1
|
Fenech M, Holland N, Zeiger E, Chang PW, Kirsch-Volders M, Bolognesi C, Stopper H, Knudsen LE, Knasmueller S, Nersesyan A, Thomas P, Dhillon V, Deo P, Franzke B, Andreassi MG, Laffon B, Wagner KH, Norppa H, da Silva J, Volpi EV, Wilkins R, Bonassi S. Objectives and achievements of the HUMN project on its 26th anniversary. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 794:108511. [PMID: 39233049 DOI: 10.1016/j.mrrev.2024.108511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
Micronuclei (MN) are a nuclear abnormality that occurs when chromosome fragments or whole chromosomes are not properly segregated during mitosis and consequently are excluded from the main nuclei and wrapped within nuclear membrane to form small nuclei. This maldistribution of genetic material leads to abnormal cellular genomes which may increase risk of developmental defects, cancers, and accelerated aging. Despite the potential importance of MN as biomarkers of genotoxicity, very little was known about the optimal way to measure MN in humans, the normal ranges of values of MN in healthy humans and the prospective association of MN with developmental and degenerative diseases prior to the 1980's. In the early 1980's two important methods to measure MN in humans were developed namely, the cytokinesis-block MN (CBMN) assay using peripheral blood lymphocytes and the Buccal MN assay that measures MN in epithelial cells from the oral mucosa. These discoveries greatly increased interest to use MN assays in human studies. In 1997 the Human Micronucleus (HUMN) project was founded to initiate an international collaboration to (i) harmonise and standardise the techniques used to perform the lymphocyte CBMN assay and the Buccal MN assay; (ii) establish and collate databases of MN frequency in human populations world-wide which also captured demographic, lifestyle and environmental genotoxin exposure data and (iii) use these data to identify the most important variables affecting MN frequency and to also determine whether MN predict disease risk. In this paper we briefly describe the achievements of the HUMN project during the period from the date of its foundation on 9th September 1997 until its 26th Anniversary in 2023, which included more than 200 publications and 23 workshops world-wide.
Collapse
Affiliation(s)
- Michael Fenech
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; Genome Health Foundation, North Brighton, SA 5048, Australia.
| | - Nina Holland
- Center for Environmental Research and Community Health (CERCH), University of California, Berkeley, Berkeley, CA, USA.
| | | | - Peter Wushou Chang
- Show Chwan Memorial Hospital, Changhwa, Taiwan; TUFTS University Medical School, Boston, USA.
| | - Micheline Kirsch-Volders
- Laboratory for Cell Genetics, Department Biology, Faculty of Sciences and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium.
| | - Claudia Bolognesi
- Environmental Carcinogenesis Unit, Ospedale Policlinico San Martino, Genoa, Italy.
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg 97080, Germany.
| | - Lisbeth E Knudsen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark.
| | - Siegfried Knasmueller
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| | - Armen Nersesyan
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| | - Philip Thomas
- CSIRO Health and Biosecurity, Adelaide 5000, Australia.
| | - Varinderpal Dhillon
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia.
| | - Permal Deo
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia.
| | - Bernhard Franzke
- Department of Nutritional Sciences, University of Vienna, Austria.
| | | | - Blanca Laffon
- Universidade da Coruña, Grupo DICOMOSA, CICA-Centro Interdisciplinar de Química e Bioloxía, Departamento de Psicología, Facultad de Ciencias de la Educación, and Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, A Coruña, Spain.
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences, University of Vienna, Austria; Research Platform Active Ageing, University of Vienna, Austria.
| | - Hannu Norppa
- Finnish Institute of Occupational Health, Helsinki 00250, Finland.
| | - Juliana da Silva
- Laboratory of Genetic Toxicology, La Salle University (UniLaSalle), Canoas, RS 92010-000, Brazil; PPGBM, Federal University of Brazil (UFRGS), Porto Alegre 91501-970, Brazil.
| | - Emanuela V Volpi
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W6UW, UK.
| | - Ruth Wilkins
- Environmental and Radiation Health Sciences Directorate, Health Canada 775 Brookfield Rd, Ottawa K1A 1C1, Canada.
| | - Stefano Bonassi
- Clinical and Molecular Epidemiology, IRCCS San Raffaele Roma, Rome 00166, Italy.
