany
| |
Collapse
|
22
|
Kimoto T, Horibata K, Miura D, Chikura S, Okada Y, Ukai A, Itoh S, Nakayama S, Sanada H, Koyama N, Muto S, Uno Y, Yamamoto M, Suzuki Y, Fukuda T, Goto K, Wada K, Kyoya T, Shigano M, Takasawa H, Hamada S, Adachi H, Uematsu Y, Tsutsumi E, Hori H, Kikuzuki R, Ogiwara Y, Yoshida I, Maeda A, Narumi K, Fujiishi Y, Morita T, Yamada M, Honma M. The PIGRET assay, a method for measuring Pig-a gene mutation in reticulocytes, is reliable as a short-term in vivo genotoxicity test: Summary of the MMS/JEMS-collaborative study across 16 laboratories using 24 chemicals. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 811:3-15. [DOI: 10.1016/j.mrgentox.2016.10.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 10/18/2016] [Indexed: 10/20/2022]
|
23
|
Chikura S, Okada Y, Kimoto T, Kaneko H, Miura D, Kasahara Y. The rat Pig-a assay using an erythroid HIS49 antibody in a single dose study of isopropyl p-toluenesulfonate. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 811:110-116. [DOI: 10.1016/j.mrgentox.2016.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 10/21/2022]
|
24
|
Muto S, Yamada K, Kato T, Ando M, Inoue Y, Iwase Y, Uno Y. Evaluation of the mutagenicity of alkylating agents, methylnitrosourea and temozolomide, using the rat Pig-a assay with total red blood cells or reticulocytes. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 811:117-122. [DOI: 10.1016/j.mrgentox.2016.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 01/20/2016] [Indexed: 01/24/2023]
|
25
|
Evaluation of a single-dose PIGRET assay for cisplatin in rats compared with the RBC Pig-a assay. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 811:97-101. [DOI: 10.1016/j.mrgentox.2016.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 02/22/2016] [Indexed: 10/21/2022]
|
26
|
Evaluation of the PIGRET assay as a short-term test using a single dose of diethylnitrosamine. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 811:70-74. [DOI: 10.1016/j.mrgentox.2016.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 02/15/2016] [Indexed: 11/18/2022]
|
27
|
Horibata K, Ukai A, Ishikawa S, Sugano A, Honma M. Monitoring genotoxicity in patients receiving chemotherapy for cancer: application of the PIG-A assay. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 808:20-6. [DOI: 10.1016/j.mrgentox.2016.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 10/21/2022]
|
28
|
Johnson GE, Yamamoto M, Suzuki Y, Adachi H, Kyoya T, Takasawa H, Horibata K, Tsutsumi E, Wada K, Kikuzuki R, Yoshida I, Kimoto T, Maeda A, Narumi K. Measuring reproducibility of dose response data for the Pig-a assay using covariate benchmark dose analysis. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 811:135-139. [PMID: 27931807 DOI: 10.1016/j.mrgentox.2016.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 04/11/2016] [Indexed: 11/28/2022]
Abstract
The reproducibility of the in vivo Pig-a gene mutation test system was assessed across 13 different Japanese laboratories. In each laboratory rats were exposed to the same dosing regimen of N-nitroso-N-ethylurea (ENU), and red blood cells (RBCs) and reticulocytes (RETs) were collected for mutant phenotypic analysis using flow cytometry. Mutant frequency dose response data were analysed using the PROAST benchmark dose (BMD) statistical package. Laboratory was used as a covariate during the analysis to allow all dose responses to be analysed at the same time, with conserved shape parameters. This approach has recently been shown to increase the precision of the BMD analysis, as well as providing a measure of equipotency. This measure of equipotency was used here to demonstrate a reasonable level of interlaboratory reproducibility. Increased reproducibility could have been achieved by increasing the number of cells scored, as this would reduce the number of zero values within the mutant frequency data. Overall, the interlaboratory trial was successful, and these findings support the transferability of the in vivo Pig-a gene mutation assay.
Collapse
Affiliation(s)
- George E Johnson
- Swansea University Medical School, Swansea University, SA2 8PP, United Kingdom.
