1
|
Thapa B, Hsieh SA, Bell DS, Anderson JL. Monitoring the liberation of volatile organic compounds during fused deposition modeling three dimensional printing using solid-phase microextraction coupled to gas chromatography/mass spectrometry. J Chromatogr A 2023; 1693:463886. [PMID: 36870231 DOI: 10.1016/j.chroma.2023.463886] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023]
Abstract
Three-dimensional (3D) printers have gained tremendous popularity and are being widely used in offices, laboratories, and private homes. Fused deposition modeling (FDM) is among the most commonly used mechanisms by desktop 3D printers in indoor settings and relies on the extrusion and deposition of heated thermoplastic filaments, resulting in the liberation of volatile organic compounds (VOCs). With the growing use of 3D printers, concerns regarding human health have risen as the exposure to VOCs may cause adverse health effects. Therefore, it is important to monitor VOC liberation during printing and to correlate it to filament composition. In this study, VOCs liberated with a desktop printer were measured by solid-phase microextraction (SPME) combined with gas chromatography/mass spectrometry (GC/MS). SPME fibers featuring sorbent coatings of varied polarity were chosen for the extraction of VOCs liberated from acrylonitrile butadiene styrene (ABS), tough polylactic acid, and copolyester+ (CPE+) filaments. It was found that for all three filaments tested, longer print times resulted in a greater number of extracted VOCs. The ABS filament liberated the most VOCs while the CPE+ filaments liberated the fewest VOCs. Through the use of hierarchical cluster analysis and principal component analysis, filaments as well as fibers could be differentiated based on the liberated VOCs. This study demonstrates that SPME is a promising tool to sample and extract VOCs liberated during 3D printing under non-equilibrium conditions and can be used to aid in tentative identification of the VOCs when coupled to gas chromatography-mass spectrometry.
Collapse
Affiliation(s)
- Bhawana Thapa
- Department of Chemistry, Iowa State University, Ames, Iowa 50011 USA
| | - Shu-An Hsieh
- Department of Chemistry, Iowa State University, Ames, Iowa 50011 USA
| | - David S Bell
- Restek Corporation, 110 Benner Circle, Bellefonte, Pennsylvania 16823, USA
| | - Jared L Anderson
- Department of Chemistry, Iowa State University, Ames, Iowa 50011 USA.
| |
Collapse
|
2
|
Nahan K, Sussman EM, Oktem B, Schultheis L, Wickramasekara S. Screening for extractables in additive-manufactured acrylonitrile butadiene styrene orthopedic cast. Talanta 2020; 212:120464. [PMID: 32113524 DOI: 10.1016/j.talanta.2019.120464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 11/25/2022]
Abstract
The use of additive-manufactured components in medical applications, specifically medical devices (e.g., orthopedic casts), has increased in recent years. Such devices may be fabricated at the point of care using consumer-grade additive manufacturing. Limited studies have been conducted to evaluate the extractable substances of these devices. Chemical characterization followed by toxicological risk assessment is one means of evaluating safety of devices. This study was designed to determine the extractables profile of additive-manufactured materials according to filament grade and post-processing method. Feedstocks for additive manufacturing were tested as filament and manufactured casts, while the cast from consumer-grade filament (CGF) was post-processed. Samples were extracted using three solvents of varying polarities. Extracts were analyzed by gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS) techniques. In GC/MS analysis, isopropanol extracts generated fewer compound identifications for USP Class VI filament (USPF)-based casts (3) compared with the respective filament (17) while hexane generated the most compound identifications for the finished cast manufactured from CGF. CGF was found to have the highest number of nonvolatile extractables for isopropanol (15) and hexane (34) by positive ion LC/MS. Additionally, CGF produced more non-polar extractables in hexane than the USPF. A known polymer byproduct and potential genotoxicant, styrene acrylonitrile (SAN) trimer, was one of the compounds identified in both GC/MS and LC/MS at quantities ranging from 19 to 270 μg g-1. Overall these results suggested that the extractables profile was affected by the filament material, printing procedure, and post-processing method.