| |
Collapse
|
2
|
Dobrovolsky VN, Atiq OT, Heflich RH, Maisha M, McKinzie PB, Pearce MG, Robison TW. Erythrocyte PIG-A mutant frequencies in cancer patients receiving cisplatin. Cancer Med 2024; 13:e6895. [PMID: 38214136 PMCID: PMC10905239 DOI: 10.1002/cam4.6895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Cisplatin is a primary chemotherapy choice for various solid tumors. DNA damage caused by cisplatin results in apoptosis of tumor cells. Cisplatin-induced DNA damage, however, may also result in mutations in normal cells and the initiation of secondary malignancies. In the current study, we have used the erythrocyte PIG-A assay to evaluate mutagenesis in non-tumor hematopoietic tissue of cancer patients receiving cisplatin chemotherapy. METHODS Twenty-one head and neck cancer patients undergoing treatment with cisplatin were monitored for the presence of PIG-A mutant total erythrocytes and the young erythrocytes, reticulocytes (RETs), in peripheral blood for up to five and a half months from the initiation of the anti-neoplastic chemotherapy. RESULTS PIG-A mutant frequency (MF) in RETs increased at least two-fold in 15 patients at some point of the monitoring, while the frequency of total mutant RBCs increased at least two-fold in 6 patients. A general trend for an increase in the frequency of mutant RETs and total mutant RBCs was observed in 19 and 18 patients, respectively. Only in one patient did both RET and total RBC PIG-A MFs did not increase at any time-point over the monitoring period. CONCLUSION Cisplatin chemotherapy induces moderate increases in the frequency of PIG-A mutant erythrocytes in head and neck cancer patients. Mutagenicity measured with the flow cytometric PIG-A assay may serve as a tool for predicting adverse outcomes of genotoxic antineoplastic therapy.
Collapse
Affiliation(s)
- Vasily N. Dobrovolsky
- Division of Genetic and Molecular ToxicologyNational Center for Toxicological Research (NCTR), US Food and Drug Administration (FDA)JeffersonArkansasUSA
| | - Omar T. Atiq
- University of Arkansas for Medical Sciences (UAMS) Winthrop P. Rockefeller Cancer InstituteLittle RockArkansasUSA
| | - Robert H. Heflich
- Division of Genetic and Molecular ToxicologyNational Center for Toxicological Research (NCTR), US Food and Drug Administration (FDA)JeffersonArkansasUSA
| | - Mackean Maisha
- Office of Scientific Coordination, NCTR, FDAJeffersonArkansasUSA
| | - Page B. McKinzie
- Division of Genetic and Molecular ToxicologyNational Center for Toxicological Research (NCTR), US Food and Drug Administration (FDA)JeffersonArkansasUSA
| | - Mason G. Pearce
- Division of Genetic and Molecular ToxicologyNational Center for Toxicological Research (NCTR), US Food and Drug Administration (FDA)JeffersonArkansasUSA
| | - Timothy W. Robison
- Office of New Drugs, OII, DPTII, Center for Drug Evaluation and Research (CDER), US FDASilver SpringMarylandUSA
| |
Collapse
|
3
|
Lawrence R, Munn K, Naser H, Thomas L, Haboubi H, Williams L, Doak S, Jenkins G. The PIG-A gene mutation assay in human biomonitoring and disease. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2023; 64:480-493. [PMID: 37926486 DOI: 10.1002/em.22577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/11/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
The blood cell phosphatidylinositol glycan class A (PIG-A) gene mutation assay has been extensively researched in rodents for in vivo mutagenicity testing and is now being investigated in humans. The PIG-A gene is involved in glycosyl phosphatidylinositol (GPI)-anchor biosynthesis. A single mutation in this X-linked gene can lead to loss of membrane-bound GPI anchors, which can be enumerated via corresponding GPI-anchored proteins (e.g., CD55) using flow cytometry. The studies published to date by different research groups demonstrate a remarkable consistency in PIG-A mutant frequencies. Moreover, with the low background level of mutant erythrocytes in healthy subjects (2.9-5.56 × 10-6 mutants), induction of mutation post genotoxic exposure can be detected. Cigarette smoking, radiotherapy, and occupational exposures, including lead, have been shown to increase mutant levels. Future applications of this test include identifying new harmful agents and establishing new exposure limits. This mutational monitoring approach may also identify individuals at higher risk of cancer development. In addition, identifying protective agents that could mitigate these effects may reduce baseline somatic mutation levels and such behaviors can be encouraged. Further technological progress is required including establishing underlying mechanisms of GPI anchor loss, protocol standardization, and the development of cryopreservation methods to improve GPI-anchor stability over time. If successful, this assay has the potential be widely employed, for example, in rural and low-income countries. Here, we review the current literature on PIG-A mutation in humans and discuss the potential role of this assay in human biomonitoring and disease detection.
