1
|
Tirman S, Cybulla E, Quinet A, Meroni A, Vindigni A. PRIMPOL ready, set, reprime! Crit Rev Biochem Mol Biol 2021; 56:17-30. [PMID: 33179522 PMCID: PMC7906090 DOI: 10.1080/10409238.2020.1841089] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/15/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022]
Abstract
DNA replication forks are constantly challenged by DNA lesions induced by endogenous and exogenous sources. DNA damage tolerance mechanisms ensure that DNA replication continues with minimal effects on replication fork elongation either by using specialized DNA polymerases, which have the ability to replicate through the damaged template, or by skipping the damaged DNA, leaving it to be repaired after replication. These mechanisms are evolutionarily conserved in bacteria, yeast, and higher eukaryotes, and are paramount to ensure timely and faithful duplication of the genome. The Primase and DNA-directed Polymerase (PRIMPOL) is a recently discovered enzyme that possesses both primase and polymerase activities. PRIMPOL is emerging as a key player in DNA damage tolerance, particularly in vertebrate and human cells. Here, we review our current understanding of the function of PRIMPOL in DNA damage tolerance by focusing on the structural aspects that define its dual enzymatic activity, as well as on the mechanisms that control its chromatin recruitment and expression levels. We also focus on the latest findings on the mitochondrial and nuclear functions of PRIMPOL and on the impact of loss of these functions on genome stability and cell survival. Defining the function of PRIMPOL in DNA damage tolerance is becoming increasingly important in the context of human disease. In particular, we discuss recent evidence pointing at the PRIMPOL pathway as a novel molecular target to improve cancer cell response to DNA-damaging chemotherapy and as a predictive parameter to stratify patients in personalized cancer therapy.
Collapse
Affiliation(s)
- Stephanie Tirman
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis MO, 63110, USA
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Emily Cybulla
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis MO, 63110, USA
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Annabel Quinet
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis MO, 63110, USA
| | - Alice Meroni
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis MO, 63110, USA
| | - Alessandro Vindigni
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis MO, 63110, USA
| |
Collapse
|
2
|
Saha P, Mandal T, Talukdar AD, Kumar D, Kumar S, Tripathi PP, Wang QE, Srivastava AK. DNA polymerase eta: A potential pharmacological target for cancer therapy. J Cell Physiol 2020; 236:4106-4120. [PMID: 33184862 DOI: 10.1002/jcp.30155] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/21/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022]
Abstract
In the last two decades, intensive research has been carried out to improve the survival rates of cancer patients. However, the development of chemoresistance that ultimately leads to tumor relapse poses a critical challenge for the successful treatment of cancer patients. Many cancer patients experience tumor relapse and ultimately die because of treatment failure associated with acquired drug resistance. Cancer cells utilize multiple lines of self-defense mechanisms to bypass chemotherapy and radiotherapy. One such mechanism employed by cancer cells is translesion DNA synthesis (TLS), in which specialized TLS polymerases bypass the DNA lesion with the help of monoubiquitinated proliferating cell nuclear antigen. Among all TLS polymerases (Pol η, Pol ι, Pol κ, REV1, Pol ζ, Pol μ, Pol λ, Pol ν, and Pol θ), DNA polymerase eta (Pol η) is well studied and majorly responsible for the bypass of cisplatin and UV-induced DNA damage. TLS polymerases contribute to chemotherapeutic drug-induced mutations as well as therapy resistance. Therefore, targeting these polymerases presents a novel therapeutic strategy to combat chemoresistance. Mounting evidence suggests that inhibition of Pol η may have multiple impacts on cancer therapy such as sensitizing cancer cells to chemotherapeutics, suppressing drug-induced mutagenesis, and inhibiting the development of secondary tumors. Herein, we provide a general introduction of Pol η and its clinical implications in blocking acquired drug resistance. In addition; this review addresses the existing gaps and challenges of Pol η mediated TLS mechanisms in human cells. A better understanding of the Pol η mediated TLS mechanism will not merely establish it as a potential pharmacological target but also open possibilities to identify novel drug targets for future therapy.
Collapse
Affiliation(s)
- Priyanka Saha
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Tanima Mandal
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Anupam D Talukdar
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Deepak Kumar
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Sanjay Kumar
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Andhra Pradesh, India
| | - Prem P Tripathi
- Cell Biology & Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Qi-En Wang
- Department of Radiation Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Amit K Srivastava
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| |
Collapse
|
3
|
Ketkar A, Maddukuri L, Penthala NR, Reed MR, Zafar MK, Crooks PA, Eoff RL. Inhibition of Human DNA Polymerases Eta and Kappa by Indole-Derived Molecules Occurs through Distinct Mechanisms. ACS Chem Biol 2019; 14:1337-1351. [PMID: 31082191 DOI: 10.1021/acschembio.9b00304] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Overexpression of human DNA polymerase kappa (hpol κ) in glioblastoma is associated with shorter survival time and resistance to the alkylating agent temozolomide (TMZ), making it an attractive target for the development of small-molecule inhibitors. We previously reported on the development and characterization of indole barbituric acid-derived (IBA) inhibitors of translesion DNA synthesis polymerases (TLS pols). We have now identified a potent and selective inhibitor of hpol κ based on the indole-aminoguanidine (IAG) chemical scaffold. The most promising IAG analogue, IAG-10, exhibited greater inhibitory action against hpol κ than any other human Y-family member, as well as pols from the A-, B-, and X-families. Inhibition of hpol κ by IAG analogues appears to proceed through a mechanism that is distinct from inhibition of hpol η based on changes in DNA binding affinity and nucleotide insertion kinetics. By way of comparison, both IAG and IBA analogues inhibited binary complex formation by hpol κ and ternary complex formation by hpol η. Decreasing the concentration of enzyme and DNA in the reaction mixture lowered the IC50 value of IAG-10 to submicromolar values, consistent with inhibition of binary complex formation for hpol κ. Chemical footprinting experiments revealed that IAG-10 binds to a cleft between the finger, little finger, and N-clasp domains on hpol κ and that this likely disrupts the interaction between the N-clasp and the TLS pol core. In cell culture, IAG-10 potentiated the antiproliferative activity and DNA damaging effects of TMZ in hpol κ-proficient cells but not in hpol κ-deficient cells, indicative of a target-dependent effect. Mutagenic replication across alkylation damage increased in hpol κ-proficient cells treated with IAG-10, while no change in mutation frequency was observed for hpol κ-deficient cells. In summary, we developed a potent and selective small-molecule inhibitor of hpol κ that takes advantage of structural features unique to this TLS enzyme to potentiate TMZ, a standard-of-care drug used in the treatment of malignant brain tumors. Furthermore, the IAG scaffold represents a new chemical space for the exploration of TLS pol inhibitors, which could prove useful as a strategy for improving patient response to genotoxic drugs.
