1
|
Li J, Wei H, Wang N, Chen J, Zhang W, An Z, Song J, Liang Y, Liu X, Wu W. Concurrent ozone and high temperature exacerbates nasal epithelial barrier damage in allergic rhinitis mice: Insights from the nasal transcriptome and nasal microbiota. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135800. [PMID: 39265397 DOI: 10.1016/j.jhazmat.2024.135800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/15/2024] [Accepted: 09/08/2024] [Indexed: 09/14/2024]
Abstract
The global ambient temperature has been rising in recent decades and high temperature is usually accompanied by ozone (O3) pollution. Environmental change is an underlying factor for the increased prevalence of respiratory allergic disease. However, the potential mechanisms are complex and remain elusive. This study was performed to reveal toxic effects and molecular mechanisms of O3 or/and high temperature induced allergic rhinitis (AR) deterioration. The results indicated that O3 and high temperature co-exposure exacerbated rhinitis symptoms, destroyed ultrastructure of nasal mucosa and down-regulated the expression of nasal epithelial barrier structural proteins ZO-1 and occludin. Moreover, the levels of total protein and lactate dehydrogenase (LDH) in nasal lavage fluid and the levels of IL-1β and TNF-α in serum also exhibited a significant upward trend. Transcriptomic analysis revealed that immune and inflammatory signaling pathways such as IL-17 signaling pathway was involved in the combined toxicity of O3 and high temperature. Microbiome examination showed that Prevotella and Elizabethkingia were linked to nasal injury. What's more, spearman correlation analysis revealed correlations among nasal microbiota dysbiosis, inflammation and injury. To sum up, the present study assessed the combined toxicity of O3 and high temperature and found potential mechanisms, which provided important experimental evidence for making preventive intervention strategies and protecting vulnerable populations.
Collapse
Affiliation(s)
- Juan Li
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Huai Wei
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Ning Wang
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Jing Chen
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Weiping Zhang
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Zhen An
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Jie Song
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Yixuan Liang
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Xiaowan Liu
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Weidong Wu
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China.
| |
Collapse
|
2
|
Mazumder MHH, Hussain S. Air-Pollution-Mediated Microbial Dysbiosis in Health and Disease: Lung-Gut Axis and Beyond. J Xenobiot 2024; 14:1595-1612. [PMID: 39449427 PMCID: PMC11503347 DOI: 10.3390/jox14040086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Growing evidence suggests physiological and pathological functions of lung and gut microbiomes in various pathologies. Epidemiological and experimental data associate air pollution exposure with host microbial dysbiosis in the lungs and gut. Air pollution through increased reactive oxygen species generation, the disruption of epithelial barrier integrity, and systemic inflammation modulates microbial imbalance. Microbiome balance is crucial in regulating inflammation and metabolic pathways to maintain health. Microbiome dysbiosis is proposed as a potential mechanism for the air-pollution-induced modulation of pulmonary and systemic disorders. Microbiome-based therapeutic approaches are increasingly gaining attention and could have added value in promoting lung health. This review summarizes and discusses air-pollution-mediated microbiome alterations in the lungs and gut in humans and mice and elaborates on their role in health and disease. We discuss and summarize the current literature, highlight important mechanisms that lead to microbial dysbiosis, and elaborate on pathways that potentially link lung and lung microbiomes in the context of environmental exposures. Finally, we discuss the lung-liver-gut axis and its potential pathophysiological implications in air-pollution-mediated pathologies through microbial dysbiosis.
Collapse
Affiliation(s)
- Md Habibul Hasan Mazumder
- Department of Physiology, Pharmacology & Toxicology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
- Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- Department of Pharmaceutical and Pharmacological Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA
| | - Salik Hussain
- Department of Physiology, Pharmacology & Toxicology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
- Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- Department of Microbiology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
3
|
Agarwal S, Tomar N, Makwana M, Patra S, Chopade BA, Gupta V. Air pollution, dysbiosis and diseases: pneumonia, asthma, COPD, lung cancer and irritable bowel syndrome. Future Microbiol 2024; 19:1497-1513. [PMID: 39345043 PMCID: PMC11492635 DOI: 10.1080/17460913.2024.2401263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024] Open
Abstract
With substantial effects on human health, air pollution has become a major global concern. Air pollution has been linked to numerous gastrointestinal and respiratory diseases with increasing mortalities. The gut and respiratory dysbiosis brought about by air pollution has recently received much attention. This review attempts to provide an overview of the types of air pollutants, their sources, their impact on the respiratory and gut dysbiotic patterns and their correlation with five major diseases including pneumonia, asthma, COPD, lung cancer and irritable bowel syndrome. Deeper insights into the links between pollutants, dysbiosis and disease may pave the way for novel diagnostic biomarkers for prognosis and early detection of these diseases, as well as ways to ease the disease burden.