| | - Mika Yamamoto
- Drug Development Toxicology, Drug Safety Research Laboratories, Drug Discovery Research Division, Astellas Pharma Inc., 2-1-6, Kashima, Yodogawa-ku, Osaka 532-8514, Japan
| | - Yuta Suzuki
- Gotemba Laboratory, BoZo Research Center Inc., Gotemba-shi, Shizuoka 412-0039, Japan
| | - Hideki Adachi
- Preclinical Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd., 3-1-98 Kasugadenaka, Konohana-ku, Osaka 554-0022, Japan
| | - Takahiro Kyoya
- Toxicology Laboratory, Life Science Research Institute, Kumiai Chemical Industry, Co., Ltd., 3360 Kamo, Kikugawa-shi, Shizuoka 439-0031, Japan
| | - Hironao Takasawa
- Safety Assessment Department, Nonclinical Research Center, Drug Development Service Segment, LSI Medience Corporation, 14-1 Sunayama, Kamisu-shi, Ibaraki 314-0255, Japan
| | - Katsuyoshi Horibata
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Eri Tsutsumi
- Quality Assurance Division, Safety Science Institute, Suntory Business Expert Limited, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Kunio Wada
- Toxicology Division, The Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Ryuta Kikuzuki
- Drug Safety and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-cho, Kita-ku, Saitama-shi 331-9530, Japan
| | - Ikuma Yoshida
- Drug Safety Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Takafumi Kimoto
- Pharmaceutical Development Research Laboratories, Teijin Institute for Bio-medical Research, Teijin Pharma Limited, 4-3-2 Asahigaoka, Hino-shi, Tokyo 191-8512, Japan
| | - Akihisa Maeda
- Toxicology and Pharmacokinetics Laboratories, Pharmaceutical Research Laboratories, Toray Industries Inc., 6-10-1 Tebiro, Kamakura, Kanagawa 248-8555, Japan
| | - Kazunori Narumi
- Yakult Honsha Co., Ltd., 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| |
Collapse
|
29
|
Wills JW, Long AS, Johnson GE, Bemis JC, Dertinger SD, Slob W, White PA. Empirical analysis of BMD metrics in genetic toxicology part II: in vivo potency comparisons to promote reductions in the use of experimental animals for genetic toxicity assessment. Mutagenesis 2016; 31:265-75. [PMID: 26984301 DOI: 10.1093/mutage/gew009] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Genotoxicity tests have traditionally been used only for hazard identification, with qualitative dichotomous groupings being used to identify compounds that have the capacity to induce mutations and/or cytogenetic alterations. However, there is an increasing interest in employing quantitative analysis of in vivo dose-response data to derive point of departure (PoD) metrics that can be used to establish human exposure limits or margins of exposure (MOEs), thereby supporting human health risk assessments and regulatory decisions. This work is an extension of our companion article on in vitro dose-response analyses and outlines how the combined benchmark dose (BMD) approach across included covariates can be used to improve the analyses and interpretation of in vivo genetic toxicity dose-response data. Using the BMD-covariate approach, we show that empirical comparisons of micronucleus frequency dose-response data across multiple studies justifies dataset merging, with subsequent analyses improving the precision of BMD estimates and permitting attendant potency ranking of seven clastogens. Similarly, empirical comparisons of Pig-a mutant phenotype frequency data collected in males and females justified dataset merging across sex. This permitted more effective scrutiny regarding the effect of post-exposure sampling time on the mutagenicity of N-ethyl-N-nitrosourea observed in reticulocytes and erythrocytes in the Pig-a assay. The BMD-covariate approach revealed tissue-specific differences in the induction of lacZ transgene mutations in Muta™Mouse specimens exposed to benzo[a]pyrene (BaP), with the results permitting the formulation of mechanistic hypotheses regarding the observed potency ranking. Lastly, we illustrate how historical dose-response data for assessments that examined numerous doses (i.e. induced lacZ mutant frequency (MF) across 10 doses of BaP) can be used to improve the precision of BMDs derived from datasets with far fewer doses (i.e. lacZ MF for 3 doses of dibenz[a,h]anthracene). Collectively, the presented examples illustrate how innovative use of the BMD approach can permit refinement of the use of in vivo data; improving the efficacy of experimental animal use in genetic toxicology without sacrificing PoD precision.
Collapse
Affiliation(s)
- John W Wills
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario K1A 0K9, Canada,
| | - Alexandra S Long
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - George E Johnson
- Swansea University Medical School, Institute of Life Science, Swansea SA2 8PP, UK
| | | | | | - Wout Slob
- National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands
| | - Paul A White
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario K1A 0K9, Canada,
| |
Collapse
|
30
|
Moderate malnutrition in rats induces somatic gene mutations. Mutat Res 2016; 789:26-32. [PMID: 26994962 DOI: 10.1016/j.mrfmmm.2016.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 01/07/2016] [Accepted: 01/30/2016] [Indexed: 11/21/2022]
Abstract
The relationship between malnutrition and genetic damage has been widely studied in human and animal models, leading to the observation that interactions between genotoxic exposure and micronutrient status appear to affect genomic stability. A new assay has been developed that uses the phosphatidylinositol glycan class A gene (Pig-a) as a reporter for measuring in vivo gene mutation. The Pig-a assay can be employed to evaluate mutant frequencies (MFs) in peripheral blood reticulocytes (RETs) and erythrocytes (RBCs) using flow cytometry. In the present study, we assessed the effects of malnutrition on mutagenic susceptibility by exposing undernourished (UN) and well-nourished (WN) rats to N-ethyl-N-nitrosourea (ENU) and measuring Pig-a MFs. Two week-old UN and WN male Han-Wistar rats were treated daily with 0, 20, or 40mg/kg ENU for 3 consecutive days. Blood was collected from the tail vein one day before ENU treatment (Day-1) and after ENU administration on Days 7, 14, 21, 28, 35, 42, 49, 56 and 63. Pig-a MFs were measured in RETs and RBCs as the RET(CD59-) and RBC(CD59-) frequencies. In the vehicle control groups, the frequencies of mutant RETs and RBCs were significantly higher in UN rats compared with WN rats at all sampling times. The ENU treatments increased RET and RBC MFs starting at Day 7. Although ENU-induced Pig-a MFs were consistently lower in UN rats than in WN rats, these differences were not significant. To understand these responses, further studies should use other mutagens and nucleated surrogate cells and examine the types of mutations induced in UN and WN rats.