Collapse
Affiliation(s)
- Keaton Nahan
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - Eric M Sussman
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - Berk Oktem
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - Lester Schultheis
- Fischell Department of Bioengineering, Robert E. Fischell Medical Device Institute, University of Maryland, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Samanthi Wickramasekara
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA.
| |
Collapse
|
3
|
Hobbs CA, Recio L, Winters J, Witt KL. Use of Frozen Tissue in the Comet Assay for the Evaluation of DNA Damage. J Vis Exp 2020:10.3791/59955. [PMID: 32281969 PMCID: PMC9969981 DOI: 10.3791/59955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The comet assay is gaining popularity as a means to assess DNA damage in cultured cells and tissues, particularly following exposure to chemicals or other environmental stressors. Use of the comet assay in regulatory testing for genotoxic potential in rodents has been driven by adoption of an Organisation for Economic Co-operation and Development (OECD) test guideline in 2014. Comet assay slides are typically prepared from fresh tissue at the time of necropsy; however, freezing tissue samples can avoid logistical challenges associated with simultaneous preparation of slides from multiple organs per animal and from many animals per study. Freezing also enables shipping samples from the exposure facility to a different laboratory for analysis, and storage of frozen tissue facilitates deferring a decision to generate DNA damage data for a given organ. The alkaline comet assay is useful for detecting exposure-related DNA double- and single-strand breaks, alkali-labile lesions, and strand breaks associated with incomplete DNA excision repair. However, DNA damage can also result from mechanical shearing or improper sample processing procedures, confounding the results of the assay. Reproducibility in collection and processing of tissue samples during necropsies may be difficult to control due to fluctuating laboratory personnel with varying levels of experience in harvesting tissues for the comet assay. Enhancing consistency through refresher training or deployment of mobile units staffed with experienced laboratory personnel is costly and may not always be feasible. To optimize consistent generation of high quality samples for comet assay analysis, a method for homogenizing flash frozen cubes of tissue using a customized tissue mincing device was evaluated. Samples prepared for the comet assay by this method compared favorably in quality to fresh and frozen tissue samples prepared by mincing during necropsy. Moreover, low baseline DNA damage was measured in cells from frozen cubes of tissue following prolonged storage.
Collapse
Affiliation(s)
| | - Leslie Recio
- Toxicology Program, ILS, Inc., Research Triangle Park, NC
| | - John Winters
- Toxicology Program, ILS, Inc., Research Triangle Park, NC
| | - Kristine L. Witt
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| |
Collapse
|
4
|
Żwierełło W, Maruszewska A, Skórka-Majewicz M, Goschorska M, Baranowska-Bosiacka I, Dec K, Styburski D, Nowakowska A, Gutowska I. The influence of polyphenols on metabolic disorders caused by compounds released from plastics - Review. CHEMOSPHERE 2020; 240:124901. [PMID: 31563713 DOI: 10.1016/j.chemosphere.2019.124901] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/06/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Persistent organic pollutants (POPs) released from plastics into water, soil and air are significant environmental and health problem. Continuous exposure of humans to these substances results not only from the slow biodegradation of plastics but also from their ubiquitous use as industrial materials and everyday products. Exposure to POPs may lead to neurodegenerative disorders, induce inflammation, hepatotoxicity, nephrotoxicity, insulin resistance, allergies, metabolic diseases, and carcinogenesis. This has spurred an increasing intense search for natural compounds with protective effects against the harmful components of plastics. In this paper, we discuss the current state of knowledge concerning the protective functions of polyphenols against the toxic effects of POPs: acrylonitrile, polychlorinated biphenyls, dioxins, phthalates and bisphenol A. We review in detail papers from the last two decades, analyzing POPs in terms of their sources of exposure and demonstrate how polyphenols may be used to counteract the harmful environmental effects of POPs. The protective effect of polyphenols results from their impact on the level and activity of the components of the antioxidant system, enzymes involved in the elimination of xenobiotics, and as a consequence - on the level of reactive oxygen species (ROS). Polyphenols present in daily diet may play a protective role against the harmful effects of POPs derived from plastics, and this interaction is related, among others, to the antioxidant properties of these compounds. To our knowledge, this is the first extensive review of in vitro and in vivo studies concerning the molecular mechanisms of interactions between selected environmental toxins and polyphenols.
Collapse
Affiliation(s)
- Wojciech Żwierełło
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego St., 71-460, Szczecin, Poland
| | - Agnieszka Maruszewska
- Department of Biochemistry, Faculty of Biology, University of Szczecin, 3c Felczaka St., 71-412, Szczecin, Poland
| | - Marta Skórka-Majewicz
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego St., 71-460, Szczecin, Poland
| | - Marta Goschorska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 72 Powst. Wlkp. St., 70-111, Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 72 Powst. Wlkp. St., 70-111, Szczecin, Poland
| | - Karolina Dec
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego St., 71-460, Szczecin, Poland
| | - Daniel Styburski
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego St., 71-460, Szczecin, Poland
| | - Anna Nowakowska
- Centre for Human Structural and Functional Research, Faculty of Physical Education and Health Promotion, University of Szczecin, 17C Narutowicza St., 70-240, Szczecin, Poland
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, 72 Powst. Wlkp. St., 70-111, Szczecin, Poland.