Collapse
Affiliation(s)
- Amit Ketkar
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199, United States
| | - Leena Maddukuri
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199, United States
| | - Narsimha R. Penthala
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199, United States
| | - Megan R. Reed
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199, United States
| | - Maroof K. Zafar
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199, United States
| | - Peter A. Crooks
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199, United States
| | - Robert L. Eoff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199, United States
| |
Collapse
|
4
|
Tsao WC, Eckert KA. Detours to Replication: Functions of Specialized DNA Polymerases during Oncogene-induced Replication Stress. Int J Mol Sci 2018; 19:ijms19103255. [PMID: 30347795 PMCID: PMC6214091 DOI: 10.3390/ijms19103255] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/15/2018] [Accepted: 10/15/2018] [Indexed: 01/10/2023] Open
Abstract
Incomplete and low-fidelity genome duplication contribute to genomic instability and cancer development. Difficult-to-Replicate Sequences, or DiToRS, are natural impediments in the genome that require specialized DNA polymerases and repair pathways to complete and maintain faithful DNA synthesis. DiToRS include non B-DNA secondary structures formed by repetitive sequences, for example within chromosomal fragile sites and telomeres, which inhibit DNA replication under endogenous stress conditions. Oncogene activation alters DNA replication dynamics and creates oncogenic replication stress, resulting in persistent activation of the DNA damage and replication stress responses, cell cycle arrest, and cell death. The response to oncogenic replication stress is highly complex and must be tightly regulated to prevent mutations and tumorigenesis. In this review, we summarize types of known DiToRS and the experimental evidence supporting replication inhibition, with a focus on the specialized DNA polymerases utilized to cope with these obstacles. In addition, we discuss different causes of oncogenic replication stress and its impact on DiToRS stability. We highlight recent findings regarding the regulation of DNA polymerases during oncogenic replication stress and the implications for cancer development.
Collapse
Affiliation(s)
- Wei-Chung Tsao
- Department of Pathology, The Jake Gittlen Laboratories for Cancer Research, Hershey, PA 17033, USA.
| | - Kristin A Eckert
- Department of Pathology, The Jake Gittlen Laboratories for Cancer Research, Hershey, PA 17033, USA.
| |
Collapse
|
5
|
Zafar MK, Eoff RL. Translesion DNA Synthesis in Cancer: Molecular Mechanisms and Therapeutic Opportunities. Chem Res Toxicol 2017; 30:1942-1955. [PMID: 28841374 DOI: 10.1021/acs.chemrestox.7b00157] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The genomic landscape of cancer is one marred by instability, but the mechanisms that underlie these alterations are multifaceted and remain a topic of intense research. Cellular responses to DNA damage and/or replication stress can affect genome stability in tumors and influence the response of patients to therapy. In addition to direct repair, DNA damage tolerance (DDT) is an element of genomic maintenance programs that contributes to the etiology of several types of cancer. DDT mechanisms primarily act to resolve replication stress, and this can influence the effectiveness of genotoxic drugs. Translesion DNA synthesis (TLS) is an important component of DDT that facilitates direct bypass of DNA adducts and other barriers to replication. The central role of TLS in the bypass of drug-induced DNA lesions, the promotion of tumor heterogeneity, and the involvement of these enzymes in the maintenance of the cancer stem cell niche presents an opportunity to leverage inhibition of TLS as a way of improving existing therapies. In the review that follows, we summarize mechanisms of DDT, misregulation of TLS in cancer, and discuss the potential for targeting these pathways as a means of improving cancer therapies.
Collapse
Affiliation(s)
- Maroof K Zafar
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Robert L Eoff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| |
Collapse
|
6
|
Li L, Fang Z, Zhou J, Chen H, Hu Z, Gao L, Chen L, Ren S, Ma H, Lu L, Zhang W, Peng H. An accurate and efficient method for large-scale SSR genotyping and applications. Nucleic Acids Res 2017; 45:e88. [PMID: 28184437 PMCID: PMC5449614 DOI: 10.1093/nar/gkx093] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/01/2017] [Indexed: 01/10/2023] Open
Abstract
Accurate and efficient genotyping of simple sequence repeats (SSRs) constitutes the basis of SSRs as an effective genetic marker with various applications. However, the existing methods for SSR genotyping suffer from low sensitivity, low accuracy, low efficiency and high cost. In order to fully exploit the potential of SSRs as genetic marker, we developed a novel method for SSR genotyping, named as AmpSeq-SSR, which combines multiplexing polymerase chain reaction (PCR), targeted deep sequencing and comprehensive analysis. AmpSeq-SSR is able to genotype potentially more than a million SSRs at once using the current sequencing techniques. In the current study, we simultaneously genotyped 3105 SSRs in eight rice varieties, which were further validated experimentally. The results showed that the accuracies of AmpSeq-SSR were nearly 100 and 94% with a single base resolution for homozygous and heterozygous samples, respectively. To demonstrate the power of AmpSeq-SSR, we adopted it in two applications. The first was to construct discriminative fingerprints of the rice varieties using 3105 SSRs, which offer much greater discriminative power than the 48 SSRs commonly used for rice. The second was to map Xa21, a gene that confers persistent resistance to rice bacterial blight. We demonstrated that genome-scale fingerprints of an organism can be efficiently constructed and candidate genes, such as Xa21 in rice, can be accurately and efficiently mapped using an innovative strategy consisting of multiplexing PCR, targeted sequencing and computational analysis. While the work we present focused on rice, AmpSeq-SSR can be readily extended to animals and micro-organisms.