Collapse
Affiliation(s)
- Shelja Agarwal
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi, 110021, India
| | - Nandini Tomar
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi, 110021, India
| | - Meet Makwana
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi, 110021, India
| | - Sandeep Patra
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi, 110021, India
| | - Balu A Chopade
- AKS University, Satna, Madhya Pradesh, India
- Department of Microbiology, Savitribai Phule Pune University, Pune, 411007, Maharashtra, India
| | - Vandana Gupta
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi, 110021, India
| |
Collapse
|
4
|
Park YC, Choi SY, Cha Y, Yoon HW, Son YM. Microbiome-Mucosal Immunity Nexus: Driving Forces in Respiratory Disease Progression. J Microbiol 2024; 62:709-725. [PMID: 39240507 DOI: 10.1007/s12275-024-00167-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 09/07/2024]
Abstract
The importance of the complex interplay between the microbiome and mucosal immunity, particularly within the respiratory tract, has gained significant attention due to its potential implications for the severity and progression of lung diseases. Therefore, this review summarizes the specific interactions through which the respiratory tract-specific microbiome influences mucosal immunity and ultimately impacts respiratory health. Furthermore, we discuss how the microbiome affects mucosal immunity, considering tissue-specific variations, and its capacity in respiratory diseases containing asthma, chronic obstructive pulmonary disease, and lung cancer. Additionally, we investigate the external factors which affect the relationship between respiratory microbiome and mucosal immune responses. By exploring these intricate interactions, this review provides valuable insights into the potential for microbiome-based interventions to modulate mucosal immunity and alleviate the severity of respiratory diseases.
Collapse
Affiliation(s)
- Young Chae Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Soo Yeon Choi
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Yunah Cha
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Hyeong Won Yoon
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Young Min Son
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
5
|
Druzhinin VG, Baranova ED, Demenkov PS, Matskova LV, Larionov AV. Composition of the sputum bacterial microbiome of patients with different pathomorphological forms of non-small-cell lung cancer. Vavilovskii Zhurnal Genet Selektsii 2024; 28:204-214. [PMID: 38680177 PMCID: PMC11043513 DOI: 10.18699/vjgb-24-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 05/01/2024] Open
Abstract
Recent studies have shown that the bacterial microbiome of the respiratory tract influences the development of lung cancer. Changes in the composition of the microbiome are observed in patients with chronic inflammatory processes. Such microbiome changes may include the occurrence of bacteria that cause oxidative stress and that are capable of causing genome damage in the cells of the host organism directly and indirectly. To date, the composition of the respiratory microbiome in patients with various histological variants of lung cancer has not been studied. In the present study, we determined the taxonomic composition of the sputum microbiome of 52 patients with squamous cell carcinoma of the lung, 52 patients with lung adenocarcinoma and 52 healthy control donors, using next-generation sequencing (NGS) on the V3-V4 region of the bacterial gene encoding 16S rRNA. The sputum microbiomes of patients with different histological types of lung cancer and controls did not show significant differences in terms of the species richness index (Shannon); however, the patients differed from the controls in terms of evenness index (Pielou). The structures of bacterial communities (beta diversity) in the adenocarcinoma and squamous cell carcinoma groups were also similar; however, when analyzed according to the matrix constructed by the Bray-Curtis method, there were differences between patients with squamous cell carcinoma and healthy subjects, but not between those with adenocarcinoma and controls. Using the LEFse method it was possible to identify an increase in the content of Bacillota (Streptococcus and Bacillus) and Actinomycetota (Rothia) in the sputum of patients with squamous cell carcinoma when compared with samples from patients with adenocarcinoma. There were no differences in the content of bacteria between the samples of patients with adenocarcinoma and the control ones. The content of representatives of the genera Streptococcus, Bacillus, Peptostreptococcus (phylum Bacillota), Prevotella, Macellibacteroides (phylum Bacteroidota), Rothia (phylum Actinomycetota) and Actinobacillus (phylum Pseudomonadota) was increased in the microbiome of sputum samples from patients with squamous cell carcinoma, compared with the control. Thus, the sputum bacterial microbiome of patients with different histological types of non-small-cell lung cancer has significant differences. Further research should be devoted to the search for microbiome biomarkers of lung cancer at the level of bacterial species using whole-genome sequencing.