| |
Collapse
|
5
|
Smith‐Roe SL, Wyde ME, Stout MD, Winters JW, Hobbs CA, Shepard KG, Green AS, Kissling GE, Shockley KR, Tice RR, Bucher JR, Witt KL. Evaluation of the genotoxicity of cell phone radiofrequency radiation in male and female rats and mice following subchronic exposure. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:276-290. [PMID: 31633839 PMCID: PMC7027901 DOI: 10.1002/em.22343] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/04/2019] [Accepted: 10/16/2019] [Indexed: 05/03/2023]
Abstract
The National Toxicology Program tested two common radiofrequency radiation (RFR) modulations emitted by cellular telephones in a 2-year rodent cancer bioassay that included interim assessments of additional animals for genotoxicity endpoints. Male and female Hsd:Sprague Dawley SD rats and B6C3F1/N mice were exposed from Gestation day 5 or Postnatal day 35, respectively, to code division multiple access (CDMA) or global system for mobile modulations over 18 hr/day, at 10-min intervals, in reverberation chambers at specific absorption rates of 1.5, 3, or 6 W/kg (rats, 900 MHz) or 2.5, 5, or 10 W/kg (mice, 1,900 MHz). After 19 (rats) or 14 (mice) weeks of exposure, animals were examined for evidence of RFR-associated genotoxicity using two different measures. Using the alkaline (pH > 13) comet assay, DNA damage was assessed in cells from three brain regions, liver cells, and peripheral blood leukocytes; using the micronucleus assay, chromosomal damage was assessed in immature and mature peripheral blood erythrocytes. Results of the comet assay showed significant increases in DNA damage in the frontal cortex of male mice (both modulations), leukocytes of female mice (CDMA only), and hippocampus of male rats (CDMA only). Increases in DNA damage judged to be equivocal were observed in several other tissues of rats and mice. No significant increases in micronucleated red blood cells were observed in rats or mice. In conclusion, these results suggest that exposure to RFR is associated with an increase in DNA damage. Environ. Mol. Mutagen. 61:276-290, 2020. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Stephanie L. Smith‐Roe
- Division of the National Toxicology ProgramNational Institute of Environmental Health SciencesResearch Triangle ParkNorth Carolina
| | - Michael E. Wyde
- Division of the National Toxicology ProgramNational Institute of Environmental Health SciencesResearch Triangle ParkNorth Carolina
| | - Matthew D. Stout
- Division of the National Toxicology ProgramNational Institute of Environmental Health SciencesResearch Triangle ParkNorth Carolina
| | - John W. Winters
- Integrated Laboratory Systems, Inc.Research Triangle ParkNorth Carolina
| | - Cheryl A. Hobbs
- Integrated Laboratory Systems, Inc.Research Triangle ParkNorth Carolina
| | - Kim G. Shepard
- Integrated Laboratory Systems, Inc.Research Triangle ParkNorth Carolina
| | - Amanda S. Green
- Integrated Laboratory Systems, Inc.Research Triangle ParkNorth Carolina
| | - Grace E. Kissling
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health SciencesResearch Triangle ParkNorth Carolina
| | - Keith R. Shockley
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health SciencesResearch Triangle ParkNorth Carolina
| | - Raymond R. Tice
- Division of the National Toxicology ProgramNational Institute of Environmental Health SciencesResearch Triangle ParkNorth Carolina
| | - John R. Bucher
- Division of the National Toxicology ProgramNational Institute of Environmental Health SciencesResearch Triangle ParkNorth Carolina
| | - Kristine L. Witt
- Division of the National Toxicology ProgramNational Institute of Environmental Health SciencesResearch Triangle ParkNorth Carolina
| |
Collapse
|
6
|
Witter AE. Quantification of azaarenes, hydroxylated azaarene derivatives, and other polar compounds released in urban runoff from two commercial sealcoat products. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113103. [PMID: 31479809 DOI: 10.1016/j.envpol.2019.113103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/17/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
Sealcoat is an emulsified coating product applied to asphalt to protect against surface weathering. Sealcoat products contain coal-tar (CT) or petroleum-derived residues and are a recognized source of polycyclic aromatic hydrocarbons (PAHs) in urban areas. Although the toxicity of urban runoff from CT-sealed asphalt is established, chemical characterization has focused more on PAHs and alkylated derivatives and less on polar transformation products. In this study, solid-phase extraction (SPE) was used to concentrate dissolved (<0.2 μm) species in runoff collected from asphalt surfaces sealed with CT pitch or steam-cracked petroleum (SCP) residues. CT-sealed surfaces released a 20-fold greater concentration of SPE-extractable compounds in runoff compared to SCP-sealed surfaces. Representative compounds were sorted into four groups: nitrogen heterocycles (azaarenes) and other oxygen- and sulfur-containing species (N HET); hydroxylated N heterocycles (hydroxylated N HET); the nonionic surfactant 2,4,7,9-tetramethyl-5-decyne-4,7-diol (TMDD); and styrene-acrylonitrile polymer byproducts (SAN Trimer). Species concentrations and weathering-related disappearance behavior differed among the four subgroups. While hydroxylated N HET concentrations decreased by 94% in runoff from CT-sealed surfaces 60 h after sealcoat application, SAN Trimer concentrations in CT and SCP runoff increased over time as polymerization progressed, illustrating the complex changes the chemicals in sealcoat undergo as it cures under environmentally-relevant conditions. Overall, this study shows that urban runoff collected from CT-sealed and SCP-sealed asphalt surfaces is a potential source of water-soluble contaminants with unknown long-term ecotoxicological effects to aquatic systems.