Collapse
Affiliation(s)
- Lun Li
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei 430056, China
| | - Zhiwei Fang
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei 430056, China
| | - Junfei Zhou
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei 430056, China
| | - Hong Chen
- Center for Development of Science and Technology, Ministry of Agriculture, P.R. China, Beijing 100122, China
| | - Zhangfeng Hu
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei 430056, China
| | - Lifen Gao
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei 430056, China
| | - Lihong Chen
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei 430056, China
| | - Sheng Ren
- Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229-3026, USA.,Department of Mathematical Sciences, McMicken College of Arts & Sciences, University of Cincinnati, 2815 Commons Way, Cincinnati, OH 45221-0025, USA
| | - Hongyu Ma
- Thermo Fisher Scientific, Building 6, No. 27, Xin Jinqiao Rd., Pudong, Shanghai 201206, China
| | - Long Lu
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei 430056, China.,Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229-3026, USA
| | - Weixiong Zhang
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei 430056, China.,Department of Computer Science and Engineering, Washington University in St Louis, MO 63130, USA.,Department of Genetics, Washington University School of Medicine, St Louis, MO 63130, USA
| | - Hai Peng
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei 430056, China
| |
Collapse
|
7
|
Lee MYWT, Wang X, Zhang S, Zhang Z, Lee EYC. Regulation and Modulation of Human DNA Polymerase δ Activity and Function. Genes (Basel) 2017; 8:genes8070190. [PMID: 28737709 PMCID: PMC5541323 DOI: 10.3390/genes8070190] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/07/2017] [Accepted: 07/11/2017] [Indexed: 12/28/2022] Open
Abstract
This review focuses on the regulation and modulation of human DNA polymerase δ (Pol δ). The emphasis is on the mechanisms that regulate the activity and properties of Pol δ in DNA repair and replication. The areas covered are the degradation of the p12 subunit of Pol δ, which converts it from a heterotetramer (Pol δ4) to a heterotrimer (Pol δ3), in response to DNA damage and also during the cell cycle. The biochemical mechanisms that lead to degradation of p12 are reviewed, as well as the properties of Pol δ4 and Pol δ3 that provide insights into their functions in DNA replication and repair. The second focus of the review involves the functions of two Pol δ binding proteins, polymerase delta interaction protein 46 (PDIP46) and polymerase delta interaction protein 38 (PDIP38), both of which are multi-functional proteins. PDIP46 is a novel activator of Pol δ4, and the impact of this function is discussed in relation to its potential roles in DNA replication. Several new models for the roles of Pol δ3 and Pol δ4 in leading and lagging strand DNA synthesis that integrate a role for PDIP46 are presented. PDIP38 has multiple cellular localizations including the mitochondria, the spliceosomes and the nucleus. It has been implicated in a number of cellular functions, including the regulation of specialized DNA polymerases, mitosis, the DNA damage response, mouse double minute 2 homolog (Mdm2) alternative splicing and the regulation of the NADPH oxidase 4 (Nox4).
Collapse
Affiliation(s)
- Marietta Y W T Lee
- Department Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| | - Xiaoxiao Wang
- Department Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| | - Sufang Zhang
- Department Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| | - Zhongtao Zhang
- Department Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| | - Ernest Y C Lee
- Department Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| |
Collapse
|
8
|
Gowda ASP, Lee M, Spratt TE. N 2
-Substituted 2′-Deoxyguanosine Triphosphate Derivatives as Selective Substrates for Human DNA Polymerase κ. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- A. S. Prakasha Gowda
- Department of Biochemistry and Molecular Biology; Pennsylvania State University; 500 University Dr. Hershey PA 17033 USA
| | - Marietta Lee
- Department of Biochemistry and Molecular Biology; New York Medical College; Valhalla NY 10595 USA
| | - Thomas E. Spratt
- Department of Biochemistry and Molecular Biology; Pennsylvania State University; 500 University Dr. Hershey PA 17033 USA
| |
Collapse
|
9
|
Gowda ASP, Lee M, Spratt TE. N 2 -Substituted 2'-Deoxyguanosine Triphosphate Derivatives as Selective Substrates for Human DNA Polymerase κ. Angew Chem Int Ed Engl 2017; 56:2628-2631. [PMID: 28140505 DOI: 10.1002/anie.201611607] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/12/2017] [Indexed: 11/09/2022]
Abstract
N2 -Alkyl-2'-deoxyguanosine triphosphate (N2 -alkyl-dGTP) derivatives with methyl, butyl, benzyl, or 4-ethynylbenzyl substituents were prepared and tested as substrates for human DNA polymerases. N2 -Benzyl-dGTP was equal to dGTP as a substrate for DNA polymerase κ (pol κ), but was a poor substrate for pols β, δ, η, ι, or ν. In vivo reactivity was evaluated through incubation of N2 -4-ethynylbenzyl-dG with wild-type and pol κ deficient mouse embryonic fibroblasts. CuAAC reaction with 5(6)-FAM-azide demonstrated that only cells containing pol κ were able to incorporate N2 -4-ethynylbenzyl-dG into the nucleus. This is the first instance of a Y-family-polymerase-specific dNTP, and this method could be used to probe the activity of pol κ in vivo.