Collapse
Affiliation(s)
- Rachel Lawrence
- Centre for Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Kathryn Munn
- Swansea University Medical School, Swansea University, Swansea, UK
| | - Hamsa Naser
- Swansea University Medical School, Swansea University, Swansea, UK
| | - Laura Thomas
- Swansea University Medical School, Swansea University, Swansea, UK
| | - Hasan Haboubi
- Department of Gastroenterology, University Hospital Llandough, Cardiff and Vale University Health Board, Cardiff, UK
| | - Lisa Williams
- Department of Gastroenterology, Singleton Hospital, Swansea Bay University Health Board, Swansea, UK
| | - Shareen Doak
- Swansea University Medical School, Swansea University, Swansea, UK
| | - Gareth Jenkins
- Swansea University Medical School, Swansea University, Swansea, UK
| |
Collapse
|
4
|
Torous DK, Avlasevich S, Bemis JC, Howard T, Ware RE, Fung C, Chen Y, Sahsrabudhe D, MacGregor JT, Dertinger SD. Lack of hydroxyurea-associated mutagenesis in pediatric sickle cell disease patients. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2023; 64:167-175. [PMID: 36841969 DOI: 10.1002/em.22536] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 05/03/2023]
Abstract
Hydroxyurea is approved for treating children and adults with sickle cell anemia (SCA). Despite its proven efficacy, concerns remain about its mutagenic and carcinogenic potential that hamper its widespread use. Cell culture- and animal-based investigations indicate that hydroxyurea's genotoxic effects are due to indirect clastogenicity in select cell types when high dose and time thresholds are exceeded (reviewed by Ware & Dertinger, 2021). The current study extends these preclinical observations to pediatric patients receiving hydroxyurea for treatment of SCA. First, proof-of-principle experiments with testicular cancer patients exposed to a cisplatin-based regimen validated the ability of flow cytometric blood-based micronucleated reticulocyte (MN-RET) and PIG-A mutant reticulocyte (MUT RET) assays to detect clastogenicity and gene mutations, respectively. Second, these biomarkers were measured in a cross-sectional study with 26 SCA patients receiving hydroxyurea and 13 SCA patients without exposure. Finally, a prospective study was conducted with 10 SCA patients using pretreatment blood samples and after 6 or 12 months of therapy. Cancer patients exposed to cisplatin exhibited increased MN-RET within days of exposure, while the MUT RET endpoint required more time to reach maximal levels. In SCA patients, hydroxyurea induced MN-RET in both the cross-sectional and prospective studies. However, no evidence of PIG-A gene mutation was found in hydroxyurea-treated children, despite the fact that the two assays use the same rapidly-dividing, highly-exposed cell type. Collectively, these results reinforce the complementary nature of MN-RET and MUT RET biomarkers, and indicate that hydroxyurea can be clastogenic but was not mutagenic in young patients with SCA.
Collapse
Affiliation(s)
| | | | | | - Thad Howard
- Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Russell E Ware
- Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Chunkit Fung
- J.P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Yuhchyau Chen
- J.P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Deepak Sahsrabudhe
- J.P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | | | | |
Collapse
|
5
|
Smith‐Roe SL, Garantziotis S, Church RL, Bemis JC, Torous DK, Shepard KG, Hobbs CA, Waidyanatha S, Mutlu E, Shockley KR, Kissling GE, McBride SJ, Xie G, Cristy T, Pierfelice J, Witt KL. A cross-sectional clinical study in women to investigate possible genotoxicity and hematological abnormalities related to the use of black cohosh botanical dietary supplements. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2022; 63:389-399. [PMID: 36323641 PMCID: PMC10018809 DOI: 10.1002/em.22516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Black cohosh (BC; Actaea racemosa L.), a top-selling botanical dietary supplement, is marketed to women primarily to ameliorate a variety of gynecological symptoms. Due to widespread usage, limited safety information, and sporadic reports of hepatotoxicity, the Division of the National Toxicology Program (DNTP) initially evaluated BC extract in female rats and mice. Following administration of up to 1000 mg/kg/day BC extract by gavage for 90 days, dose-related increases in micronucleated peripheral blood erythrocytes were observed, along with a nonregenerative macrocytic anemia resembling megaloblastic anemia in humans. Because both micronuclei and megaloblastic anemia may signal disruption of folate metabolism, and inadequate folate levels in early pregnancy can adversely affect neurodevelopment, the DNTP conducted a pilot cross-sectional study comparing erythrocyte micronucleus frequencies, folate and B12 levels, and a variety of hematological and clinical chemistry parameters between women who used BC and BC-naïve women. Twenty-three women were enrolled in the BC-exposed group and 28 in the BC-naïve group. Use of any brand of BC-only supplement for at least 3 months was required for inclusion in the BC-exposed group. Supplements were analyzed for chemical composition to allow cross-product comparisons. All participants were healthy, with no known exposures (e.g., x-rays, certain medications) that could influence study endpoints. Findings revealed no increased micronucleus frequencies and no hematological abnormalities in women who used BC supplements. Although reassuring, a larger, prospective study with fewer confounders (e.g., BC product diversity and duration of use) providing greater power to detect subtle effects would increase confidence in these findings.
