1
|
Hernandez R, Garcia-Rodriguez NS, Arriaga MA, Perez R, Bala AA, Leandro AC, Diego VP, Almeida M, Parsons JG, Manusov EG, Galan JA. The hepatocellular model of fatty liver disease: from current imaging diagnostics to innovative proteomics technologies. Front Med (Lausanne) 2025; 12:1513598. [PMID: 40109726 PMCID: PMC11919916 DOI: 10.3389/fmed.2025.1513598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/06/2025] [Indexed: 03/22/2025] Open
Abstract
Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) is a prevalent chronic liver condition characterized by lipid accumulation and inflammation, often progressing to severe liver damage. We aim to review the pathophysiology, diagnostics, and clinical care of MASLD, and review highlights of advances in proteomic technologies. Recent advances in proteomics technologies have improved the identification of novel biomarkers and therapeutic targets, offering insight into the molecular mechanisms underlying MASLD progression. We focus on the application of mass spectrometry-based proteomics including single cell proteomics, proteogenomics, extracellular vesicle (EV-omics), and exposomics for biomarker discovery, emphasizing the potential of blood-based panels for noninvasive diagnosis and personalized medicine. Future research directions are presented to develop targeted therapies and improve clinical outcomes for MASLD patients.
Collapse
Affiliation(s)
- Renee Hernandez
- Division of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Natasha S Garcia-Rodriguez
- Division of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Marco A Arriaga
- Division of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Ricardo Perez
- Division of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Auwal A Bala
- Division of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Ana C Leandro
- Division of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
- South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Vince P Diego
- Division of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
- South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Marcio Almeida
- Division of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
- South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Jason G Parsons
- Division of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Eron G Manusov
- Division of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Jacob A Galan
- Division of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
- South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
| |
Collapse
|
2
|
Safarlou CW, Jongsma KR, Vermeulen R, Bredenoord AL. The ethical aspects of exposome research: a systematic review. EXPOSOME 2023; 3:osad004. [PMID: 37745046 PMCID: PMC7615114 DOI: 10.1093/exposome/osad004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
In recent years, exposome research has been put forward as the next frontier for the study of human health and disease. Exposome research entails the analysis of the totality of environmental exposures and their corresponding biological responses within the human body. Increasingly, this is operationalized by big-data approaches to map the effects of internal as well as external exposures using smart sensors and multiomics technologies. However, the ethical implications of exposome research are still only rarely discussed in the literature. Therefore, we conducted a systematic review of the academic literature regarding both the exposome and underlying research fields and approaches, to map the ethical aspects that are relevant to exposome research. We identify five ethical themes that are prominent in ethics discussions: the goals of exposome research, its standards, its tools, how it relates to study participants, and the consequences of its products. Furthermore, we provide a number of general principles for how future ethics research can best make use of our comprehensive overview of the ethical aspects of exposome research. Lastly, we highlight three aspects of exposome research that are most in need of ethical reflection: the actionability of its findings, the epidemiological or clinical norms applicable to exposome research, and the meaning and action-implications of bias.
Collapse
Affiliation(s)
- Caspar W. Safarlou
- Department of Global Public Health and Bioethics, Julius Center for
Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The
Netherlands
| | - Karin R. Jongsma
- Department of Global Public Health and Bioethics, Julius Center for
Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The
Netherlands
| | - Roel Vermeulen
- Department of Global Public Health and Bioethics, Julius Center for
Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The
Netherlands
- Department of Population Health Sciences, Utrecht University,
Utrecht, The Netherlands
| | - Annelien L. Bredenoord
- Department of Global Public Health and Bioethics, Julius Center for
Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The
Netherlands
- Erasmus School of Philosophy, Erasmus University Rotterdam,
Rotterdam, The Netherlands
| |
Collapse
|
3
|
Glaab E, Rauschenberger A, Banzi R, Gerardi C, Garcia P, Demotes J. Biomarker discovery studies for patient stratification using machine learning analysis of omics data: a scoping review. BMJ Open 2021; 11:e053674. [PMID: 34873011 PMCID: PMC8650485 DOI: 10.1136/bmjopen-2021-053674] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To review biomarker discovery studies using omics data for patient stratification which led to clinically validated FDA-cleared tests or laboratory developed tests, in order to identify common characteristics and derive recommendations for future biomarker projects. DESIGN Scoping review. METHODS We searched PubMed, EMBASE and Web of Science to obtain a comprehensive list of articles from the biomedical literature published between January 2000 and July 2021, describing clinically validated biomarker signatures for patient stratification, derived using statistical learning approaches. All documents were screened to retain only peer-reviewed research articles, review articles or opinion articles, covering supervised and unsupervised machine learning applications for omics-based patient stratification. Two reviewers independently confirmed the eligibility. Disagreements were solved by consensus. We focused the final analysis on omics-based biomarkers which achieved the highest level of validation, that is, clinical approval of the developed molecular signature as a laboratory developed test or FDA approved tests. RESULTS Overall, 352 articles fulfilled the eligibility criteria. The analysis of validated biomarker signatures identified multiple common methodological and practical features that may explain the successful test development and guide future biomarker projects. These include study design choices to ensure sufficient statistical power for model building and external testing, suitable combinations of non-targeted and targeted measurement technologies, the integration of prior biological knowledge, strict filtering and inclusion/exclusion criteria, and the adequacy of statistical and machine learning methods for discovery and validation. CONCLUSIONS While most clinically validated biomarker models derived from omics data have been developed for personalised oncology, first applications for non-cancer diseases show the potential of multivariate omics biomarker design for other complex disorders. Distinctive characteristics of prior success stories, such as early filtering and robust discovery approaches, continuous improvements in assay design and experimental measurement technology, and rigorous multicohort validation approaches, enable the derivation of specific recommendations for future studies.
