1
|
In Vitro Genotoxicity Evaluation of an Antiseptic Formulation Containing Kaolin and Silver Nanoparticles. NANOMATERIALS 2022; 12:nano12060914. [PMID: 35335725 PMCID: PMC8948953 DOI: 10.3390/nano12060914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 02/06/2023]
Abstract
Worldwide antimicrobial resistance is partly caused by the overuse of antibiotics as growth promoters. Based on the known bactericidal effect of silver, a new material containing silver in a clay base was developed to be used as feed additive. An in vitro genotoxicity evaluation of this silver-kaolin clay formulation was conducted, which included the mouse lymphoma assay in L5178Y TK+/− cells and the micronucleus test in TK6 cells, following the principles of the OECD guidelines 490 and 487, respectively. As a complement, the standard and Fpg-modified comet assays for the evaluation of strand breaks, alkali labile sites and oxidative DNA damage were also performed in TK6 cells. The formulation was tested without metabolic activation after an exposure of 3 h and 24 h; its corresponding release in medium, after the continuous agitation of the silver-kaolin for 24 h was also evaluated. Under the conditions tested, the test compound did not produce gene mutations, chromosomal aberrations or DNA damage (i.e., strand breaks, alkali labile sites or oxidized bases). Considering the results obtained in the present study, the formulation seems to be a promising material to be used as antimicrobial in animal feed.
Collapse
|
2
|
Toxicity and Metal Corrosion of Glutaraldehyde-Didecyldimethylammonium Bromide as a Disinfectant Agent. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9814209. [PMID: 30079353 PMCID: PMC6069694 DOI: 10.1155/2018/9814209] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/05/2018] [Accepted: 06/10/2018] [Indexed: 02/03/2023]
Abstract
The wide use of disinfectants has prompted resistance from the microbiome which will in turn reduce the bactericidal effect of disinfectants. Hence, glutaraldehyde (GA) and didecyldimethylammonium bromide (DDAB) were used to develop a combination disinfectant with high stability and antimicrobial effects, which was named GA-DDAB combination disinfectant (GD). The bactericidal mechanism against Escherichia coli was studied in our earlier work. In this study, we focused on GD's bactericidal efficacy in both the laboratory and environment, the genetic toxicity to mouse lymphoma L5178Y TK+/− cells, acute peroral toxicity in mice, and its metal corrosion properties with a view to providing theoretical support for developing a high-efficiency, low toxicity, and weakly corrosive disinfectant for general use.
Collapse
|
3
|
Niu B, Huai W, Deng Z, Chen Q. Fungicidal, Corrosive, and Mutational Effects of Polyhexamethylene Biguanide Combined with 1-Bromo-3-chloro-5,5-dimethylimidazolidine-2,4-dione. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4357031. [PMID: 29230408 PMCID: PMC5694612 DOI: 10.1155/2017/4357031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 10/01/2017] [Indexed: 11/23/2022]
Abstract
BACKGROUND The disinfectants polyhexamethylene biguanide (PHMB) and 1-bromo-3-chloro-5,5-dimethylimidazolidine-2,4-dione (BCDMH) each have limitations. So far, their combined usage has not been examined. In this study, the fungicidal activity of combined disinfectant using PHMB and BCDMH, named PB, against Candida albicans was evaluated. METHODS Suspension quantitative fungicidal test and viable fungi count were used to test fungicidal effects against C. albicans. Coupon corrosion testing was used to evaluate disinfectants' corrosive effects on stainless steel, copper, and aluminum. The mouse lymphoma assay was used to detect mutations induced by PB. RESULTS AND DISCUSSION Fungicidal activity of the combination of 40 mg/L PHMB and 40 mg/L BCDMH was comparable to, or even better than, those of 600 mg/L PHMB or 640 mg/L BCDMH alone. The combination of 400 mg/L PHMB and 400 mg/L BCDMH exhibited good fungicidal effects in field applications. The combination of 100 mg/L PHMB and 100 mg/L BCDMH did not have corrosive effects on stainless steel and no mutagenic effect was observed under the test conditions. CONCLUSIONS The combination of PHMB and BCDMH has strong fungicidal effects and little metal corrosive and mutagenic effect and can be used as one suitable fungicide for wide household and industrial applications, including shipping containers.