Collapse
Affiliation(s)
- V G Druzhinin
- Kemerovo State University, Kemerovo, Russia Kemerovo State Medical University, Kemerovo, Russia
| | | | - P S Demenkov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | | | | |
Collapse
|
6
|
Cheng J, Zhou L, Wang H. Symbiotic microbial communities in various locations of the lung cancer respiratory tract along with potential host immunological processes affected. Front Cell Infect Microbiol 2024; 14:1296295. [PMID: 38371298 PMCID: PMC10873922 DOI: 10.3389/fcimb.2024.1296295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/18/2024] [Indexed: 02/20/2024] Open
Abstract
Lung cancer has the highest mortality rate among all cancers worldwide. The 5-year overall survival rate for non-small cell lung cancer (NSCLC) is estimated at around 26%, whereas for small cell lung cancer (SCLC), the survival rate is only approximately 7%. This disease places a significant financial and psychological burden on individuals worldwide. The symbiotic microbiota in the human body has been significantly associated with the occurrence, progression, and prognosis of various diseases, such as asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis. Studies have demonstrated that respiratory symbiotic microorganisms and their metabolites play a crucial role in modulating immune function and contributing to the pathophysiology of lung cancer through their interactions with the host. In this review, we provide a comprehensive overview of the microbial characteristics associated with lung cancer, with a focus on the respiratory tract microbiota from different locations, including saliva, sputum, bronchoalveolar lavage fluid (BALF), bronchial brush samples, and tissue. We describe the respiratory tract microbiota's biodiversity characteristics by anatomical region, elucidating distinct pathological features, staging, metastasis, host chromosomal mutations, immune therapies, and the differentiated symbiotic microbiota under the influence of environmental factors. Our exploration investigates the intrinsic mechanisms linking the microbiota and its host. Furthermore, we have also provided a comprehensive review of the immune mechanisms by which microbiota are implicated in the development of lung cancer. Dysbiosis of the respiratory microbiota can promote or inhibit tumor progression through various mechanisms, including DNA damage and genomic instability, activation and regulation of the innate and adaptive immune systems, and stimulation of epithelial cells leading to the upregulation of carcinogenesis-related pathways.
Collapse
Affiliation(s)
- Jiuling Cheng
- Respiratory Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lujia Zhou
- Henan Key Laboratory of Precision Diagnosis of Respiratory Infectious Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Key Laboratory of Precision Diagnosis of Respiratory Infectious Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huaqi Wang
- Respiratory Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
7
|
Yi J, Xiang J, Tang J. Exploring the microbiome: Uncovering the link with lung cancer and implications for diagnosis and treatment. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:161-170. [PMID: 39171127 PMCID: PMC11332872 DOI: 10.1016/j.pccm.2023.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Indexed: 08/23/2024]
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Tobacco smoking and air pollution are believed to be responsible for more than 90% of lung cancers. Respiratory pathogens are also known to be associated with the initiation and development of lung cancer. Despite the fact that the bacterial biomass in the lungs is lower than that in the intestinal tract, emerging evidence indicates that the lung is colonized by a diverse array of microbes. However, there is limited knowledge regarding the role of dysbiosis of the lung microbiota in the progression of lung cancer. In this review, we summarize the current information about the relationship between the microbiome and lung cancer. The objective is to provide an overview of the core composition of the microbiota in lung cancer as well as the role of specific dysbiosis of the lung microbiota in the progression of lung cancer and treatment of the disease.