Collapse
Affiliation(s)
- Stephanie L. Smith‐Roe
- Division of Translational ToxicologyNational Institute of Environmental Health SciencesResearch Triangle ParkNorth CarolinaUSA
| | - Stavros Garantziotis
- Clinical Research Branch, Division of Intramural ResearchNational Institute of Environmental Health SciencesResearch Triangle ParkNorth CarolinaUSA
| | - Rebecca L. Church
- Clinical Research Branch, Division of Intramural ResearchNational Institute of Environmental Health SciencesResearch Triangle ParkNorth CarolinaUSA
| | | | | | - Kim G. Shepard
- Genetic and Molecular Toxicology ProgramIntegrated Laboratory Systems, LLC (an Inotiv Company)Research Triangle ParkNorth CarolinaUSA
| | - Cheryl A. Hobbs
- Genetic and Molecular Toxicology ProgramIntegrated Laboratory Systems, LLC (an Inotiv Company)Research Triangle ParkNorth CarolinaUSA
| | - Suramya Waidyanatha
- Division of Translational ToxicologyNational Institute of Environmental Health SciencesResearch Triangle ParkNorth CarolinaUSA
| | - Esra Mutlu
- Division of Translational ToxicologyNational Institute of Environmental Health SciencesResearch Triangle ParkNorth CarolinaUSA
| | - Keith R. Shockley
- Biostatistics and Computational Biology BranchNational Institute of Environmental Health SciencesResearch Triangle ParkNorth CarolinaUSA
| | - Grace E. Kissling
- Biostatistics and Computational Biology BranchNational Institute of Environmental Health SciencesResearch Triangle ParkNorth CarolinaUSA
| | - Sandra J. McBride
- Social and Scientific Systems, Inc.A DLH Holdings CorpDurhamNorth CarolinaUSA
| | - Guanhua Xie
- Social and Scientific Systems, Inc.A DLH Holdings CorpDurhamNorth CarolinaUSA
| | | | | | - Kristine L. Witt
- Division of Translational ToxicologyNational Institute of Environmental Health SciencesResearch Triangle ParkNorth CarolinaUSA
| |
Collapse
|
6
|
Miao Y, Wang D, Chen Y, Zhu X, Tang X, Zhang J, Zhang L, Chen J. General toxicity and genotoxicity of alternariol: a novel 28-day multi-endpoint assessment in male Sprague-Dawley rats. Mycotoxin Res 2022; 38:231-241. [PMID: 35913592 DOI: 10.1007/s12550-022-00466-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/11/2022] [Accepted: 07/25/2022] [Indexed: 10/16/2022]
Abstract
Alternariol (AOH) is one of the toxins of Alternaria, and it has been widely detected in a variety of foods. It has been reported to be cytotoxic, dermally toxic, genotoxic, and potentially carcinogenic in vitro. However, in vivo toxicity data are lacking. This study used a novel in vivo 28-day multi-endpoint (Pig-a assay + micronucleus test + comet assay) genotoxicity evaluation system to evaluate the general toxicity and genotoxicity of AOH. A total of 42 male Sprague-Dawley rats were randomly distributed into three AOH-treated groups (5.51, 10.03, and 22.05 µg/kg bw), one AOH high-dose recovery group (AOH-HR, 22.05 µg/kg bw), one positive control group (N-ethyl-N-nitrosourea, 40 mg/kg bw), and two vehicle control groups (corn oil and PBS). Treatments were administered by oral gavage for 28 consecutive days. Histopathological lesions were observed in the liver, kidney, and spleen in all AOH-treated groups. No statistical difference was found in each genotoxicity index within 28 days in the AOH-treated groups compared with those in the corn oil group. On day 42, in the AOH-HR group, the rate of Pig-a mutant phenotype reticulocytes (RETCD59-) significantly increased. On day 56, both RETCD59- and the rate of Pig-a mutant phenotype erythrocytes (RBCCD59-) were significantly reduced. These findings indicated that AOH might cumulatively induce genetic mutations.
Collapse
Affiliation(s)
- Yeqiu Miao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Dongxia Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Yiyi Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xia Zhu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Xinyao Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Jing Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Lishi Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Jinyao Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China. .,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China.