Collapse
|
31
|
Roberts DJ, McKeon M, Xu Y, Stankowski LF. Comparison of integrated genotoxicity endpoints in rats after acute and subchronic oral doses of 4-nitroquinoline-1-oxide. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:17-27. [PMID: 26407646 PMCID: PMC7362388 DOI: 10.1002/em.21981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/17/2015] [Indexed: 05/16/2023]
Abstract
During interlaboratory validation trials for the Pig-a gene mutation assay we assessed the genotoxicity of 4-nitroquinoline-1-oxide (4NQO) across endpoints in multiple tissues: induction of Pig-a mutant red blood cells (RBCs) and reticulocytes (RETs); micronucleated RETs (MN RETs); and DNA damage in blood and liver via the alkaline Comet assay (%tail intensity [TI]). In a previous subchronic toxicity study with 28 daily doses, biologically meaningful increases were observed only for Pig-a mutant RBCs/RETs while marginal increases in the frequency of MN RET were observed, and other clastogenic endpoints were negative. Follow up acute studies were performed using the same cumulative doses (0, 35, 70, 105, and 140 mg/kg) administered in a bolus, or split over three equal daily doses, with samples collected up to 1 month after the last dose. Both of the acute dosing regimens produced similar results, in that endpoints were either positive or negative, regardless of 1 or 3 daily doses, but the three consecutive daily dose regimen yielded more potent responses in TI (in liver and blood) and Pig-a mutant frequencies. In these acute studies the same cumulative doses of 4NQO induced positive responses in clastogenic endpoints that were negative or inconclusive using a subchronic study design. Additionally, a positive control group using combination doses of cyclophosphamide and ethyl methanesulfonate was employed to assess assay validity and potentially identify a future positive control treatment for integrated genetic toxicity studies.
Collapse
Affiliation(s)
- Daniel J Roberts
- Bristol-Myers Squibb, New Brunswick, NJ, USA
- Joint Graduate Program of Toxicology, Rutgers, NJ, USA
| | | | - Yong Xu
- BioReliance Corporation, Rockville, MD, USA
| | | |
Collapse
|
32
|
Zeller A, Tang L, Dertinger SD, Funk J, Duran-Pacheco G, Guérard M. A proposal for a novel rationale for critical effect size in dose–response analysis based on a multi-endpointin vivostudy with methyl methanesulfonate. Mutagenesis 2015; 31:239-53. [DOI: 10.1093/mutage/gev077] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
33
|
Dobrovolsky VN, Revollo J, Pearce MG, Pacheco-Martinez MM, Lin H. CD48-deficient T-lymphocytes from DMBA-treated rats have de novo mutations in the endogenous Pig-a gene. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:674-683. [PMID: 26033714 DOI: 10.1002/em.21959] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 06/04/2023]
Abstract
A major question concerning the scientific and regulatory acceptance of the rodent red blood cell-based Pig-a gene mutation assay is the extent to which mutants identified by their phenotype in the assay are caused by mutations in the Pig-a gene. In this study, we identified T-lymphocytes deficient for the glycosylphosphatidylinositol-anchored surface marker, CD48, in control and 7,12-dimethylbenz[a]anthracene (DMBA)-treated rats using a flow cytometric assay and determined the spectra of mutations in the endogenous Pig-a gene in these cells. CD48-deficient T-cells were seeded by sorting at one cell per well into 96-well plates, expanded into clones, and exons of their genomic Pig-a were sequenced. The majority (78%) of CD48-deficient T-cell clones from DMBA-treated rats had mutations in the Pig-a gene. The spectrum of DMBA-induced Pig-a mutations was dominated by mutations at A:T, with the mutated A being on the nontranscribed strand and A → T transversion being the most frequent change. The spectrum of Pig-a mutations in DMBA-treated rats was different from the spectrum of Pig-a mutations in N-ethyl-N-nitrosourea (ENU)-treated rats, but similar to the spectrum of DMBA mutations for another endogenous X-linked gene, Hprt. Only 15% of CD48-deficient mutants from control animals contained Pig-a mutations; T-cell biology may be responsible for a relatively large fraction of false Pig-a mutant lymphocytes in control animals. Among the verified mutants from control rats, the most common were frameshifts and deletions. The differences in the spectra of spontaneous, DMBA-, and ENU-induced Pig-a mutations suggest that the flow cytometric Pig-a assay detects de novo mutation in the endogenous Pig-a gene.