Collapse
Affiliation(s)
- Amy E Witter
- Department of Chemistry, Dickinson College, PO Box 1773, Carlisle, PA 17013, USA.
| |
Collapse
|
7
|
|
8
|
Caciari T, Casale T, Loreti B, Schifano MP, Capozzella A, Scala B, De Sio S, Tomei G, Rosati MV, Tomei F. Peripheral blood counts in workers exposed to synthetic fibres. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2014; 49:146-152. [PMID: 24171413 DOI: 10.1080/10934529.2013.838839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Acrylonitrile is an intermediary with possible adverse health effects in the synthesis of organic products, such as acrylic fibres. This investigation was undertaken to determine the possible changes in the peripheral blood counts in workers of a polyacrylic fibres plant. The study involved 218 workers exposed to acrylonitrile at low doses and a control group of 200 unexposed workers. The chosen subjects underwent blood tests in order to check their haematological parameters. There were no statistically significant differences between the two groups in terms of the red blood cells, haemoglobin and total number of leukocytes. An increase in the neutrophils associated with a reduction of lymphocytes, both statistically significant, was observed. The authors hypothesized that the neutrophils are influenced by the exposure to acrylonitrile at low doses.
Collapse
Affiliation(s)
- Tiziana Caciari
- a Department of Anatomy, Histology, Medical-Legal and the Orthopedics, Unit of Occupational Medicine , Sapienza University of Rome , Rome , Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Behl M, Elmore SA, Malarkey DE, Hejtmancik MR, Gerken DK, Chhabra RS. Perinatal toxicity and carcinogenicity studies of styrene-acrylonitrile trimer, a ground water contaminant. Toxicology 2013; 314:84-94. [PMID: 24060431 DOI: 10.1016/j.tox.2013.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/05/2013] [Accepted: 09/11/2013] [Indexed: 12/12/2022]
Abstract
Styrene acrylonitrile (SAN) trimer is a by-product in the production of acrylonitrile styrene plastics. Following a report of a childhood cancer cluster in the Toms River section of Dover Township, New Jersey, SAN Trimer was identified as one of the groundwater contaminants at Reich Farm Superfund site in the township. The contaminants from the Reich Farm site's ground water plume impacted two wells at the Parkway well field. The National Toxicology Program (NTP) studied the toxicity and carcinogenicity of SAN Trimer in rats exposed during their perinatal developmental period and adulthood. The chronic toxicity and carcinogenicity studies in F344/N rats were preceded by 7- and 18-week perinatal toxicity studies to determine the exposure concentrations for the 2-year studies. Subsequently, Fisher 344 pregnant dams were exposed to SAN Trimer containing diet at 400, 800, or 1600ppm concentrations during gestation, nursing and weaning periods of offspring followed by two year of adult exposures to both male and female pups. There was no statistically significant evidence of carcinogenic activity following SAN-Trimer exposure; however, rare neoplasms in the brain and spinal cord were observed in males and to lesser extent in female rats. These incidences were considered within the range of historical background in the animal model used in the current studies. Therefore, the presence of a few rarely occurring CNS tumors in the treated groups were not judged to be associated with the SAN Trimer exposure. The major finding was a dose-related peripheral neuropathy associated with the sciatic nerves in females and spinal nerve roots in males and females thereby suggesting that SAN Trimer is potentially a nervous system toxicant.
Collapse
Affiliation(s)
- Mamta Behl
- Kelly Government Solutions, Research Triangle Park, NC, USA; Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| | | | | | | | | | | |
Collapse
|