| |
Collapse
|
7
|
Tang X, Chen Y, Zhu X, Miao Y, Wang D, Zhang J, Li R, Zhang L, Chen J. Alternariol monomethyl ether toxicity and genotoxicity in male Sprague-Dawley rats: 28-Day in vivo multi-endpoint assessment. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 873:503435. [PMID: 35094809 DOI: 10.1016/j.mrgentox.2021.503435] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 01/08/2023]
Abstract
Alternariol monomethyl ether (AME), a typical Alternaria toxin, has often been detected in grains. We have measured the general toxicity and genotoxicity of AME with a 28-day multi-endpoint (Pig-a assay + in vivo micronucleus [MN] test + comet assay) platform. Male Sprague-Dawley rats were administered AME (1.84, 3.67, or 7.35 μg/kg body weight/day), N-Ethyl-N-nitrosourea (40 mg/kg body weight/day), or corn oil by gavage for 28 consecutive days. Another group (AME-high-dose + recovery) was maintained for a further 14 days after the end of the AME administration. Hematology and serum biochemistry results suggested that AME might compromise the immune system. The histopathology results indicated that AME can cause liver (inflammatory cell infiltration, steatosis, and edema), kidney (renal glomerular atrophy), and spleen (white pulp atrophy) damage. The genotoxicity results showed that AME can induce gene mutations, chromosome breakage, and DNA damage, but the effects were diminished after the recovery period. According to point-of-departure analysis (BMDL10), the risk to the population of exposure to AME cannot be ignored and further assessment is needed.
Collapse
Affiliation(s)
- Xinyao Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China.
| | - Yiyi Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China; Chenghua Center for Disease Control and Prevention, Chengdu, Sichuan, China.
| | - Xia Zhu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China.
| | - Yeqiu Miao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China.
| | - Dongxia Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China.
| | - Jing Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China.
| | - Ruirui Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China.
| | - Lishi Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China.
| | - Jinyao Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China.
| |
Collapse
|
8
|
Waters MD, Warren S, Hughes C, Lewis P, Zhang F. Human genetic risk of treatment with antiviral nucleoside analog drugs that induce lethal mutagenesis: The special case of molnupiravir. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2022; 63:37-63. [PMID: 35023215 DOI: 10.1002/em.22471] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/28/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
This review considers antiviral nucleoside analog drugs, including ribavirin, favipiravir, and molnupiravir, which induce genome error catastrophe in SARS-CoV or SARS-CoV-2 via lethal mutagenesis as a mode of action. In vitro data indicate that molnupiravir may be 100 times more potent as an antiviral agent than ribavirin or favipiravir. Molnupiravir has recently demonstrated efficacy in a phase 3 clinical trial. Because of its anticipated global use, its relative potency, and the reported in vitro "host" cell mutagenicity of its active principle, β-d-N4-hydroxycytidine, we have reviewed the development of molnupiravir and its genotoxicity safety evaluation, as well as the genotoxicity profiles of three congeners, that is, ribavirin, favipiravir, and 5-(2-chloroethyl)-2'-deoxyuridine. We consider the potential genetic risks of molnupiravir on the basis of all available information and focus on the need for additional human genotoxicity data and follow-up in patients treated with molnupiravir and similar drugs. Such human data are especially relevant for antiviral NAs that have the potential of permanently modifying the genomes of treated patients and/or causing human teratogenicity or embryotoxicity. We conclude that the results of preclinical genotoxicity studies and phase 1 human clinical safety, tolerability, and pharmacokinetics are critical components of drug safety assessments and sentinels of unanticipated adverse health effects. We provide our rationale for performing more thorough genotoxicity testing prior to and within phase 1 clinical trials, including human PIG-A and error corrected next generation sequencing (duplex sequencing) studies in DNA and mitochondrial DNA of patients treated with antiviral NAs that induce genome error catastrophe via lethal mutagenesis.
Collapse
Affiliation(s)
- Michael D Waters
- Michael Waters Consulting USA, Hillsborough, North Carolina, USA
| | | | - Claude Hughes
- Duke University Medical Center, Durham, North Carolina, USA
| | | | - Fengyu Zhang
- Global Clinical and Translational Research Institute, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Molecular characterization of hypoxanthine guanine phosphoribosyltransferase mutant T cells in human blood: The concept of surrogate selection for immunologically relevant cells. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 789:108414. [PMID: 35690417 PMCID: PMC9188651 DOI: 10.1016/j.mrrev.2022.108414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 11/23/2022]
Abstract
Somatic cell gene mutations arise in vivo due to replication errors during DNA synthesis occurring spontaneously during normal DNA synthesis or as a result of replication on a DNA template damaged by endogenous or exogenous mutagens. In principle, changes in the frequencies of mutant cells in vivo in humans reflect changes in exposures to exogenous or endogenous DNA damaging insults, other factors being equal. It is becoming increasingly evident however, that somatic mutations in humans have a far greater range of interpretations. For example, mutations in lymphocytes provide invaluable probes for in vivo cellular and molecular processes, providing identification of clonal amplifications of these cells in autoimmune and infectious diseases, transplantation recipients, paroxysmal nocturnal hemoglobinuria (PNH), and cancer. The assay for mutations of the X-chromosomal hypoxanthine guanine phosphoribosyltransferase (HPRT) gene has gained popular acceptance for this purpose since viable mutant cells can be recovered for molecular and other analyses. Although the major application of the HPRT T cell assay remains human population monitoring, the enrichment of activated T cells in the mutant fraction in individuals with ongoing immunological processes has demonstrated the utility of surrogate selection, a method that uses somatic mutation as a surrogate marker for the in vivo T cell proliferation that underlies immunological processes to investigate clinical disorders with immunological features. Studies encompassing a wide range of clinical conditions are reviewed. Despite the historical importance of the HPRT mutation system in validating surrogate selection, there are now additional mutational and other methods for identifying immunologically active T cells. These methods are reviewed and provide insights for strategies to extend surrogate selection in future studies.