Collapse
Affiliation(s)
- Junqi Yi
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Juanjuan Xiang
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410028, China
| | - Jingqun Tang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
8
|
Pindling S, Klugman M, Lan Q, Hosgood HD. Narrative review: respiratory tract microbiome and never smoking lung cancer. J Thorac Dis 2023; 15:4522-4529. [PMID: 37691669 PMCID: PMC10482636 DOI: 10.21037/jtd-22-885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 11/11/2022] [Indexed: 09/12/2023]
Abstract
Background and Objective The lung microbiome was previously thought to be a sterile environment where only gaseous exchange takes place, but recent studies have shown the presence of microbiota in the lung. This review investigates the current literature on the effects of an environmental driven dysbiosis on the healthy oral and respiratory microbiome and its relationship to lung cancer risk in never-smokers. Methods An online electronic search was performed on PubMed of all English-language literature using combinations of the following keywords: "lung cancer", "dysbiosis", "non-smokers", "oral microbiome", and "respiratory microbiome". All population-based studies reporting results on oral and/or respiratory microbiome in adults were considered for our narrative review. Key Content and Findings Metagenomic analyses have been performed on isolated samples from healthy participants and compared to samples from those with lung cancer. Research shows that a decrease in alpha diversity of microbes in the oral microbiome is associated with increased risk of lung cancer, along with differences in beta diversity in the sputum of lung cancer cases and healthy controls. Further, several studies have observed that significant changes in the abundance of genera such as increased abundance of Lactobacillales, Bacilli, and Firmicutes associated with an increased lung cancer risk among participants with exposure to certain household solid fuels. Conclusions These findings suggest potential carcinogenic processes such as increased inflammation associated with changes in flora. Additionally, studies showed that increase in certain taxa such as Bacteroides and Spirochetes might have a protective effect on lung cancer risk. The review also provides insight into how understanding the microbial changes can be beneficial for lung cancer treatment and disease-free survival. Larger studies in different populations need to be performed to strengthen the current associations between microbial diversity and lung cancer risk.
Collapse
Affiliation(s)
- Sydney Pindling
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Madelyn Klugman
- New York Presbyterian Hospital-Weill Cornell Medical Center, New York, NY, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - H. Dean Hosgood
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
9
|
Li X, Yuan X, Zhu X, Li C, Ji L, Lv K, Tian G, Ning K, Yang J. A meta-analysis of tissue microbial biomarkers for recurrence and metastasis in multiple cancer types. J Med Microbiol 2023; 72. [PMID: 37624368 DOI: 10.1099/jmm.0.001744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023] Open
Abstract
Background. Local recurrence and distant metastasis are the main causes of death in patients with cancer. Only considering species abundance changes when identifying markers of recurrence and metastasis in patients hinders finding solutions.Hypothesis. Consideration of microbial abundance changes and microbial interactions facilitates the identification of microbial markers of tumour recurrence and metastasis.Aim. This study aims to simultaneously consider microbial abundance changes and microbial interactions to identify microbial markers of recurrence and metastasis in multiple cancer types.Method. One thousand one hundred and six non-RM (patients without recurrence and metastasis within 3 years after initial surgery) tissue samples and 912 RM (patients with recurrence or metastasis within 3 years after initial surgery) tissue samples representing 11 cancer types were collected from The Cancer Genome Atlas (TCGA).Results. Tumour tissue bacterial composition differed significantly among 11 cancers. Among them, the tissue microbiome of four cancers, head and neck squamous cell carcinoma (HNSC), lung squamous cell carcinoma (LUSC), stomach adenocarcinoma (STAD) and uterine corpus endometrial carcinoma (UCEC), showed relatively good performance in predicting recurrence and metastasis in patients, with areas under the receiver operating characteristic curve (AUCs) of 0.78, 0.74, 0.91 and 0.93, respectively. Considering both species abundance changes and microbial interactions for the four cancers, a combination of nine genera (Niastella, Schlesneria, Thioalkalivibrio, Phaeobacter, Sphaerotilus, Thiomonas, Lawsonia, Actinobacillus and Spiroplasma) performed best in predicting patient survival.Conclusion. Taken together, our results imply that comprehensive consideration of microbial abundance changes and microbial interactions is helpful for mining bacterial markers that carry prognostic information.