Collapse
Affiliation(s)
- Enrico Glaab
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Armin Rauschenberger
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Rita Banzi
- Center for Health Regulatory Policies, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Chiara Gerardi
- Center for Health Regulatory Policies, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Paula Garcia
- European Clinical Research Infrastructure Network, ECRIN, Paris, France
| | - Jacques Demotes
- European Clinical Research Infrastructure Network, ECRIN, Paris, France
| |
Collapse
|
4
|
Rumrich IK, Vähäkangas K, Viluksela M, Gissler M, Surcel HM, de Ruyter H, Jokinen J, Hänninen O. The MATEX cohort - a Finnish population register birth cohort to study health effects of prenatal exposures. BMC Public Health 2017; 17:871. [PMID: 29115964 PMCID: PMC5678812 DOI: 10.1186/s12889-017-4881-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/26/2017] [Indexed: 12/11/2022] Open
Abstract
Background The prevalence of chronic diseases, such as immune, neurobehavioral, and metabolic disorders has increased in recent decades. According to the concept of Developmental Origin of Health and Disease (DOHaD), developmental factors associated with environmental exposures and maternal lifestyle choices may partly explain the observed increase. Register-based epidemiology is a prime tool to investigate the effects of prenatal exposures over the whole life course. Our aim is to establish a Finnish register-based birth cohort, which can be used to investigate various (prenatal) exposures and their effects during the whole life course with first analyses focusing on maternal smoking and air pollution. In this paper we (i) review previous studies to identify knowledge gaps and overlaps available for cross-validation, (ii) lay out the MATEX study plan for register linkages, and (iii) analyse the study power of the baseline MATEX cohort for selected endpoints identified from the international literature. Methods/design The MATEX cohort is a fully register-based cohort identified from the Finnish Medical Birth Register (MBR) (1987–2015). Information from the MBR will be linked with other Finnish health registers and the population register to link the cohort with air quality data. Epidemiological analyses will be conducted for maternal smoking and air pollution and a range of health endpoints. Discussion The MATEX cohort consists of 1.75 million mother-child pairs with a maximum follow up time of 29 years. This makes the cohort big enough to reach sufficient statistical power to investigate rare outcomes, such as birth anomalies, childhood cancers, and sudden infant death syndrome (SIDS). The linkage between different registers allows for an extension of the scope of the cohort and a follow up from the prenatal period to decades later in life. Electronic supplementary material The online version of this article (10.1186/s12889-017-4881-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Isabell K Rumrich
- Department of Environmental and Biological Sciences, University of Eastern Finland (UEF), Kuopio, Finland. .,Department of Public Health Solutions, National Institute for Health and Welfare (THL), Kuopio, Finland.
| | - Kirsi Vähäkangas
- University of Eastern Finland (UEF), School of Pharmacy/Toxicology, Kuopio, Finland
| | - Matti Viluksela
- Department of Environmental and Biological Sciences, University of Eastern Finland (UEF), Kuopio, Finland.,Department of Public Health Solutions, National Institute for Health and Welfare (THL), Kuopio, Finland
| | - Mika Gissler
- Department of Information Services, National Institute for Health and Welfare, Helsinki, Finland
| | - Heljä-Marja Surcel
- Department of Welfare, National Institute for Health and Welfare, Oulu, Finland
| | | | - Jukka Jokinen
- Department of Public Health Solutions, National Institute for Health and Welfare (THL), Kuopio, Finland
| | - Otto Hänninen
- Department of Public Health Solutions, National Institute for Health and Welfare (THL), Kuopio, Finland
| |
Collapse
|
5
|
Bozeman B, Youtie J. Trouble in Paradise: Problems in Academic Research Co-authoring. SCIENCE AND ENGINEERING ETHICS 2016; 22:1717-1743. [PMID: 26573303 DOI: 10.1007/s11948-015-9722-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 11/03/2015] [Indexed: 05/22/2023]
Abstract
Scholars and policy-makers have expressed concerns about the crediting of coauthors in research publications. Most such problems fall into one of two categories, excluding deserving contributors or including undeserving ones. But our research shows that there is no consensus on "deserving" or on what type of contribution suffices for co-authorship award. Our study uses qualitative data, including interviews with 60 US academic science or engineering researchers in 14 disciplines in a set of geographically distributed research-intensive universities. We also employ data from 161 website posts provided by 93 study participants, again US academic scientists. We examine a variety of factors related to perceived unwarranted exclusion from co-author credit and unwarranted inclusion, providing an empirically-informed conceptual model to explain co-author crediting outcomes. Determinants of outcomes include characteristics of disciplines and fields, institutional work culture, power dynamics and team-specific norms and decision processes.