Collapse
Affiliation(s)
- A S Prakasha Gowda
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, 500 University Dr., Hershey, PA, 17033, USA
| | - Marietta Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, 10595, USA
| | - Thomas E Spratt
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, 500 University Dr., Hershey, PA, 17033, USA
| |
Collapse
|
10
|
DNA replication and cancer: From dysfunctional replication origin activities to therapeutic opportunities. Semin Cancer Biol 2016; 37-38:16-25. [DOI: 10.1016/j.semcancer.2016.01.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/04/2016] [Accepted: 01/05/2016] [Indexed: 12/18/2022]
|
11
|
Dai ZJ, Liu XH, Ma YF, Kang HF, Jin TB, Dai ZM, Guan HT, Wang M, Liu K, Dai C, Yang XW, Wang XJ. Association Between Single Nucleotide Polymorphisms in DNA Polymerase Kappa Gene and Breast Cancer Risk in Chinese Han Population: A STROBE-Compliant Observational Study. Medicine (Baltimore) 2016; 95:e2466. [PMID: 26765445 PMCID: PMC4718271 DOI: 10.1097/md.0000000000002466] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
DNA polymerases are responsible for ensuring stability of the genome and avoiding genotoxicity caused by a variety of factors during DNA replication. Consequently, these proteins have been associated with an increased cancer risk. DNA polymerase kappa (POLK) is a specialized DNA polymerase involved in translesion DNA synthesis (TLS) that allows DNA synthesis over the damaged DNA. Recently, some studies investigated relationships between POLK polymorphisms and cancer risk, but the role of POLK genetic variants in breast cancer (BC) remains to be defined. In this study, we aimed to evaluate the effects of POLK polymorphisms on BC risk.We used the Sequenom MassARRAY method to genotype 3 single nucleotide polymorphisms (SNPs) in POLK (rs3213801, rs10077427, and rs5744533), in order to determine the genotypes of 560 BC patients and 583 controls. The association of genotypes and BC was assessed by computing the odds ratio (OR) and 95% confidence intervals (95% CIs) from logistic regression analyses.We found a statistically significant difference between patient and control groups in the POLK rs10077427 genotypic groups, excluding the recessive model. A positive correlation was also found between positive progesterone receptor (PR) status, higher Ki67 index, and rs10077427 polymorphism. For rs5744533 polymorphism, the codominant, dominant, and allele models frequencies were significantly higher in BC patients compared to healthy controls. Furthermore, our results indicated that rs5744533 SNP has a protective role in the postmenopausal women. However, we failed to find any associations between rs3213801 polymorphism and susceptibility to BC.Our results indicate that POLK polymorphisms may influence the risk of developing BC, and, because of this, may serve as a prognostic biomarker among Chinese women.
Collapse
Affiliation(s)
- Zhi-Jun Dai
- From the Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University (Z-JD, X-HL, X-JW, H-FK, H-TG, MW, KL, CD, X-WY, X-JW); Department of Immunology and Pathogenic Biology, Xi'an Jiaotong University (Y-FM); National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences, Northwest University (T-BJ); and Department of Anesthesia, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China (Z-MD)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kanemaru Y, Suzuki T, Niimi N, Grúz P, Matsumoto K, Adachi N, Honma M, Nohmi T. Catalytic and non-catalytic roles of DNA polymerase κ in the protection of human cells against genotoxic stresses. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:650-62. [PMID: 26031400 DOI: 10.1002/em.21961] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 05/13/2015] [Accepted: 05/26/2015] [Indexed: 05/07/2023]
Abstract
DNA polymerase κ (Pol κ) is a specialized DNA polymerase involved in translesion DNA synthesis. Although its bypass activities across lesions are well characterized in biochemistry, its cellular protective roles against genotoxic insults are still elusive. To better understand the in vivo protective roles, we have established a human cell line deficient in the expression of Pol κ (KO) and another expressing catalytically dead Pol κ (CD), to examine the cytotoxic sensitivity to 11 genotoxins including ultraviolet C light (UV). These cell lines were established in a genetic background of Nalm-6-MSH+, a human lymphoblastic cell line that has high efficiency for gene targeting, and functional p53 and mismatch repair activities. We classified the genotoxins into four groups. Group 1 includes benzo[a]pyrene diolepoxide, mitomycin C, and bleomycin, where the sensitivity was equally higher in KO and CD than in the cell line expressing wild-type Pol κ (WT). Group 2 includes hydrogen peroxide and menadione, where hypersensitivity was observed only in KO. Group 3 includes methyl methanesulfonate and ethyl methanesulfonate, where hypersensitivity was observed only in CD. Group 4 includes UV and three chemicals, where the chemicals exhibited similar cytotoxicity to all three cell lines. The results suggest that Pol κ not only protects cells from genotoxic DNA lesions via DNA polymerase activities, but also contributes to genome integrity by acting as a non-catalytic protein against oxidative damage caused by hydrogen peroxide and menadione. The non-catalytic roles of Pol κ in protection against oxidative damage by hydrogen peroxide are discussed.