Collapse
Affiliation(s)
- Xuebo Li
- Department of Radiotherapy, Weifang Yidu Central Hospital, Weifang, 262500, PR China
| | - Xuelian Yuan
- School of Mathematical Sciences, Ocean University of China, Qingdao, 266100, PR China
| | - Xiumin Zhu
- Department of Pathology, Daqing Oilfield General Hospital, Daqing, 163001, PR China
| | - Changjun Li
- School of Mathematical Sciences, Ocean University of China, Qingdao, 266100, PR China
| | - Lei Ji
- Geneis Beijing Co. Ltd, Beijing, 100102, PR China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, 266000, PR China
| | - Kebo Lv
- School of Mathematical Sciences, Ocean University of China, Qingdao, 266100, PR China
| | - Geng Tian
- Geneis Beijing Co. Ltd, Beijing, 100102, PR China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, 266000, PR China
| | - Kang Ning
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Jialiang Yang
- Geneis Beijing Co. Ltd, Beijing, 100102, PR China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, 266000, PR China
- Chifeng Municipal Hospital, Chifeng, 024000, PR China
- Academician Workstation, Changsha Medical University, Changsha, 410219, PR China
| |
Collapse
|
10
|
Panumasvivat J, Pratchayasakul W, Sapbamrer R, Chattipakorn N, Chattipakorn SC. The possible role of particulate matter on the respiratory microbiome: evidence from in vivo to clinical studies. Arch Toxicol 2023; 97:913-930. [PMID: 36781433 DOI: 10.1007/s00204-023-03452-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/02/2023] [Indexed: 02/15/2023]
Abstract
Environmental pollution, which contains ambient particulate matter, has been shown to have a significant impact on human health and longevity over the past 30 years. Recent studies clearly showed that exposure to particulate matter directly caused adverse effects on the respiratory system via various mechanisms including the accumulation of free radical peroxidation, the imbalance of intercellular calcium regulation, and inflammation, resulting in respiratory diseases. Recent evidence showed the importance of the role of the respiratory microbiome on lung immunity and lung development. In addition, previous studies have confirmed that several chronic respiratory diseases were associated with an alteration in the respiratory microbiome. However, there is still a lack of knowledge with regard to the changes in the respiratory microbiome with regard to the role of particulate matter exposure in respiratory diseases. Therefore, this review aims to summarize and discuss all the in vivo to clinical evidence which investigated the effect of particulate matter exposure on the respiratory microbiome and respiratory diseases. Any contradictory findings are incorporated and discussed. A summary of all these pieces of evidence may offer an insight into a therapeutic approach for the respiratory diseases related to particulate matter exposure and respiratory microbiome.
Collapse
Affiliation(s)
- Jinjuta Panumasvivat
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wasana Pratchayasakul
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Ratana Sapbamrer
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
11
|
Baranova E, Druzhinin V, Matskova L, Demenkov P, Volobaev V, Minina V, Larionov A, Titov V. Sputum Microbiome Composition in Patients with Squamous Cell Lung Carcinoma. Life (Basel) 2022; 12:life12091365. [PMID: 36143401 PMCID: PMC9501211 DOI: 10.3390/life12091365] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Recent findings indicate that the host microbiome can have a significant impact on the development of lung cancer by inducing an inflammatory response, causing dysbiosis, and generating genome damage. The aim of this study was to search for bacterial communities specifically associated with squamous cell carcinoma (LUSC). Methods: In this study, the taxonomic composition of the sputum microbiome of 40 men with untreated LUSC was compared with that of 40 healthy controls. Next-Generation sequencing of bacterial 16S rRNA genes was used to determine the taxonomic composition of the respiratory microbiome. Results: There were no differences in alpha diversity between the LUSC and control groups. Meanwhile, differences in the structure of bacterial communities (β diversity) among patients and controls differed significantly in sputum samples (pseudo-F = 1.53; p = 0.005). Genera of Streptococcus, Bacillus, Gemella, and Haemophilus were found to be significantly enriched in patients with LUSC compared to the control subjects, while 19 bacterial genera were significantly reduced, indicating a decrease in beta diversity in the microbiome of patients with LUSC. Conclusions: Among other candidates, Streptococcus (Streptococcus agalactiae) emerges as the most likely LUSC biomarker, but more research is needed to confirm this assumption.