Collapse
|
10
|
Nersesyan A, Kundi M, Fenech M, Stopper H, da Silva J, Bolognesi C, Mišík M, Knasmueller S. Recommendations and quality criteria for micronucleus studies with humans. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 789:108410. [PMID: 35690413 DOI: 10.1016/j.mrrev.2021.108410] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 06/15/2023]
Abstract
Micronucleus (MN) analyses in peripheral blood lymphocytes and exfoliated cells from different organs (mouth, nose, bladder and cervix) are at present the most widely used approaches to detect damage of genetic material in humans. MN are extranuclear DNA-containing bodies, which can be identified microscopically. They reflect structural and numerical chromosomal aberrations and are formed as a consequence of exposure to occupational, environmental and lifestyle genotoxins. They are also induced as a consequence of inadequate intake of certain trace elements and vitamins. High MN rates are associated with increased risk of cancer and a range of non-cancer diseases in humans. Furthermore, evidence is accumulating that measurements of MN could be a useful tool for the diagnosis and prognosis of different forms of cancer and other diseases (inflammation, infections, metabolic disorders) and for the assessment of the therapeutic success of medical treatments. Recent reviews of the current state of knowledge suggest that many clinical studies have methodological shortcomings. This could lead to controversial findings and limits their usefulness in defining the impact of exposure concentrations of hazardous chemicals, for the judgment of remediation strategies, for the diagnosis of diseases and for the identification of protective or harmful dietary constituents. This article describes important quality criteria for human MN studies and contains recommendations for acceptable study designs. Important parameters that need more attention include sufficiently large group sizes, adequate duration of intervention studies, the exclusion of confounding factors which may affect the results (sex, age, body mass index, nutrition, etc.), the evaluation of appropriate cell numbers per sample according to established scoring criteria as well as the use of proper stains and adequate statistical analyses.
Collapse
Affiliation(s)
- A Nersesyan
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - M Kundi
- Center for Public Health, Department of Environmental Health, Medical University of Vienna, Vienna, Austria
| | - M Fenech
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia; Universiti Kebangsaan Malaysia, Selangor, Malaysia; Genome Health Foundation, North Brighton, SA, Australia
| | - H Stopper
- Institute of Pharmacology and Toxicology, Wuerzburg University, Wuerzburg, Germany
| | - J da Silva
- Laboratory of Genetic Toxicology, Lutheran University of Brazil (ULBRA) & LaSalle University (UniLaSalle), Canoas, RS, Brazil
| | - C Bolognesi
- Environmental Carcinogenesis Unit, Ospedale Policlinico San Martino, Genoa, Italy
| | - M Mišík
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - S Knasmueller
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
11
|
Rudi L, Zinicovscaia I, Cepoi L, Chiriac T, Peshkova A, Cepoi A, Grozdov D. Accumulation and Effect of Silver Nanoparticles Functionalized with Spirulina platensis on Rats. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2992. [PMID: 34835756 PMCID: PMC8620753 DOI: 10.3390/nano11112992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/22/2021] [Accepted: 11/04/2021] [Indexed: 11/17/2022]
Abstract
The effect of unmodified and functionalized Spirulina platensis biomass silver nanoparticles on rats during prolonged oral administration was assessed. Silver nanoparticles were characterized by using transmission electron microscopy, while their uptake by the biomass was confirmed using scanning electron microscopy and energy dispersive analysis. The content of silver in the different organs of rats after a period of administration (28 days) or after an additional clearance period (28 days) was ascertained by using neutron activation analysis. In animals administrated with the unmodified nanoparticles, the highest content of silver was determined in the brain and kidneys, while in animals administrated with AgNP-Spirulina, silver was mainly accumulated in the brain and testicles. After the clearance period, silver was excreted rapidly from the spleen and kidneys; however, the excretion from the brain was very low, regardless of the type of nanoparticles. Hematological and biochemical tests were performed in order to reveal the effect of nanoparticles on rats. The difference in the content of eosinophils in the experimental and control groups was statistically significant. The hematological indices of the rats did not change significantly under the action of the silver nanoparticles except for the content of reticulocytes and eosinophils, which increased significantly. Changes in the biochemical parameters did not exceed the limits of normal values. Silver nanoparticles with the sizes of 8-20 nm can penetrate the blood-brain barrier, and their persistence after a period of clearance indicated the irreversibility of this process.