Collapse
Affiliation(s)
- Vasily N Dobrovolsky
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas
| | - Javier Revollo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas
| | - Mason G Pearce
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas
| | | | - Haixia Lin
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas
| |
Collapse
|
34
|
Dertinger SD, Avlasevich SL, Bemis JC, Chen Y, MacGregor JT. Human erythrocyte PIG-A assay: an easily monitored index of gene mutation requiring low volume blood samples. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:366-77. [PMID: 25412990 PMCID: PMC4406781 DOI: 10.1002/em.21924] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/29/2014] [Indexed: 05/21/2023]
Abstract
This laboratory has previously described a method for scoring the incidence of rodent blood Pig-a mutant phenotype erythrocytes using immunomagnetic separation in conjunction with flow cytometric analysis (In Vivo MutaFlow®). The current work extends this approach to human blood. The frequencies of CD59- and CD55-negative reticulocytes (RET(CD59-/CD55-)) and erythrocytes (RBC(CD59-/CD55-)) serve as phenotypic reporters of PIG-A gene mutation. Immunomagnetic separation was found to provide an effective means of increasing the number of reticulocytes and erythrocytes evaluated. Technical replicates were utilized to provide a sufficient number of cells for precise scoring while at the same time controlling for procedural accuracy by allowing comparison of replicate values. Cold whole blood samples could be held for at least one week without affecting reticulocyte, RET(CD59-/CD55-) or RBC(CD59-/CD55-) frequencies. Specimens from a total of 52 nonsmoking, self-reported healthy adult subjects were evaluated. The mean frequency of RET(CD59-/CD55-) and RBC(CD59-/CD55-) were 6.0 × 10(-6) and 2.9 × 10(-6), respectively. The difference is consistent with a modest selective pressure against mutant phenotype erythrocytes in the circulation, and suggests advantages of studying both populations of erythrocytes. Whereas intra-subject variability was low, inter-subject variability was relatively high, with RET(CD59-/CD55-) frequencies differing by more than 30-fold. There was an apparent correlation between age and mutant cell frequencies. Taken together, the results indicate that the frequency of human PIG-A mutant phenotype cells can be efficiently and reliably estimated using a labeling and analysis protocol that is well established for rodent-based studies. The applicability of the assay across species, its simplicity and statistical power, and the relatively non-invasive nature of the assay should benefit myriad research areas involving DNA damage, including studies of environmental factors that modify "spontaneous" mutation frequencies.
Collapse
Affiliation(s)
- Stephen D. Dertinger
- Litron Laboratories, Rochester, New York
- Correspondence to: Stephen D. Dertinger, Litron Laboratories, 3500 Winton Place, Rochester, NY 14623.
| | | | | | - Yuhchyau Chen
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York
| | | |
Collapse
|
35
|
Gollapudi BB, Lynch AM, Heflich RH, Dertinger SD, Dobrovolsky VN, Froetschl R, Horibata K, Kenyon MO, Kimoto T, Lovell DP, Stankowski LF, White PA, Witt KL, Tanir JY. The in vivo Pig-a assay: A report of the International Workshop On Genotoxicity Testing (IWGT) Workgroup. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 783:23-35. [DOI: 10.1016/j.mrgentox.2014.09.007] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 09/15/2014] [Indexed: 12/01/2022]
|
36
|
Stankowski LF, Aardema MJ, Lawlor TE, Pant K, Roy S, Xu Y, Elbekai R. Integration of Pig-a, micronucleus, chromosome aberration and comet assay endpoints in a 28-day rodent toxicity study with urethane. Mutagenesis 2015; 30:335-42. [PMID: 25934985 PMCID: PMC4506322 DOI: 10.1093/mutage/gev013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
As part of the international Pig-a validation trials, we examined the induction of Pig-a mutant reticulocytes and red blood cells (RET(CD59-) and RBC(CD59-), respectively) in peripheral blood of male Sprague Dawley(®) rats treated with urethane (25, 100 and 250mg/kg/day) or saline by oral gavage for 29 days. Additional endpoints integrated into this study were: micronucleated reticulocytes (MN-RET) in peripheral blood; chromosome aberrations (CAb) and DNA damage (%tail intensity via the comet assay) in peripheral blood lymphocytes (PBL); micronucleated polychromatic erythrocytes (MN-PCE) in bone marrow; and DNA damage (comet) in various organs at termination (the 29th dose was added for the comet endpoint at sacrifice). Ethyl methanesulfonate (EMS; 200mg/kg/day on Days 3, 4, 13, 14, 15, 27, 28 and 29) was evaluated as the concurrent positive control (PC). All animals survived to termination and none exhibited overt toxicity, but there were significant differences in body weight and body weight gain in the 250-mg/kg/day urethane group, as compared with the saline control animals. Statistically significant, dose-dependent increases were observed for urethane for: RET(CD59-) and RBC(CD59-) (on Days 15 and 29); MN-RET (on Days 4, 15 and 29); and MN-PCE (on Day 29). The comet assay yielded positive results in PBL (Day 15) and liver (Day 29), but negative results for PBL (Days 4 and 29) and brain, kidney and lung (Day 29). No significant increases in PBL CAb were observed at any sample time. Except for PBL CAb (likely due to excessive cytotoxicity), EMS-induced significant increases in all endpoints/tissues. These results compare favorably with earlier in vivo observations and demonstrate the utility and sensitivity of the Pig-a in vivo gene mutation assay, and its ability to be easily integrated, along with other standard genotoxicity endpoints, into 28-day rodent toxicity studies.