Collapse
Affiliation(s)
- Elizaveta Baranova
- Department of Genetics and Fundamental Medicine, Kemerovo State University, Kemerovo 650000, Russia
| | - Vladimir Druzhinin
- Department of Genetics and Fundamental Medicine, Kemerovo State University, Kemerovo 650000, Russia
- Correspondence:
| | - Ludmila Matskova
- Institute of Living Systems, Immanuel Kant Baltic Federal University, Kaliningrad 236041, Russia
- Department of Microbiology, Tumor Biology and Cell Biology (MTC), 171 65 Stockholm, Sweden
| | - Pavel Demenkov
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | - Valentin Volobaev
- Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Varvara Minina
- Department of Genetics and Fundamental Medicine, Kemerovo State University, Kemerovo 650000, Russia
- Institute of Human Ecology, Federal Research Center of Coal and Coal Chemistry of Siberian Branch of the Russia Academy of Sciences, Kemerovo 650065, Russia
| | - Alexey Larionov
- Department of Genetics and Fundamental Medicine, Kemerovo State University, Kemerovo 650000, Russia
| | - Victor Titov
- Kemerovo Regional Oncology Center, Kemerovo 654005, Russia
| |
Collapse
|
12
|
Cyprian F, Sohail MU, Abdelhafez I, Salman S, Attique Z, Kamareddine L, Al-Asmakh M. SARS-CoV-2 and immune-microbiome interactions: Lessons from respiratory viral infections. Int J Infect Dis 2021; 105:540-550. [PMID: 33610778 PMCID: PMC7891052 DOI: 10.1016/j.ijid.2021.02.071] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/26/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
By the beginning of 2020, infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had rapidly evolved into an emergent worldwide pandemic, an outbreak whose unprecedented consequences highlighted many existing flaws within public healthcare systems across the world. While coronavirus disease 2019 (COVID-19) is bestowed with a broad spectrum of clinical manifestations, involving the vital organs, the respiratory system transpires as the main route of entry for SARS-CoV-2, with the lungs being its primary target. Of those infected, up to 20% require hospitalization on account of severity, while the majority of patients are either asymptomatic or exhibit mild symptoms. Exacerbation in the disease severity and complications of COVID-19 infection have been associated with multiple comorbidities, including hypertension, diabetes mellitus, cardiovascular disorders, cancer, and chronic lung disease. Interestingly, a recent body of evidence indicated the pulmonary and gut microbiomes as potential modulators for altering the course of COVID-19, potentially via the microbiome-immune system axis. While the relative concordance between microbes and immunity has yet to be fully elucidated with regards to COVID-19, we present an overview of our current understanding of COVID-19-microbiome-immune cross talk and discuss the potential contributions of microbiome-related immunity to SARS-CoV-2 pathogenesis and COVID-19 disease progression.
Collapse
Affiliation(s)
- Farhan Cyprian
- College of Medicine, QU Health, Qatar University, Doha, Qatar; Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Muhammad Umar Sohail
- Proteomics Core, Weill Cornell Medicine, Qatar Foundation-Education City, PO Box 24144, Doha, Qatar
| | | | - Salma Salman
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Zakria Attique
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Layla Kamareddine
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar; Biomedical Research Centre, Qatar University, Doha, Qatar
| | - Maha Al-Asmakh
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar; Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar; Biomedical Research Centre, Qatar University, Doha, Qatar.
| |
Collapse
|
13
|
Lv L, Liu Z, Liu Y, Zhang W, Jiang L, Li T, Lu X, Lei X, Liang W, Lin J. Distinct EGFR Mutation Pattern in Patients With Non-Small Cell Lung Cancer in Xuanwei Region of China: A Systematic Review and Meta-Analysis. Front Oncol 2020; 10:519073. [PMID: 33224870 PMCID: PMC7667261 DOI: 10.3389/fonc.2020.519073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 09/11/2020] [Indexed: 02/02/2023] Open
Abstract
Background In the Xuanwei region of China, lung cancer incidence and mortality are among the highest in China, attributed to severe air pollution generated by combustion of smoky coal. No study has yet comprehensively evaluated the prevalence of epidermal growth factor receptor (EGFR) mutation characteristics in patients with non-small cell lung cancer (NSCLC) in Xuanwei. This meta-analysis was designed to analyze the EGFR mutation pattern in NSCLC patients in Xuanwei region of Yunnan Province in China. Methods Electronic databases were comprehensively searched and relevant literatures were retrieved. The odds ratio (OR) for EGFR mutations between Xuanwei region and non-Xuanwei region was calculated, and the absolute incidence of EGFR mutations in Xuanwei was pooled by mutation subtype. Results Seven studies involving 1,355 patients with NSCLC from Yunnan Province (442 in Xuanwei and 913 in other regions) were included. The EGFR mutation rate ranged between 30.19% and 55.56%. Higher uncommon EGFR mutations (OR: 5.69, 95%CI: 2.23–14.49, P<0.001) and lower common EGFR mutations (OR: 0.18, 95%CI: 0.07–0.45, P<0.001) were found in Xuanwei region, compared with non-Xuanwei region. Specifically, the uncommon EGFR mutation rate was 59.50% and common EGFR mutation rate was 40.50% in Xuanwei. The mutation incidence of exon 18 G719X (OR: 3.21, 95%CI: 1.48–6.97, P=0.003), exon 20 S768I (OR: 6.44; 95%CI: 2.66–15.60; P<0.001), and exon 18 G719X + 20 S768I (OR: 6.55; 95%CI: 1.92–22.33; P=0.003) in Xuanwei were significantly higher, while the frequency of 19 deletion (OR: 0.28, 95%CI: 0.11–0.77, P<0.001) and 21 L858R mutation (OR: 0.51, 95%CI: 0.31–0.84, P=0.007) were lower. Conclusions The results highlight the distinct EGFR mutation spectrum of NSCLC patients in Xuanwei region compared with other regions, with higher uncommon mutations but lower common mutations. The distinct Xuanwei featured genetic variations provide a unique model to further study carcinogenesis of lung cancer.