Collapse
Affiliation(s)
- Yuki Kanemaru
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Setagaya-Ku, Tokyo, 158-8501, Japan
- Division of Toxicology, Department of Pharmacology Toxicology and Therapeutics, Showa University School of Pharmacy, Shinagawa-Ku, Tokyo, 142-0064, Japan
| | - Tetsuya Suzuki
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Setagaya-Ku, Tokyo, 158-8501, Japan
| | - Naoko Niimi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Setagaya-Ku, Tokyo, 158-8501, Japan
| | - Petr Grúz
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Setagaya-Ku, Tokyo, 158-8501, Japan
| | - Kyomu Matsumoto
- Toxicology Division, The Institute of Environmental Toxicology, Joso-Shi, Ibaraki, 303-0043, Japan
| | - Noritaka Adachi
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa, 236-0027, Japan
| | - Masamitsu Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Setagaya-Ku, Tokyo, 158-8501, Japan
| | - Takehiko Nohmi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Setagaya-Ku, Tokyo, 158-8501, Japan
| |
Collapse
|
13
|
Fungtammasan A, Ananda G, Hile SE, Su MSW, Sun C, Harris R, Medvedev P, Eckert K, Makova KD. Accurate typing of short tandem repeats from genome-wide sequencing data and its applications. Genome Res 2015; 25:736-49. [PMID: 25823460 PMCID: PMC4417121 DOI: 10.1101/gr.185892.114] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 03/16/2015] [Indexed: 11/24/2022]
Abstract
Short tandem repeats (STRs) are implicated in dozens of human genetic diseases and contribute significantly to genome variation and instability. Yet profiling STRs from short-read sequencing data is challenging because of their high sequencing error rates. Here, we developed STR-FM, short tandem repeat profiling using flank-based mapping, a computational pipeline that can detect the full spectrum of STR alleles from short-read data, can adapt to emerging read-mapping algorithms, and can be applied to heterogeneous genetic samples (e.g., tumors, viruses, and genomes of organelles). We used STR-FM to study STR error rates and patterns in publicly available human and in-house generated ultradeep plasmid sequencing data sets. We discovered that STRs sequenced with a PCR-free protocol have up to ninefold fewer errors than those sequenced with a PCR-containing protocol. We constructed an error correction model for genotyping STRs that can distinguish heterozygous alleles containing STRs with consecutive repeat numbers. Applying our model and pipeline to Illumina sequencing data with 100-bp reads, we could confidently genotype several disease-related long trinucleotide STRs. Utilizing this pipeline, for the first time we determined the genome-wide STR germline mutation rate from a deeply sequenced human pedigree. Additionally, we built a tool that recommends minimal sequencing depth for accurate STR genotyping, depending on repeat length and sequencing read length. The required read depth increases with STR length and is lower for a PCR-free protocol. This suite of tools addresses the pressing challenges surrounding STR genotyping, and thus is of wide interest to researchers investigating disease-related STRs and STR evolution.
Collapse
Affiliation(s)
- Arkarachai Fungtammasan
- Integrative Biosciences, Bioinformatics and Genomics Option, Pennsylvania State University, University Park, Pennsylvania 16802, USA; Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA; Center for Medical Genomics, Pennsylvania State University, University Park, Pennsylvania 16802, USA; The Genome Science Institute at the Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Guruprasad Ananda
- Integrative Biosciences, Bioinformatics and Genomics Option, Pennsylvania State University, University Park, Pennsylvania 16802, USA; Center for Medical Genomics, Pennsylvania State University, University Park, Pennsylvania 16802, USA; The Genome Science Institute at the Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA; Department of Biochemistry and Molecular Biology, Pennsylvania State University, Pennsylvania 16802, USA
| | - Suzanne E Hile
- Center for Medical Genomics, Pennsylvania State University, University Park, Pennsylvania 16802, USA; Department of Pathology, The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | - Marcia Shu-Wei Su
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA; Center for Medical Genomics, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Chen Sun
- Department of Computer Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Robert Harris
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Paul Medvedev
- Center for Medical Genomics, Pennsylvania State University, University Park, Pennsylvania 16802, USA; The Genome Science Institute at the Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA; Department of Biochemistry and Molecular Biology, Pennsylvania State University, Pennsylvania 16802, USA; Department of Computer Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Kristin Eckert
- Center for Medical Genomics, Pennsylvania State University, University Park, Pennsylvania 16802, USA; Department of Pathology, The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | - Kateryna D Makova
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA; Center for Medical Genomics, Pennsylvania State University, University Park, Pennsylvania 16802, USA; The Genome Science Institute at the Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
14
|
Baptiste BA, Jacob KD, Eckert KA. Genetic evidence that both dNTP-stabilized and strand slippage mechanisms may dictate DNA polymerase errors within mononucleotide microsatellites. DNA Repair (Amst) 2015; 29:91-100. [PMID: 25758780 DOI: 10.1016/j.dnarep.2015.02.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 02/15/2015] [Accepted: 02/16/2015] [Indexed: 12/19/2022]
Abstract
Mononucleotide microsatellites are tandem repeats of a single base pair, abundant within coding exons and frequent sites of mutation in the human genome. Because the repeated unit is one base pair, multiple mechanisms of insertion/deletion (indel) mutagenesis are possible, including strand-slippage, dNTP-stabilized, and misincorportion-misalignment. Here, we examine the effects of polymerase identity (mammalian Pols α, β, κ, and η), template sequence, dNTP pool size, and reaction temperature on indel errors during in vitro synthesis of mononucleotide microsatellites. We utilized the ratio of insertion to deletion errors as a genetic indicator of mechanism. Strikingly, we observed a statistically significant bias toward deletion errors within mononucleotide repeats for the majority of the 28 DNA template and polymerase combinations examined, with notable exceptions based on sequence and polymerase identity. Using mutator forms of Pol β did not substantially alter the error specificity, suggesting that mispairing-misalignment mechanism is not a primary mechanism. Based on our results for mammalian DNA polymerases representing three structurally distinct families, we suggest that dNTP-stabilized mutagenesis may be an alternative mechanism for mononucleotide microsatellite indel mutation. The change from a predominantly dNTP-stabilized mechanism to a strand-slippage mechanism with increasing microsatellite length may account for the differential rates of tandem repeat mutation that are observed genome-wide.