Collapse
Affiliation(s)
- Ludmila Rudi
- Institute of Microbiology and Biotechnology, 1 Academiei Str., 2028 Chisinau, Moldova; (L.R.); (L.C.); (T.C.); (A.C.)
| | - Inga Zinicovscaia
- Joint Institute for Nuclear Research, 6 Joliot-Curie Str., 141980 Dubna, Russia; (A.P.); (D.G.)
- Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 30 Reactorului Str., MG-6 Bucharest Magurele, Romania
- Institute of Chemistry, 3 Academiei Str., 2028 Chisinau, Moldova
| | - Liliana Cepoi
- Institute of Microbiology and Biotechnology, 1 Academiei Str., 2028 Chisinau, Moldova; (L.R.); (L.C.); (T.C.); (A.C.)
| | - Tatiana Chiriac
- Institute of Microbiology and Biotechnology, 1 Academiei Str., 2028 Chisinau, Moldova; (L.R.); (L.C.); (T.C.); (A.C.)
| | - Alexandra Peshkova
- Joint Institute for Nuclear Research, 6 Joliot-Curie Str., 141980 Dubna, Russia; (A.P.); (D.G.)
| | - Anastasia Cepoi
- Institute of Microbiology and Biotechnology, 1 Academiei Str., 2028 Chisinau, Moldova; (L.R.); (L.C.); (T.C.); (A.C.)
| | - Dmitrii Grozdov
- Joint Institute for Nuclear Research, 6 Joliot-Curie Str., 141980 Dubna, Russia; (A.P.); (D.G.)
| |
Collapse
|
12
|
Bonetto RM, Castel P, Robert SP, Tassistro VM, Claeys-Bruno M, Sergent M, Delecourt CA, Cowen D, Carcopino X, Orsière TG. Evaluation of PIG-A-mutated granulocytes and ex-vivo binucleated micronucleated lymphocytes frequencies after breast cancer radiotherapy in humans. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2021; 62:18-28. [PMID: 33169419 DOI: 10.1002/em.22413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
Although the PIG-A gene mutation frequency (MF) is considered a good proxy to evaluate the somatic MF in animals, evidence remains scarce in humans. In this study, a granulocyte PIG-A-mutant assay was evaluated in patients undergoing radiation therapy (RT) for breast cancer. Breast cancer patients undergoing adjuvant RT were prospectively enrolled. RT involved the whole breast, with (WBNRT) or without (WBRT) nodal area irradiation. Blood samples were obtained from participants before (T0) RT, and T1, T2, and T3 samples were collected 3 weeks after the initiation of RT, at the end of RT, and at least 10 weeks after RT discontinuation, respectively. The MF was assessed using a flow cytometry protocol identifying PIG-A-mutant granulocytes. Cytokinesis-blocked micronucleated lymphocyte (CBML) frequencies were also evaluated. Thirty patients were included, and five of them had received chemotherapy prior to RT. The mean (±SD) PIG-A MFs were 7.7 (±12.1) per million at T0, 5.2 (±8.6) at T1, 6.4 (±8.0) at T2 and 3.8 (±36.0) at T3. No statistically significant increases were observed between the PIG-A MF at T0 and the MFs at other times. RT significantly increased the CBML frequencies: 7.9 ‰ (±3.1‰) versus 33.6‰ (±17.2‰) (p < .0001). By multivariate analysis, the CBML frequency was correlated with age at RT initiation (p = .043) and irradiation volume at RT discontinuation (p = .0001) but not with chemotherapy. RT for breast cancer therapy failed to induce an increase in the PIG-A MF. The PIG-A assay in humans needs further evaluation, in various genotoxic exposures and including various circulating human cells.