Collapse
Affiliation(s)
- Li Lv
- Department of Medical Oncology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhichao Liu
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Respiratory Disease and China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Yang Liu
- Department of Medical Oncology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wenhui Zhang
- Department of Medical Oncology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lifeng Jiang
- Department of Medical Oncology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Tingting Li
- Department of Medical Oncology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xinyan Lu
- Department of Medical Oncology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xuefen Lei
- Department of Medical Oncology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wenhua Liang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Respiratory Disease and China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Jie Lin
- Department of Medical Oncology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
14
|
Xue Y, Chu J, Li Y, Kong X. The influence of air pollution on respiratory microbiome: A link to respiratory disease. Toxicol Lett 2020; 334:14-20. [DOI: 10.1016/j.toxlet.2020.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 01/08/2023]
|
15
|
Druzhinin VG, Matskova LV, Demenkov PS, Baranova ED, Volobaev VP, Minina VI, Apalko SV, Churina MA, Romanyuk SA, Shcherbak SG, Ivanov VI, Larionov AV. Taxonomic diversity of sputum microbiome in lung cancer patients and its relationship with chromosomal aberrations in blood lymphocytes. Sci Rep 2020; 10:9681. [PMID: 32541778 PMCID: PMC7295751 DOI: 10.1038/s41598-020-66654-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
Here we report a pilot-sized study to compare the taxonomic composition of sputum microbiome in 17 newly-diagnosed lung cancer (LC) patients and 17 controls. Another object was to compare the representation of individual bacterial genera and species in sputum with the frequency of chromosomal aberrations in the blood lymphocytes of LC patients and in controls. Both groups were male; average age 56.1 ± 11.5 in patients and 55.7 ± 4.1 in controls. Differences in the species composition of bacterial communities in LC patients and controls were significant (pseudo-F = 1.94; p = 0.005). Increased prevalence in LC patients was detected for the genera Haemophilus and Bergeyella; whereas a decrease was observed for the genera Atopobium, Stomatobaculum, Treponema and Porphyromonas. Donors with high frequencies of chromosomal aberrations had a significant reduction in the microbiome of representatives of the genus Atopobium in the microbiome and a simultaneous increase in representatives of the species Alloprevotella compared to donors with a low level of chromosomal aberrations in lymphocytes. Thus, a comparison of the bacterial composition in the sputum of donors with cytogenetic damages in theirs lymphocytes, warrants further investigations on the potential role of microorganisms in the process of mutagenesis in somatic cells of the host body.
Collapse
Affiliation(s)
- V G Druzhinin
- Kemerovo State University, Kemerovo, Russian Federation
| | - L V Matskova
- Kemerovo State University, Kemerovo, Russian Federation. .,Institute of Living Systems Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation. .,Department of Microbiology, Tumor Biology and Cell Biology (MTC), Stockholm, Sweden.