Collapse
Affiliation(s)
| | - Marilyn J Aardema
- BioReliance Corporation, Rockville, MD 20850, USA, Marilyn Aardema Consulting LLC, Fairfield, OH 45014, USA
| | | | - Kamala Pant
- BioReliance Corporation, Rockville, MD 20850, USA
| | - Shambhu Roy
- BioReliance Corporation, Rockville, MD 20850, USA
| | - Yong Xu
- BioReliance Corporation, Rockville, MD 20850, USA
| | - Reem Elbekai
- BioReliance Corporation, Rockville, MD 20850, USA
| |
Collapse
|
37
|
Labash C, Avlasevich SL, Carlson K, Torous DK, Berg A, Bemis JC, MacGregor JT, Dertinger SD. Comparison of male versus female responses in the Pig-a mutation assay. Mutagenesis 2015; 30:349-57. [PMID: 25833915 DOI: 10.1093/mutage/geu055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Validation of the Pig-a gene mutation assay has been based mainly on studies in male rodents. To determine if the mutagen-induced responses of the X-linked Pig-a gene differ in females compared to males, 7- or 14-week old male and female Sprague Dawley rats were exposed to N-ethyl-N-nitrosourea (ENU). In the study with the 7-week old rats, exposure was to 0, 1, 5 or 25mg ENU/kg/day for three consecutive days (study Days 1-3). Pig-a mutant phenotype reticulocyte (RET(CD59-)) and mutant phenotype erythrocyte (RBC(CD59-)) frequencies were determined on study Days -4, 15, 29 and 46 using immunomagnetic separation in conjunction with flow cytometric analysis (In Vivo MutaFlow®). Additionally, blood samples collected on Day 4 were analysed for micronucleated reticulocyte (MN-RET) frequency (In Vivo MicroFlow®). The percentage of reticulocytes (%RET) was markedly higher in the 7-week old males compared to females through Day 15 (2.39-fold higher on Day -4). At 25mg/kg/day, ENU reduced Day 4 RET frequencies in both sexes, and the two highest dose levels resulted in elevated MN-RET frequencies, with no sex or treatment × sex interaction. The two highest dose levels significantly elevated the frequencies of mean RET(CD59-) and RBC(CD59-) in both sexes from Day 15 onward. RET(CD59-) and RBC(CD59-) frequencies were somewhat lower for females compared to males at the highest dose level studied, and differences in RET(CD59-) resulted in a statistically significant interaction effect of treatment × sex. In the study with 14-week old rats, treatment was for 3 days with 0 or 25mg ENU/kg/day. RET frequencies differed to a lesser degree between the sexes, and in this case there was no evidence of a treatment × sex interaction. These results suggest that the slightly higher response in younger males than in the younger females may be related to differences in erythropoiesis function at that age. In conclusion, while some quantitative differences were noted, there were no qualitative differences in how males and females responded to a prototypical mutagen, and support the contention that both sexes are equally acceptable for Pig-a gene mutation studies.
Collapse
|
38
|
Coffing SL, Kenyon MO, Ackerman JI, Shutsky TJ, Dobo KL. Evaluation of the in vivo mutagenicity of isopropyl methanesulfonate in acute and 28-day studies. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:322-332. [PMID: 25229874 DOI: 10.1002/em.21910] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/21/2014] [Accepted: 08/22/2014] [Indexed: 06/03/2023]
Abstract
Understanding the mutagenic dose response could prove beneficial in the management of pharmaceutically relevant impurities. For most alkyl ester impurities, such as isopropyl methanesulfonate (IPMS), little in vivo mutagenicity data exist for dose analysis. The likelihood of a sublinear dose response for IPMS was assessed by comparing the Swain Scott constant, the SN 1/SN 2 reaction mechanism and the O(6) :N(7) guanine adduct ratio to that of more well-known alkyl esters. Based on available information, IPMS was predicted to have a mutagenic profile most like ethyl nitrosourea. To test this hypothesis, mature male Wistar Han rats were administered IPMS using acute (single administration at 3.5 to 56 mg/kg) or subchronic (28 days at 0.125 to 2 mg/kg/day) exposures. The in vivo Pig-a mutation assay was used to identify mutant phenotype reticulocyte (Ret) and red blood cell (RBC) populations. The maximum mutant response occurred approximately 15 and 28 days after the last dose administration in the mutant Ret and RBC populations respectively in the acute study and on Day 29 and 56 in the mutant Ret and RBC populations, respectively, in the subchronic study. A comparison of RBC mutant frequencies from acute and subchronic protocols suggests a sublinear response; however, this was not substantiated by statistical analysis. A No Observed Effect Level (NOEL) of 0.25 mg/kg/day resulted in a Permitted Daily Exposure equivalent to the Threshold of Toxicological Concern. An estimate of the NOEL based on the previously mentioned factors, in practice, would have pre-empted further investigation of the potent mutagen IPMS.