Collapse
Affiliation(s)
- Bing Niu
- School of Life Science, Shanghai University, Shanghai 200444, China
| | - Wan Huai
- School of Life Science, Shanghai University, Shanghai 200444, China
| | - Zhirui Deng
- School of Life Science, Shanghai University, Shanghai 200444, China
| | - Qin Chen
- School of Life Science, Shanghai University, Shanghai 200444, China
| |
Collapse
|
4
|
Iglesias T, Dusinska M, El Yamani N, Irache JM, Azqueta A, López de Cerain A. In vitro evaluation of the genotoxicity of poly(anhydride) nanoparticles designed for oral drug delivery. Int J Pharm 2017; 523:418-426. [PMID: 28286081 DOI: 10.1016/j.ijpharm.2017.03.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 10/20/2022]
Abstract
In the last years, the development of nanomaterials has significantly increased due to the immense variety of potential applications in technological sectors, such as medicine, pharmacy and food safety. Focusing on the nanodevices for oral drug delivery, poly(anhydride) nanoparticles have received extensive attention due to their unique properties, such as their capability to develop intense adhesive interactions within the gut mucosa, their modifiable surface and their biodegradable and easy-to-produce profile. However, current knowledge of the possible adverse health effects as well as, toxicological information, is still exceedingly limited. Thus, we investigated the capacity of two poly(anhydride) nanoparticles, Gantrez® AN 119-NP (GN-NP) and Gantrez® AN 119 covered with mannosamine (GN-MA-NP), and their main bulk material (Gantrez® AN 119-Polymer), to induce DNA damage and thymidine kinase (TK+/-) mutations in L5178Y TK+/- mouse lymphoma cells after 24h of exposure. The results showed that GN-NP, GN-MA-NP and their polymer did not induce DNA strand breaks or oxidative damage at concentrations ranging from 7.4 to 600μg/mL. Besides, the mutagenic potential of these nanoparticles and their polymer revealed no significant or biologically relevant gene mutation induction at concentrations up to 600μg/mL under our experimental settings. Considering the non-genotoxic effects of GN-NP and GN-MA-NP, as well as their exceptional properties, these nanoparticles are promising nanocarriers for oral medical administrations.
Collapse
Affiliation(s)
- T Iglesias
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - M Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, Norwegian Institute for Air Research, Kjeller, Norway
| | - N El Yamani
- Health Effects Laboratory, Department of Environmental Chemistry, Norwegian Institute for Air Research, Kjeller, Norway
| | - J M Irache
- Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain
| | - A Azqueta
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Spain.
| | - A López de Cerain
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Spain
| |
Collapse
|
5
|
Finot F, Kaddour A, Morat L, Mouche I, Zaguia N, Cuceu C, Souverville D, Négrault S, Cariou O, Essahli A, Prigent N, Saul J, Paillard F, Heidingsfelder L, Lafouge P, Al Jawhari M, Hempel WM, El May M, Colicchio B, Dieterlen A, Jeandidier E, Sabatier L, Clements J, M'Kacher R. Genotoxic risk of ethyl-paraben could be related to telomere shortening. J Appl Toxicol 2016; 37:758-771. [DOI: 10.1002/jat.3425] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/01/2016] [Accepted: 11/01/2016] [Indexed: 01/22/2023]
Affiliation(s)
- F. Finot
- Covance Laboratory; 78440 Porcheville France
- Cell Environment; Paris France
| | - A. Kaddour
- Cell Environment; Paris France
- Tunis El Manar University; School of Medicine; Tunis Tunisia
| | - L. Morat
- Radiology and Oncology Laboratory, IRCM, DSV; Commissariat à l'energie atomique (CEA); Fontenay-aux Roses France
| | - I. Mouche
- Covance Laboratory; 78440 Porcheville France
- Cell Environment; Paris France
| | - N. Zaguia
- Radiology and Oncology Laboratory, IRCM, DSV; Commissariat à l'energie atomique (CEA); Fontenay-aux Roses France
| | - C. Cuceu
- Radiology and Oncology Laboratory, IRCM, DSV; Commissariat à l'energie atomique (CEA); Fontenay-aux Roses France
| | | | - S. Négrault
- Covance Laboratory; 78440 Porcheville France
| | - O. Cariou
- Covance Laboratory; 78440 Porcheville France
| | - A. Essahli
- Covance Laboratory; 78440 Porcheville France