Collapse
Affiliation(s)
- Beverly A Baptiste
- The Jake Gittlen Laboratories for Cancer Research and the Department of Pathology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Kimberly D Jacob
- The Jake Gittlen Laboratories for Cancer Research and the Department of Pathology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Kristin A Eckert
- The Jake Gittlen Laboratories for Cancer Research and the Department of Pathology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| |
Collapse
|
15
|
Guilliam TA, Jozwiakowski SK, Ehlinger A, Barnes RP, Rudd SG, Bailey LJ, Skehel JM, Eckert KA, Chazin WJ, Doherty AJ. Human PrimPol is a highly error-prone polymerase regulated by single-stranded DNA binding proteins. Nucleic Acids Res 2014; 43:1056-68. [PMID: 25550423 PMCID: PMC4333378 DOI: 10.1093/nar/gku1321] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
PrimPol is a recently identified polymerase involved in eukaryotic DNA damage tolerance, employed in both re-priming and translesion synthesis mechanisms to bypass nuclear and mitochondrial DNA lesions. In this report, we investigate how the enzymatic activities of human PrimPol are regulated. We show that, unlike other TLS polymerases, PrimPol is not stimulated by PCNA and does not interact with it in vivo. We identify that PrimPol interacts with both of the major single-strand binding proteins, RPA and mtSSB in vivo. Using NMR spectroscopy, we characterize the domains responsible for the PrimPol-RPA interaction, revealing that PrimPol binds directly to the N-terminal domain of RPA70. In contrast to the established role of SSBs in stimulating replicative polymerases, we find that SSBs significantly limit the primase and polymerase activities of PrimPol. To identify the requirement for this regulation, we employed two forward mutation assays to characterize PrimPol's replication fidelity. We find that PrimPol is a mutagenic polymerase, with a unique error specificity that is highly biased towards insertion-deletion errors. Given the error-prone disposition of PrimPol, we propose a mechanism whereby SSBs greatly restrict the contribution of this enzyme to DNA replication at stalled forks, thus reducing the mutagenic potential of PrimPol during genome replication.
Collapse
Affiliation(s)
- Thomas A Guilliam
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - Stanislaw K Jozwiakowski
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - Aaron Ehlinger
- Departments of Biochemistry and Chemistry and Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Ryan P Barnes
- The Jake Gittlen Laboratories for Cancer Research Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Sean G Rudd
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - Laura J Bailey
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - J Mark Skehel
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Kristin A Eckert
- The Jake Gittlen Laboratories for Cancer Research Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Walter J Chazin
- Departments of Biochemistry and Chemistry and Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Aidan J Doherty
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| |
Collapse
|
16
|
Takeiri A, Wada NA, Motoyama S, Matsuzaki K, Tateishi H, Matsumoto K, Niimi N, Sassa A, Grúz P, Masumura K, Yamada M, Mishima M, Jishage KI, Nohmi T. In vivo evidence that DNA polymerase kappa is responsible for error-free bypass across DNA cross-links induced by mitomycin C. DNA Repair (Amst) 2014; 24:113-121. [DOI: 10.1016/j.dnarep.2014.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/04/2014] [Accepted: 09/10/2014] [Indexed: 10/24/2022]
|
17
|
Jansen JG, Temviriyanukul P, Wit N, Delbos F, Reynaud CA, Jacobs H, de Wind N. Redundancy of mammalian Y family DNA polymerases in cellular responses to genomic DNA lesions induced by ultraviolet light. Nucleic Acids Res 2014; 42:11071-82. [PMID: 25170086 PMCID: PMC4176164 DOI: 10.1093/nar/gku779] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/15/2014] [Accepted: 08/17/2014] [Indexed: 12/04/2022] Open
Abstract
Short-wave ultraviolet light induces both mildly helix-distorting cyclobutane pyrimidine dimers (CPDs) and severely distorting (6-4) pyrimidine pyrimidone photoproducts ((6-4)PPs). The only DNA polymerase (Pol) that is known to replicate efficiently across CPDs is Polη, a member of the Y family of translesion synthesis (TLS) DNA polymerases. Phenotypes of Polη deficiency are transient, suggesting redundancy with other DNA damage tolerance pathways. Here we performed a comprehensive analysis of the temporal requirements of Y-family Pols ι and κ as backups for Polη in (i) bypassing genomic CPD and (6-4)PP lesions in vivo, (ii) suppressing DNA damage signaling, (iii) maintaining cell cycle progression and (iv) promoting cell survival, by using mouse embryonic fibroblast lines with single and combined disruptions in these Pols. The contribution of Polι is restricted to TLS at a subset of the photolesions. Polκ plays a dominant role in rescuing stalled replication forks in Polη-deficient mouse embryonic fibroblasts, both at CPDs and (6-4)PPs. This dampens DNA damage signaling and cell cycle arrest, and results in increased survival. The role of relatively error-prone Pols ι and κ as backups for Polη contributes to the understanding of the mutator phenotype of xeroderma pigmentosum variant, a syndrome caused by Polη defects.