Collapse
Affiliation(s)
- Stephanie L Coffing
- Pfizer Worldwide Research and Development, Genetic Toxicology, Groton, Connecticut
| | | | | | | | | |
Collapse
|
39
|
Revollo J, Pearce MG, Petibone DM, Mittelstaedt RA, Dobrovolsky VN. Confirmation of Pig-a mutation in flow cytometry-identified CD48-deficient T-lymphocytes from F344 rats. Mutagenesis 2015; 30:315-24. [DOI: 10.1093/mutage/geu030] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
40
|
Godin-Ethier J, Leroux F, Wang N, Thébaud S, Merah F, Nelson A. Characterisation of an in vivo Pig-a gene mutation assay for use in regulatory toxicology studies. Mutagenesis 2015; 30:359-63. [DOI: 10.1093/mutage/gev005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
41
|
Johnson GE, Slob W, Doak SH, Fellows MD, Gollapudi BB, Heflich RH, Rees BJ, Soeteman-Hernández LG, Verma JR, Wills JW, Jenkins GJS, White PA. New approaches to advance the use of genetic toxicology analyses for human health risk assessment. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00118d] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Genetic toxicology testing has a crucial role in the safety assessment of substances of societal value by reducing human exposure to potential somatic and germ cell mutagens.
Collapse
Affiliation(s)
- George E. Johnson
- Institute of Life Science
- College of Medicine
- Swansea University
- Swansea
- UK
| | - Wout Slob
- Institute of Life Science
- College of Medicine
- Swansea University
- Swansea
- UK
| | - Shareen H. Doak
- Institute of Life Science
- College of Medicine
- Swansea University
- Swansea
- UK
| | | | | | - Robert H. Heflich
- National Centre for Toxicological Research
- U.S. Food and Drug Administration
- Jefferson
- USA
| | - Ben J. Rees
- Institute of Life Science
- College of Medicine
- Swansea University
- Swansea
- UK
| | - Lya G. Soeteman-Hernández
- Center for Health Protection
- National Institute for Public Health and the Environment (RIVM)
- Bilthoven
- Netherlands
| | - Jatin R. Verma
- Institute of Life Science
- College of Medicine
- Swansea University
- Swansea
- UK
| | - John W. Wills
- Institute of Life Science
- College of Medicine
- Swansea University
- Swansea
- UK
| | | | - Paul A. White
- Environmental Health Sciences and Research Bureau
- Healthy Environments and Consumer Safety Branch
- Health Canada
- Ottawa
- Canada
| |
Collapse
|
42
|
Zhou C, Zhang M, Huang P, Tu H, Wang Z, Dertinger SD, Torous DK, Chang Y. Assessment of 5-fluorouracil and 4-nitroquinoline-1-oxide in vivo genotoxicity with Pig-a mutation and micronucleus endpoints. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:735-740. [PMID: 25124805 DOI: 10.1002/em.21893] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/22/2014] [Indexed: 06/03/2023]
Abstract
Genotoxicity assessments were conducted on male Sprague Dawley rats treated with 5-fluorouracil (5-FU) and 4-nitroquinoline-1-oxide (4NQO) as part of an international validation trial of the Pig-a mutant phenotype assay. Rats were orally exposed to 0, 11.5, 23, or 46 mg/kg/day 5-FU for three consecutive days (Days 1-3); blood was sampled on Days -1, 4, 15, 29, and 45. Pig-a mutant phenotype reticulocyte (RET(CD59-)) and mutant phenotype erythrocyte (RBC(CD59-)) frequencies were determined on Days -1, 15, 29, and 45, and percent micronucleated reticulocytes (%MN-RET) were measured on Day 4. Rats were treated with 4NQO for 28 consecutive days by oral gavage, at doses of 1.5, 3, or 6 mg/kg/day. RBC(CD59-) and RET(CD59-) frequencies were determined on Days -1, 15, and 29, and MN-RET were quantified on Day 29. Whereas 5-FU was found to increase %MN-RET, no significant increases were observed for RBC(CD59-) or RET(CD59-) at any of the time points studied. The high dose of 4NQO (6 mg/kg/day) was observed to markedly increase RBC(CD59-) and RET(CD59-) frequencies, and this same dose level caused a weak but significantly elevated increase in MN-RET (approximately twofold). Collectively, the results provide additional support for the combination of Pig-a mutation and MN-RET into acute and 28-day repeat-dose studies.