| | - N. Prigent
- Covance Laboratory; 78440 Porcheville France
| | - J. Saul
- Covance Laboratories; Yorkshire HG3 1PY UK
| | - F. Paillard
- Covance Laboratory; 78440 Porcheville France
| | | | - P. Lafouge
- Covance Laboratory; 78440 Porcheville France
| | | | - W. M. Hempel
- Radiology and Oncology Laboratory, IRCM, DSV; Commissariat à l'energie atomique (CEA); Fontenay-aux Roses France
| | - M. El May
- Tunis El Manar University; School of Medicine; Tunis Tunisia
| | - B. Colicchio
- Laboratoire MIPS - Groupe IMTI Université de Haute-Alsace; F-68093 Mulhouse France
| | - A. Dieterlen
- Laboratoire MIPS - Groupe IMTI Université de Haute-Alsace; F-68093 Mulhouse France
| | - E. Jeandidier
- Service de génétique Groupe Hospitalier de la Région de Mulhouse et Sud Alsace; 68070 Mulhouse France
| | - L. Sabatier
- Radiology and Oncology Laboratory, IRCM, DSV; Commissariat à l'energie atomique (CEA); Fontenay-aux Roses France
| | | | - R. M'Kacher
- Cell Environment; Paris France
- Radiology and Oncology Laboratory, IRCM, DSV; Commissariat à l'energie atomique (CEA); Fontenay-aux Roses France
| |
Collapse
|
6
|
Lorge E, Moore MM, Clements J, O'Donovan M, Fellows MD, Honma M, Kohara A, Galloway S, Armstrong MJ, Thybaud V, Gollapudi B, Aardema MJ, Tanir JY. Standardized cell sources and recommendations for good cell culture practices in genotoxicity testing. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 809:1-15. [PMID: 27692294 DOI: 10.1016/j.mrgentox.2016.08.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/29/2016] [Accepted: 08/02/2016] [Indexed: 11/16/2022]
Abstract
Good cell culture practice and characterization of the cell lines used are of critical importance in in vitro genotoxicity testing. The objective of this initiative was to make continuously available stocks of the characterized isolates of the most frequently used mammalian cell lines in genotoxicity testing anywhere in the world ('IVGT' cell lines). This project was organized under the auspices of the International Life Sciences Institute (ILSI) Health and Environmental Sciences Institute (HESI) Project Committee on the Relevance and Follow-up of Positive Results in In Vitro Genetic Toxicity (IVGT) Testing. First, cell isolates were identified that are as close as possible to the isolate described in the initial publications reporting their use in genotoxicity testing. The depositors of these cell lines managed their characterization and their expansion for preparing continuously available stocks of these cells that are stored at the European Collection of Cell Cultures (ECACC, UK) and the Japanese Collection of Research Bioresources (JCRB, Japan). This publication describes how the four 'IVGT' cell lines, i.e. L5178Y TK+/- 3.7.2C, TK6, CHO-WBL and CHL/IU, were prepared for deposit at the ECACC and JCRB cell banks. Recommendations for handling these cell lines and monitoring their characteristics are also described. The growth characteristics of these cell lines (growth rates and cell cycles), their identity (karyotypes and genetic status) and ranges of background frequencies of select endpoints are also reported to help in the routine practice of genotoxicity testing using these cell lines.
Collapse
Affiliation(s)
- E Lorge
- Servier Group, 45520, Gidy, France
| | - M M Moore
- Ramboll Environ, Little Rock, AR, 72201, USA
| | - J Clements
- Covance Laboratories Ltd, Harrogate, HG3 1PY, UK
| | - M O'Donovan
- O'Donovan GT Consulting Ltd., Epperstone, Nottingham, NG14 6AG, UK
| | - M D Fellows
- AstraZeneca, Drug Safety and Metabolism, Cambridge, CB4 0WG, UK
| | - M Honma
- National Institute of Health Sciences, Tokyo, Japan
| | - A Kohara
- JCRB Cell Bank, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - S Galloway
- Merck Research Laboratories, W 45-316, West Point, PA 19486, USA
| | - M J Armstrong
- Merck Research Laboratories, W 45-316, West Point, PA 19486, USA
| | - V Thybaud
- Sanofi, 94400, Vitry sur Seine, France
| | - B Gollapudi
- Exponent, Inc., 1910 St. Andrews St., Midland, MI 48640, USA
| | - M J Aardema
- Marilyn Aardema Consulting LLC, Fairfield, OH 45014, USA
| | - J Y Tanir
- ILSI Health and Environmental Sciences Institute, Washington, DC 20005, USA.