Collapse
Affiliation(s)
- Barry Bozeman
- Center for Organization Research and Design, School of Public Affairs, Arizona State University, Phoenix, AZ, 85004, USA.
| | - Jan Youtie
- Enterprise Innovation Institute, Georgia Institute of Technology, Atlanta, GA, 30308, USA
| |
Collapse
|
6
|
Abstract
Given a history of atrocities and violations of ethical principles, several documents and regulations have been issued by a wide variety of organizations. They aim at ensuring that health care and clinical research adhere to defined ethical principles. A fundamental component was devised to ensure that the individual has been provided the necessary information to make an informed decision regarding health care or participation in clinical research. This article summarizes the history and regulations for informed consent and discusses suggested components for adequate consent forms for daily clinical practice in surgery as well as clinical research.
Collapse
Affiliation(s)
- Hernando Abaunza
- Asociación Colombiana de Cirugía, Calle 100 # 14-63 of. 502, Bogotá, Colombia,
| | | |
Collapse
|
7
|
Abu-Elmagd M, Assidi M, Schulten HJ, Dallol A, Pushparaj PN, Ahmed F, Scherer SW, Al-Qahtani M. Individualized medicine enabled by genomics in Saudi Arabia. BMC Med Genomics 2015; 8 Suppl 1:S3. [PMID: 25951871 PMCID: PMC4315314 DOI: 10.1186/1755-8794-8-s1-s3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The biomedical research sector in Saudi Arabia has recently received special attention from the government, which is currently supporting research aimed at improving the understanding and treatment of common diseases afflicting Saudi Arabian society. To build capacity for research and training, a number of centres of excellence were established in different areas of the country. Among these, is the Centre of Excellence in Genomic Medicine Research (CEGMR) at King Abdulaziz University, Jeddah, with its internationally ranked and highly productive team performing translational research in the area of individualized medicine. Here, we present a panorama of the recent trends in different areas of biomedical research in Saudi Arabia drawing from our vision of where genomics will have maximal impact in the Kingdom of Saudi Arabia. We describe advances in a number of research areas including; congenital malformations, infertility, consanguinity and pre-implantation genetic diagnosis, cancer and genomic classifications in Saudi Arabia, epigenetic explanations of idiopathic disease, and pharmacogenomics and personalized medicine. We conclude that CEGMR will continue to play a pivotal role in advances in the field of genomics and research in this area is facing a number of challenges including generating high quality control data from Saudi population and policies for using these data need to comply with the international set up.
Collapse
Affiliation(s)
- Muhammad Abu-Elmagd
- Centre of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, P.O. Box: 80216 Jeddah 21589, KSA
- KACST Technology Innovation Centre in Personalized Medicine at King Abdulaziz University (CIPM), P.O. Box: 80216 Jeddah 21589, KSA
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
- Zoology Department, Faculty of Science, Minia University, Minia, P.O. Box 61519, Egypt
| | - Mourad Assidi
- Centre of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, P.O. Box: 80216 Jeddah 21589, KSA
- KACST Technology Innovation Centre in Personalized Medicine at King Abdulaziz University (CIPM), P.O. Box: 80216 Jeddah 21589, KSA
| | - Hans-Juergen Schulten
- Centre of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, P.O. Box: 80216 Jeddah 21589, KSA
| | - Ashraf Dallol
- Centre of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, P.O. Box: 80216 Jeddah 21589, KSA
- KACST Technology Innovation Centre in Personalized Medicine at King Abdulaziz University (CIPM), P.O. Box: 80216 Jeddah 21589, KSA
| | - Peter Natesan Pushparaj
- Centre of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, P.O. Box: 80216 Jeddah 21589, KSA
| | - Farid Ahmed
- Centre of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, P.O. Box: 80216 Jeddah 21589, KSA
| | - Stephen W Scherer
- Centre of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, P.O. Box: 80216 Jeddah 21589, KSA
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, the Hospital for Sick Children, Toronto, Ontario, Canada
- McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Mohammed Al-Qahtani
- Centre of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, P.O. Box: 80216 Jeddah 21589, KSA
| |
Collapse
|
8
|
Haenen S, Clynen E, Nemery B, Hoet PH, Vanoirbeek JA. Biomarker discovery in asthma and COPD: Application of proteomics techniques in human and mice. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|