Collapse
Affiliation(s)
- Jacob G Jansen
- Department of Toxicogenetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Piya Temviriyanukul
- Department of Toxicogenetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Niek Wit
- Division of Biological Stress Responses, The Netherlands Cancer Institute, 1006 BE Amsterdam, The Netherlands
| | | | | | - Heinz Jacobs
- Division of Biological Stress Responses, The Netherlands Cancer Institute, 1006 BE Amsterdam, The Netherlands
| | - Niels de Wind
- Department of Toxicogenetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| |
Collapse
|
18
|
Ananda G, Hile SE, Breski A, Wang Y, Kelkar Y, Makova KD, Eckert KA. Microsatellite interruptions stabilize primate genomes and exist as population-specific single nucleotide polymorphisms within individual human genomes. PLoS Genet 2014; 10:e1004498. [PMID: 25033203 PMCID: PMC4102424 DOI: 10.1371/journal.pgen.1004498] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 05/28/2014] [Indexed: 01/01/2023] Open
Abstract
Interruptions of microsatellite sequences impact genome evolution and can alter disease manifestation. However, human polymorphism levels at interrupted microsatellites (iMSs) are not known at a genome-wide scale, and the pathways for gaining interruptions are poorly understood. Using the 1000 Genomes Phase-1 variant call set, we interrogated mono-, di-, tri-, and tetranucleotide repeats up to 10 units in length. We detected ∼26,000–40,000 iMSs within each of four human population groups (African, European, East Asian, and American). We identified population-specific iMSs within exonic regions, and discovered that known disease-associated iMSs contain alleles present at differing frequencies among the populations. By analyzing longer microsatellites in primate genomes, we demonstrate that single interruptions result in a genome-wide average two- to six-fold reduction in microsatellite mutability, as compared with perfect microsatellites. Centrally located interruptions lowered mutability dramatically, by two to three orders of magnitude. Using a biochemical approach, we tested directly whether the mutability of a specific iMS is lower because of decreased DNA polymerase strand slippage errors. Modeling the adenomatous polyposis coli tumor suppressor gene sequence, we observed that a single base substitution interruption reduced strand slippage error rates five- to 50-fold, relative to a perfect repeat, during synthesis by DNA polymerases α, β, or η. Computationally, we demonstrate that iMSs arise primarily by base substitution mutations within individual human genomes. Our biochemical survey of human DNA polymerase α, β, δ, κ, and η error rates within certain microsatellites suggests that interruptions are created most frequently by low fidelity polymerases. Our combined computational and biochemical results demonstrate that iMSs are abundant in human genomes and are sources of population-specific genetic variation that may affect genome stability. The genome-wide identification of iMSs in human populations presented here has important implications for current models describing the impact of microsatellite polymorphisms on gene expression. Microsatellites are short tandem repeat DNA sequences located throughout the human genome that display a high degree of inter-individual variation. This characteristic makes microsatellites an attractive tool for population genetics and forensics research. Some microsatellites affect gene expression, and mutations within such microsatellites can cause disease. Interruption mutations disrupt the perfect repeated array and are frequently associated with altered disease risk, but they have not been thoroughly studied in human genomes. We identified interrupted mono-, di-, tri- and tetranucleotide MSs (iMS) within individual genomes from African, European, Asian and American population groups. We show that many iMSs, including some within disease-associated genes, are unique to a single population group. By measuring the conservation of microsatellites between human and chimpanzee genomes, we demonstrate that interruptions decrease the probability of microsatellite mutations throughout the genome. We demonstrate that iMSs arise in the human genome by single base changes within the DNA, and provide biochemical data suggesting that these stabilizing changes may be created by error-prone DNA polymerases. Our genome-wide study supports the model in which iMSs act to stabilize individual genomes, and suggests that population-specific differences in microsatellite architecture may be an avenue by which genetic ancestry impacts individual disease risk.
Collapse
Affiliation(s)
- Guruprasad Ananda
- Department of Biology, Penn State University, University Park, Pennsylvania, United States of America
| | - Suzanne E. Hile
- Department of Pathology, Gittlen Cancer Research Foundation, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Amanda Breski
- Department of Pathology, Gittlen Cancer Research Foundation, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Yanli Wang
- Department of Biology, Penn State University, University Park, Pennsylvania, United States of America
| | - Yogeshwar Kelkar
- Department of Biology, Penn State University, University Park, Pennsylvania, United States of America
| | - Kateryna D. Makova
- Department of Biology, Penn State University, University Park, Pennsylvania, United States of America
- Center for Medical Genomics, Penn State University, University Park, Pennsylvania, United States of America
- * E-mail: (KDM); (KAE)
| | - Kristin A. Eckert
- Department of Pathology, Gittlen Cancer Research Foundation, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- Center for Medical Genomics, Penn State University, University Park, Pennsylvania, United States of America
- * E-mail: (KDM); (KAE)
| |
Collapse
|
19
|
Lee MYWT, Zhang S, Lin SHS, Wang X, Darzynkiewicz Z, Zhang Z, Lee EYC. The tail that wags the dog: p12, the smallest subunit of DNA polymerase δ, is degraded by ubiquitin ligases in response to DNA damage and during cell cycle progression. Cell Cycle 2013; 13:23-31. [PMID: 24300032 DOI: 10.4161/cc.27407] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
DNA polymerase δ (Pol δ) is a key enzyme in eukaryotic DNA replication. Human Pol δ is a heterotetramer whose p12 subunit is degraded in response to DNA damage, leading to the in vivo conversion of Pol δ4 to Pol δ3. Two E3 ubiquitin ligases, RNF8 and CRL4(Cdt2), participate in the DNA damage-induced degradation of p12. We discuss how these E3 ligases integrate the formation of Pol δ3 and ubiquitinated PCNA for DNA repair processes. CRL4(Cdt2) partially degrades p12 during normal cell cycle progression, thereby generating Pol δ3 during S phase. This novel finding extends the current view of the role of Pol δ3 in DNA repair and leads to the hypothesis that it participates in DNA replication. The coordinated regulation of licensing factors and Pol δ3 by CRL4(Cdt2) now opens new avenues for control of DNA replication. A parallel study of Pol δ4 and Pol δ3 in Okazaki fragment processing provides evidence for a role of Pol δ3 in DNA replication. We discuss several new perspectives of the role of the 2 forms of Pol δ in DNA replication and repair, as well the significance of the integration of p12 regulation in DNA repair and cell cycle progression.