Collapse
Affiliation(s)
- Rémi M Bonetto
- Aix Marseille University, APHM, CHU TIMONE, Service de Radiothérapie-Oncologie, Marseille, France
| | - Pierre Castel
- Aix Marseille University, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Stéphane P Robert
- Aix Marseille University, INSERM, INRA, C2VN, AMUTICYT Core Facility, Faculté de Pharmacie, Marseille, France
| | - Virginie M Tassistro
- Aix Marseille University, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Magalie Claeys-Bruno
- Aix Marseille University, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Michelle Sergent
- Aix Marseille University, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Camille A Delecourt
- Aix Marseille University, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Didier Cowen
- Aix Marseille University, APHM, CHU TIMONE, Service de Radiothérapie-Oncologie, Marseille, France
| | - Xavier Carcopino
- Aix Marseille University, Avignon Université, CNRS, IRD, IMBE, Marseille, France
- Aix Marseille University, APHM, CHU NORD, Service de Gynécologie-Obstétrique, Marseille, France
| | - Thierry G Orsière
- Aix Marseille University, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| |
Collapse
|
13
|
Baig A, Avlasevich SL, Torous DK, Bemis JC, Saubermann LJ, Lovell DP, MacGregor JT, Dertinger SD. Assessment of systemic genetic damage in pediatric inflammatory bowel disease. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:901-909. [PMID: 32761646 PMCID: PMC8597720 DOI: 10.1002/em.22403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/24/2020] [Accepted: 08/01/2020] [Indexed: 05/19/2023]
Abstract
The etiology of distal site cancers in inflammatory bowel disease (IBD) is not well understood and requires further study. We investigated whether pediatric IBD patients' blood cells exhibit elevated levels of genomic damage by measuring the frequency of mutant phenotype (CD59-/CD55-) reticulocytes (MUT RET) as a reporter of PIG-A mutation, and the frequency of micronucleated reticulocytes (MN-RET) as an indicator of chromosomal damage. IBD patients (n = 18 new-onset disease, 46 established disease) were compared to age-matched controls (constipation or irritable bowel syndrome patients from the same clinic, n = 30) and young healthy adults age 19-24 (n = 25). IBD patients showed no indication of elevated MUT RET relative to controls (mean ± SD = 3.1 ± 2.3 × 10-6 vs. 3.6 ± 5.6 x 10-6 , respectively). In contrast, 59 IBD patients where %MN-RET measurements were obtained, 10 exceeded the upper bound 90% tolerance interval derived from control subjects (i.e., 0.42%). Furthermore, each of the 10 IBD patients with elevated MN-RET had established disease (10/42), none were new-onset (0/17) (p = .049). Interestingly, each of the subjects with increased chromosomal damage was receiving anti-TNF based monotherapy at the time blood was collected (10/10, 100%), whereas this therapy was less common (20/32, 63%) among patients that exhibited ≤0.42% MN-RET (p = .040). The results clearly indicate the need for further work to understand whether the results presented herein are reproducible and if so, to elucidate the causative factor(s) responsible for elevated MN-RET frequencies in some IBD patients.
Collapse
Affiliation(s)
- Ayesha Baig
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| | | | | | | | | | - David P. Lovell
- St. George's University of London, London Borough of Wandsworth, UK
| | | | | |
Collapse
|
14
|
Albertini RJ, Kaden DA. Mutagenicity monitoring in humans: Global versus specific origin of mutations. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 786:108341. [PMID: 33339577 DOI: 10.1016/j.mrrev.2020.108341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 10/08/2020] [Accepted: 10/14/2020] [Indexed: 01/19/2023]
Abstract
An underappreciated aspect of human mutagenicity biomonitoring is tissue specificity reflected in different assays, especially those that measure events that can only occur in developing bone marrow (BM) cells. Reviewed here are 9 currently-employed human mutagenicity biomonitoring assays. Several assays measure chromosome-level events in circulating T-lymphocytes (T-cells), i.e., traditional analyses of aberrations, translocation studies involving chromosome painting and fluorescence in situ hybridization (FISH) and determinations of micronuclei (MN). Other T-cell assays measure gene mutations. i.e., hypoxanthine-guanine phosphoriboslytransferase (HPRT) and phosphoribosylinositol glycan class A (PIGA). In addition to the T-cell assays, also reviewed are those assays that measure events in peripheral blood cells that necessarily arose in BM cells, i.e., MN in reticulocytes; glycophorin A (GPA) gene mutations in red blood cells (RBCs), and PIGA gene mutations in RBC or granulocytes. This review considers only cell culture- or cytometry-based assays to describe endpoints measured, methods, optimal sampling times, and sample summaries of typical quantitative and qualitative results. However, to achieve its intended focus on the target cells where events occur, kinetics of the cells of peripheral blood that derive at some point from precursor cells are reviewed to identify body sites and tissues where the genotoxic events originate. Kinetics indicate that in normal adults, measured events in T-cells afford global assessments of in vivo mutagenicity but are not specific for BM effects. Therefore, an agent's capacity for inducing mutations in BM cells cannot be reliably inferred from T-cell assays as the magnitude of effect in BM, if any, is unknown. By contrast, chromosome or gene level mutations measured in RBCs/reticulocytes or granulocytes must originate in BM cells, i.e. in RBC or granulocyte precursors, thereby making them specific indicators for effects in BM. Assays of mutations arising directly in BM cells may quantitatively reflect the mutagenicity of potential leukemogenic agents.
Collapse
Affiliation(s)
- Richard J Albertini
- University of Vermont, 111 Colchester Avenue, Burlington, VT 05401, United States
| | - Debra A Kaden
- Ramboll US Consulting, Inc., 101 Federal Street, Suite 1900, Boston, MA 02110, United States.
| |
Collapse
|