Collapse
Affiliation(s)
- Changhui Zhou
- National Shanghai Center for New Drug Safety Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Krüger CT, Hofmann M, Hartwig A. The in vitro PIG-A gene mutation assay: mutagenicity testing via flow cytometry based on the glycosylphosphatidylinositol (GPI) status of TK6 cells. Arch Toxicol 2014; 89:2429-43. [PMID: 25417052 DOI: 10.1007/s00204-014-1413-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 11/06/2014] [Indexed: 11/28/2022]
Abstract
The X-linked PIG-A gene is involved in the biosynthesis of the cell surface anchor GPI, and its inactivation may serve as a new marker for mutagenicity. The in vivo PIG-A gene mutation assay is currently being validated by several groups. In this study, we established a corresponding in vitro variant of the PIG-A assay applying B-lymphoblastoid TK6 cells. PE-conjugated antibodies against the GPI-anchored proteins CD55 and CD59 were used to determine the GPI status via multicolor flow cytometry. Mutant spiked TK6 cell samples were analyzed, and mutants were quantified with even small numbers being quantitatively recovered. To validate our approach, mutant spiked cell samples were analyzed by flow cytometry and proaerolysin selection in parallel, yielding a high correlation. Further, we developed a procedure to reduce the background level of preexisting mutant cells to lower than 20 in 10(6) cells to increase the sensitivity of the assay. Spontaneous rate of GPI deficiency was investigated being 0.76 × 10(-6)/cell/generation for TK6 cells. The optimal phenotype expression time after ethyl methanesulfonate treatment was found to be 10 days. We applied the in vitro PIG-A assay to demonstrate the mutagenicity of ethyl methanesulfonate, 4-nitroquinoline 1-oxide and UV-C irradiation in a dose-dependent and statistically significant manner. Pyridine and cycloheximide were included as negative controls providing negative test results up to 10 mM. These data suggest that the in vitro PIG-A assay could complement the in vivo PIG-A assay with some distinct advantages compared to other in vitro mammalian mutagenicity tests.
Collapse
Affiliation(s)
- Christopher T Krüger
- Department of Food Chemistry and Toxicology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131, Karlsruhe, Germany
| | - Mareike Hofmann
- Department of Food Chemistry and Toxicology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131, Karlsruhe, Germany
| | - Andrea Hartwig
- Department of Food Chemistry and Toxicology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131, Karlsruhe, Germany.
| |
Collapse
|
44
|
Graupner A, Instanes C, Dertinger SD, Andersen JM, Lindeman B, Rongved TD, Brunborg G, Olsen AK. Single cell gel electrophoresis (SCGE) and Pig-a mutation assay in vivo-tools for genotoxicity testing from a regulatory perspective: a study of benzo[a]pyrene in Ogg1(-/-) mice. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 772:34-41. [PMID: 25308545 DOI: 10.1016/j.mrgentox.2014.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 07/25/2014] [Accepted: 07/29/2014] [Indexed: 01/14/2023]
Abstract
The OECD has developed test guidelines (TG) to identify agents with genotoxic effects. The in vivo alkaline single cell gel electrophoresis (SCGE) assay is currently being prepared to become such a TG. The performance of a combined SCGE/Pig-a gene mutation study was evaluated with the prototypical genotoxicant benzo[a]pyrene (BaP) at an exposure level known to induce germ cell mutation. We aimed to better understand (i) the strengths and weaknesses of the two methods applied in blood and their potential to predict germ cell mutagenicity, and (ii) the involvement of reactive oxygen species (ROS) following in vivo BaP-exposure. To explore the involvement of ROS on BaP genotoxicity, we utilised a mouse model deficient in a DNA glycosylase. Specifically, C57BL/6 mice (Ogg1(+/+) and Ogg1(-/-)) were treated for three consecutive days with 50 mg BaP/kg/day. DNA damage in nucleated blood cells was measured four hours after the last treatment with the SCGE assay, with and without formamidopyrimidine DNA glycosylase (Fpg). Pig-a mutant phenotype blood erythrocytes were analysed two and four weeks after treatment. BaP-induced DNA lesions were not significantly increased in either version of the SCGE assay. The phenotypic mutation frequencies for immature and mature erythrocytes were significantly increased after two weeks. These effects were not affected by genotype, suggesting oxidative damage may have a minor role in BaP genotoxicity, at least in the acute exposure situation studied here. While both assays are promising tools for risk assessment, these results highlight the necessity of understanding the limitations regarding each assay's ability to detect chemicals' genotoxic potential.
Collapse
Affiliation(s)
- Anne Graupner
- Department of Chemicals and Radiation, Norwegian Institute of Public Health, Oslo 0403, Norway
| | - Christine Instanes
- Department of Chemicals and Radiation, Norwegian Institute of Public Health, Oslo 0403, Norway
| | | | - Jill Mari Andersen
- Department of Chemicals and Radiation, Norwegian Institute of Public Health, Oslo 0403, Norway
| | - Birgitte Lindeman
- Department of Chemicals and Radiation, Norwegian Institute of Public Health, Oslo 0403, Norway
| | - Tonje Danielsen Rongved
- Department of Chemicals and Radiation, Norwegian Institute of Public Health, Oslo 0403, Norway
| | - Gunnar Brunborg
- Department of Chemicals and Radiation, Norwegian Institute of Public Health, Oslo 0403, Norway
| | - Ann-Karin Olsen
- Department of Chemicals and Radiation, Norwegian Institute of Public Health, Oslo 0403, Norway.