Collapse
Affiliation(s)
- Marietta Y W T Lee
- Department of Biochemistry and Molecular Biology; New York Medical College; Valhalla, NY USA
| | - Sufang Zhang
- Department of Biochemistry and Molecular Biology; New York Medical College; Valhalla, NY USA
| | - Szu Hua Sharon Lin
- Department of Biochemistry and Molecular Biology; New York Medical College; Valhalla, NY USA
| | - Xiaoxiao Wang
- Department of Biochemistry and Molecular Biology; New York Medical College; Valhalla, NY USA
| | - Zbigniew Darzynkiewicz
- Department of Pathology; Brander Cancer Research Institute; New York Medical College; Valhalla, NY USA
| | - Zhongtao Zhang
- Department of Biochemistry and Molecular Biology; New York Medical College; Valhalla, NY USA
| | - Ernest Y C Lee
- Department of Biochemistry and Molecular Biology; New York Medical College; Valhalla, NY USA
| |
Collapse
|
20
|
Mature microsatellites: mechanisms underlying dinucleotide microsatellite mutational biases in human cells. G3-GENES GENOMES GENETICS 2013; 3:451-63. [PMID: 23450065 PMCID: PMC3583453 DOI: 10.1534/g3.112.005173] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 12/30/2012] [Indexed: 12/19/2022]
Abstract
Dinucleotide microsatellites are dynamic DNA sequences that affect genome stability. Here, we focused on mature microsatellites, defined as pure repeats of lengths above the threshold and unlikely to mutate below it in a single mutational event. We investigated the prevalence and mutational behavior of these sequences by using human genome sequence data, human cells in culture, and purified DNA polymerases. Mature dinucleotides (≥10 units) are present within exonic sequences of >350 genes, resulting in vulnerability to cellular genetic integrity. Mature dinucleotide mutagenesis was examined experimentally using ex vivo and in vitro approaches. We observe an expansion bias for dinucleotide microsatellites up to 20 units in length in somatic human cells, in agreement with previous computational analyses of germ-line biases. Using purified DNA polymerases and human cell lines deficient for mismatch repair (MMR), we show that the expansion bias is caused by functional MMR and is not due to DNA polymerase error biases. Specifically, we observe that the MutSα and MutLα complexes protect against expansion mutations. Our data support a model wherein different MMR complexes shift the balance of mutations toward deletion or expansion. Finally, we show that replication fork progression is stalled within long dinucleotides, suggesting that mutational mechanisms within long repeats may be distinct from shorter lengths, depending on the biochemistry of fork resolution. Our work combines computational and experimental approaches to explain the complex mutational behavior of dinucleotide microsatellites in humans.
Collapse
|
21
|
Hile SE, Shabashev S, Eckert KA. Tumor-specific microsatellite instability: do distinct mechanisms underlie the MSI-L and EMAST phenotypes? Mutat Res 2012. [PMID: 23206442 DOI: 10.1016/j.mrfmmm.2012.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Microsatellite DNA sequences display allele length alterations or microsatellite instability (MSI) in tumor tissues, and MSI is used diagnostically for tumor detection and classification. We discuss the known types of tumor-specific MSI patterns and the relevant mechanisms underlying each pattern. Mutation rates of individual microsatellites vary greatly, and the intrinsic DNA features of motif size, sequence, and length contribute to this variation. MSI is used for detecting mismatch repair (MMR)-deficient tumors, which display an MSI-high phenotype due to genome-wide microsatellite destabilization. Because several pathways maintain microsatellite stability, tumors that have undergone other events associated with moderate genome instability may display diagnostic MSI only at specific di- or tetranucleotide markers. We summarize evidence for such alternative MSI forms (A-MSI) in sporadic cancers, also referred to as MSI-low and EMAST. While the existence of A-MSI is not disputed, there is disagreement about the origin and pathologic significance of this phenomenon. Although ambiguities due to PCR methods may be a source, evidence exists for other mechanisms to explain tumor-specific A-MSI. Some portion of A-MSI tumors may result from random mutational events arising during neoplastic cell evolution. However, this mechanism fails to explain the specificity of A-MSI for di- and tetranucleotide instability. We present evidence supporting the alternative argument that some A-MSI tumors arise by a distinct genetic pathway, and give examples of DNA metabolic pathways that, when altered, may be responsible for instability at specific microsatellite motifs. Finally, we suggest that A-MSI in tumors could be molecular signatures of environmental influences and DNA damage. Importantly, A-MSI occurs in several pre-neoplastic inflammatory states, including inflammatory bowel diseases, consistent with a role of oxidative stress in A-MSI. Understanding the biochemical basis of A-MSI tumor phenotypes will advance the development of new diagnostic tools and positively impact the clinical management of individual cancers.
Collapse
Affiliation(s)
- Suzanne E Hile
- Department of Pathology, Gittlen Cancer Research Foundation, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Samion Shabashev
- Department of Pathology, Gittlen Cancer Research Foundation, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Kristin A Eckert
- Department of Pathology, Gittlen Cancer Research Foundation, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| |
Collapse
|
22
|
Eckert KA, Sweasy JB. DNA polymerases and their role in genomic stability. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:643-644. [PMID: 23055294 DOI: 10.1002/em.21746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
|