| | - P S Demenkov
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russian Federation
| | - E D Baranova
- Kemerovo State University, Kemerovo, Russian Federation
| | - V P Volobaev
- Kemerovo State University, Kemerovo, Russian Federation
| | - V I Minina
- Kemerovo State University, Kemerovo, Russian Federation.,Institute of Human Ecology, Federal Research Center of Coal and Coal Chemistry of Siberian Branch of the Russian Academy of Sciences, Kemerovo, Russian Federation
| | - S V Apalko
- City Hospital #40, St. Petersburg, Russian Federation
| | - M A Churina
- City Hospital #40, St. Petersburg, Russian Federation
| | - S A Romanyuk
- City Hospital #40, St. Petersburg, Russian Federation
| | - S G Shcherbak
- City Hospital #40, St. Petersburg, Russian Federation
| | - V I Ivanov
- Kemerovo State University, Kemerovo, Russian Federation
| | - A V Larionov
- Kemerovo State University, Kemerovo, Russian Federation
| |
Collapse
|
16
|
Study on Aeration Optimization and Sewage Treatment Efficiency of a Novel Micro-Pressure Swirl Reactor (MPSR). WATER 2020. [DOI: 10.3390/w12030890] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This study developed a new type of micro-pressure swirl reactor (MPSR) for treating rural domestic sewage with variable water volume in northern China. The transformation of a traditional aeration tank to MPSR was mainly divided into three steps. Firstly, the aeration device was installed on one side of the aeration tank. Secondly, most of the top cover plate was sealed. Finally, the liquid level-lifting zone was set to achieve micro-pressure. The study measured the flow velocity and dissolved oxygen (DO) distribution in the main reaction zone of MPSR, studied the effects of MPSR sewage treatment in continuous operation mode and sequential batch operation mode, and analyzed the main microbial species. The experimental results showed that a stable circular circle flow and a spatial DO gradient in MPSR were formed when the aeration rate of MPSR was 0.2 m3/h. Through the MPSR sewage treatment experiment in two operation modes, it could meet the current requirements of rural environmental pollution controlled in China. Analysis of the types of microorganisms showed that microorganisms with different functions gathered in different zones of the MPSR due to the different dissolved oxygen environment and water flow environment, which further improved the ability of MPSR to simultaneously remove nitrogen and phosphorus.
Collapse
|
17
|
Lee SY, Mac Aogáin M, Fam KD, Chia KL, Binte Mohamed Ali NA, Yap MMC, Yap EPH, Chotirmall SH, Lim CL. Airway microbiome composition correlates with lung function and arterial stiffness in an age-dependent manner. PLoS One 2019; 14:e0225636. [PMID: 31770392 PMCID: PMC6879132 DOI: 10.1371/journal.pone.0225636] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/16/2019] [Indexed: 12/20/2022] Open
Abstract
Objective To investigate age-associated changes in airway microbiome composition and their relationships with lung function and arterial stiffness among genetically matched young and elderly pairs. Methods Twenty-four genetically linked family pairs comprised of younger (≤40 years) and older (≥60 years) healthy participants were recruited (Total n = 48). Lung function and arterial stiffness (carotid-femoral pulse wave velocity (PWV) and augmentation index (AIx)) were assessed. Sputum samples were collected for targeted 16S rRNA gene amplicon sequencing and correlations between microbiome composition, lung function and arterial stiffness were investigated. Results Elderly participants exhibited reductions in lung function (FEV1 (p<0.001), FVC (p<0.001) and percentage FEV1/FVC (p = 0.003)) and a 1.3–3.9-fold increase in arterial stiffness (p<0.001) relative to genetically related younger adults. Elderly adults had a higher relative abundance of Firmicutes (p = 0.035) and lower relative abundance of Proteobacteria (p = 0.014), including specific genera Haemophilus (p = 0.024) and Lautropia (p = 0.020) which were enriched in the younger adults. Alpha diversity was comparable between young and elderly pairs (p>0.05) but was inversely associated with lung function (FEV1%Predicted and FVC %Predicted) in the young (p = 0.006 and p = 0.003) though not the elderly (p = 0.481 and p = 0.696). Conversely, alpha diversity was negatively associated with PWV in the elderly (p = 0.01) but not the young (p = 0.569). Specifically, phylum Firmicutes including the genus Gemella were correlated with lung function (FVC %Predicted) in the young group (p = 0.047 and p = 0.040), while Fusobacteria and Leptotrichia were associated with arterial stiffness (PWV) in the elderly (both p = 0.004). Conclusion Ageing is associated with increased Firmicutes and decreased Proteobacteria representation in the airway microbiome among a healthy Asian cohort. The diversity and composition of the airway microbiome is independently associated with lung function and arterial stiffness in the young and elderly groups respectively. This suggests differential microbial associations with these phenotypes at specific stages of life with potential prognostic implications.
Collapse
Affiliation(s)
- Shuen Yee Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Micheál Mac Aogáin
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Kai Deng Fam
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Kar Ling Chia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | | | - Margaret M. C. Yap
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Eric P. H. Yap
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | | | - Chin Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- * E-mail:
| |
Collapse
|