| |
Collapse
|
45
|
Avlasevich SL, Phonethepswath S, Labash C, Carlson K, Torous DK, Cottom J, Bemis JC, MacGregor JT, Dertinger SD. Diethylnitrosamine genotoxicity evaluated in sprague dawley rats using pig-a mutation and reticulocyte micronucleus assays. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:400-406. [PMID: 24574022 DOI: 10.1002/em.21862] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/12/2014] [Accepted: 02/12/2014] [Indexed: 06/03/2023]
Abstract
Diethylnitrosamine (DEN) is a genotoxic carcinogen, but in vivo DNA-damaging activities are not usually evident in hematopoietic cells because the short-lived active metabolite is formed mainly in the liver. DEN therefore represented an interesting case for evaluating the performance characteristics of blood-based endpoints of genotoxicity that have been automated using flow cytometric analysis-frequency of micronucleated reticulocytes and Pig-a mutant phenotype reticulocytes (RET(CD59-) ) and erythrocytes (RBC(CD59-) ). Male Sprague Dawley rats were treated for 28 consecutive days with DEN at levels up to 12.5 mg/kg/day. Serial blood samples were collected and micronucleus frequencies were determined on Days 4 and 29, while RET(CD59-) and RBC(CD59-) frequencies were determined on Days 15, 29, and 42. The Pig-a analyses were conducted with an enrichment step based on immunomagnetic column separation to increase the statistical power of the assay. Modest but significant reductions to reticulocyte frequencies demonstrated that bone marrow was exposed to reactive intermediates. Even so, DEN did not affect micronucleus frequencies at any dose level tested. However, RET(CD59-) frequencies were significantly elevated in the high dose group on Day 29, and RBC(CD59-) were increased at this same dose level on Days 29 and 42. These results demonstrate that the Pig-a assay is sufficiently sensitive to evaluate chemicals for genotoxic potential, even in the case of a promutagen that has traditionally required direct assessment(s) of liver tissue for detection of DNA-damage.
Collapse
|
46
|
Dertinger SD, Phonethepswath S, Avlasevich SL, Torous DK, Mereness J, Cottom J, Bemis JC, Macgregor JT. Pig-a gene mutation and micronucleated reticulocyte induction in rats exposed to tumorigenic doses of the leukemogenic agents chlorambucil, thiotepa, melphalan, and 1,3-propane sultone. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:299-308. [PMID: 24449360 DOI: 10.1002/em.21846] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 12/13/2013] [Accepted: 12/17/2013] [Indexed: 06/03/2023]
Abstract
To evaluate whether blood-based genotoxicity endpoints can provide temporal and dose-response data within the low-dose carcinogenic range that could contribute to carcinogenic mode of action (MoA) assessments, we evaluated the sensitivity of flow cytometry-based micronucleus and Pig-a gene mutation assays at and below tumorigenic dose rate 50 (TD50) levels. The incidence of micronucleated reticulocytes (MN-RET) was used to evaluate chromosomal damage, and the frequency of CD59-negative reticulocytes (RET(CD59-) ) and erythrocytes (RBC(CD59-) ) served as phenotypic reporters of mutation at the X-linked Pig-a gene. Several leukemogenic agents with a presumed genotoxic MoA were studied. Specifically, male Sprague Dawley rats were treated via oral gavage for 28 days with chlorambucil, thiotepa, melphalan, and 1,3-propane sultone at doses corresponding to 0.33x, 1x, and 3x TD50, as well as at the maximum tolerated dose. Frequencies of MN-RET were determined at Days 4 and 29, and RET(CD59-) and RBC(CD59-) data were collected pretreatment as well as Days 15/16, 29, and 56/57. Dose-related increases were observed for each endpoint, and time to maximal effect was consistently: MN-RET < RET(CD59-) < RBC(CD59-) . For each of the chemicals studied, the genotoxic events occurred long before tumors or preneoplastic lesions would be expected. Furthermore, in the case of Pig-a gene mutation, the responses were observed at or below the TD50 dose for three out of the four chemicals studied. These data illustrate the potential for quantitative blood-based analyses to provide dose-response and temporality information that relates genetic damage to cancer induction.
Collapse
|
47
|
|
48
|
|
49
|
Li Y, Bhalli JA, Ding W, Yan J, Pearce MG, Sadiq R, Cunningham CK, Jones MY, Monroe WA, Howard PC, Zhou T, Chen T. Cytotoxicity and genotoxicity assessment of silver nanoparticles in mouse. Nanotoxicology 2013; 8 Suppl 1:36-45. [DOI: 10.3109/17435390.2013.855827] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Yan Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA,
| | - Javed A. Bhalli
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA,
| | - Wei Ding
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA,
| | - Jian Yan
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA,
| | - Mason G. Pearce
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA,
| | - Rakhshinda Sadiq
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan,
| | - Candice K. Cunningham
- Nanotechnology Core Facility, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA, and
| | - M. Yvonne Jones
- Nanotechnology Core Facility, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA, and
| | - William A. Monroe
- Nanotechnology Core Facility, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA, and
| | - Paul C. Howard
- Nanotechnology Core Facility, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA, and
| | - Tong Zhou
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, MD, USA
| | - Tao Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA,
| |
Collapse
|
50
|
Kimoto T, Horibata K, Chikura S, Hashimoto K, Itoh S, Sanada H, Muto S, Uno Y, Yamada M, Honma M. Interlaboratory trial of the rat Pig-a mutation assay using an erythroid marker HIS49 antibody. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 755:126-34. [DOI: 10.1016/j.mrgentox.2013.06.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/09/2013] [Accepted: 06/11/2013] [Indexed: 11/26/2022]
|