| |
Collapse
|
7
|
Krüger CT, Hofmann M, Hartwig A. The in vitro PIG-A gene mutation assay: mutagenicity testing via flow cytometry based on the glycosylphosphatidylinositol (GPI) status of TK6 cells. Arch Toxicol 2014; 89:2429-43. [PMID: 25417052 DOI: 10.1007/s00204-014-1413-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 11/06/2014] [Indexed: 11/28/2022]
Abstract
The X-linked PIG-A gene is involved in the biosynthesis of the cell surface anchor GPI, and its inactivation may serve as a new marker for mutagenicity. The in vivo PIG-A gene mutation assay is currently being validated by several groups. In this study, we established a corresponding in vitro variant of the PIG-A assay applying B-lymphoblastoid TK6 cells. PE-conjugated antibodies against the GPI-anchored proteins CD55 and CD59 were used to determine the GPI status via multicolor flow cytometry. Mutant spiked TK6 cell samples were analyzed, and mutants were quantified with even small numbers being quantitatively recovered. To validate our approach, mutant spiked cell samples were analyzed by flow cytometry and proaerolysin selection in parallel, yielding a high correlation. Further, we developed a procedure to reduce the background level of preexisting mutant cells to lower than 20 in 10(6) cells to increase the sensitivity of the assay. Spontaneous rate of GPI deficiency was investigated being 0.76 × 10(-6)/cell/generation for TK6 cells. The optimal phenotype expression time after ethyl methanesulfonate treatment was found to be 10 days. We applied the in vitro PIG-A assay to demonstrate the mutagenicity of ethyl methanesulfonate, 4-nitroquinoline 1-oxide and UV-C irradiation in a dose-dependent and statistically significant manner. Pyridine and cycloheximide were included as negative controls providing negative test results up to 10 mM. These data suggest that the in vitro PIG-A assay could complement the in vivo PIG-A assay with some distinct advantages compared to other in vitro mammalian mutagenicity tests.
Collapse
Affiliation(s)
- Christopher T Krüger
- Department of Food Chemistry and Toxicology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131, Karlsruhe, Germany
| | - Mareike Hofmann
- Department of Food Chemistry and Toxicology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131, Karlsruhe, Germany
| | - Andrea Hartwig
- Department of Food Chemistry and Toxicology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131, Karlsruhe, Germany.
| |
Collapse
|
8
|
Genotoxins induce binucleation in L5178Y and TK6 cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 770:29-34. [PMID: 25344161 DOI: 10.1016/j.mrgentox.2014.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 11/21/2022]
Abstract
Following the initial observation that methyl methanesulphonate induced binucleated cells in the AHH-1 line and a significant number of them contained micronuclei, human lymphoblastoid TK6 and mouse lymphoma L5178Y cells were treated with methyl methanesulphonate, methylnitrosourea, mitomycin C, cytosine arabinoside, colchicine and triton X. All except triton X induced binucleated cells in both lines but an increased micronucleus incidence in them was seen only in TK6. The two lines also differed in the numbers of binucleates in the control cultures with 2.0% and 0.5% in TK6 and L5178Y, respectively, and a much higher proportion of those in TK6 contained micronuclei. The differences in behaviour between the two cell lines could not clearly be ascribed to their P53 status. Colchicine induced binucleates in both cell lines but they did not contain increased numbers of micronuclei. The effect on binucleate incidence was not a non-specific cytotoxic response because no increase was seen with triton X even at highly cytotoxic concentrations. The initial concern that not scoring micronuclei in binucleated cells might lead to erroneous results in in vitro micronucleus tests not using a cytokinesis block, was not proven because all the genotoxins tested here induced significant increases in micronucleus frequency in mononuclear cells. When testing less potently active agents in in vitro micronucleus tests not employing a cytokinesis block, care should be taken to understand better this phenomenon and not to include these damaged cells until we do.
Collapse
|