1
|
Beard JC, Wang CH, Sridharan A, Croy RG, Essigmann JM, Swager TM. Colorimetric Detection of Aqueous N-Nitrosodimethylamine via Photonitrosation of a Naphtholsulfonate Indicator. ACS Sens 2024; 9:4655-4661. [PMID: 39167159 DOI: 10.1021/acssensors.4c00927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
N-Nitrosamines are contaminants found throughout the environment, including in drinking water, and many nitrosamines are likely potent carcinogens. Correspondingly, there is a need for rapid and cost-effective in-field detection methods that can provide timely information about their contamination levels in water. This study details a colorimetric assay for detecting aqueous N-nitrosodimethylamine (NDMA) by photochemical nitrosation of a commercial naphtholsulfonate, to offer an attractive alternative to traditional laboratory-based analysis. The resulting naphthoquinone-oxime coordinates to aqueous iron(II) ions to form a green complex, allowing for direct visual detection. Characterization via Mössbauer and electron paramagnetic resonance (EPR) spectroscopy, alongside single-crystal structure determination, provides comprehensive structure information on the iron indicator complex. Optimization of detection conditions, including UV irradiation and response times, led to an improved colorimetric detection method with a limit of detection of 0.66 ppm for NDMA. The practical applicability and selectivity of this colorimetric detection scheme make it a promising candidate for the development of field-deployable sensors for NDMA in environmental water samples.
Collapse
Affiliation(s)
- Jessica C Beard
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Chi-Hsien Wang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Arun Sridharan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Robert G Croy
- Department of Biological Engineering and Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - John M Essigmann
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Biological Engineering and Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Timothy M Swager
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Armijo AL, Thongararm P, Fedeles BI, Yau J, Kay J, Corrigan JJ, Chancharoen M, Chawanthayatham S, Samson L, Carrasco S, Engelward B, Fox J, Croy R, Essigmann J. Molecular origins of mutational spectra produced by the environmental carcinogen N-nitrosodimethylamine and S N1 chemotherapeutic agents. NAR Cancer 2023; 5:zcad015. [PMID: 36992846 PMCID: PMC10041537 DOI: 10.1093/narcan/zcad015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/14/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
DNA-methylating environmental carcinogens such as N-nitrosodimethylamine (NDMA) and certain alkylators used in chemotherapy form O 6-methylguanine (m6G) as a functionally critical intermediate. NDMA is a multi-organ carcinogen found in contaminated water, polluted air, preserved foods, tobacco products, and many pharmaceuticals. Only ten weeks after exposure to NDMA, neonatally-treated mice experienced elevated mutation frequencies in liver, lung and kidney of ∼35-fold, 4-fold and 2-fold, respectively. High-resolution mutational spectra (HRMS) of liver and lung revealed distinctive patterns dominated by GC→AT mutations in 5'-Pu-G-3' contexts, very similar to human COSMIC mutational signature SBS11. Commonly associated with alkylation damage, SBS11 appears in cancers treated with the DNA alkylator temozolomide (TMZ). When cells derived from the mice were treated with TMZ, N-methyl-N-nitrosourea, and streptozotocin (two other therapeutic methylating agents), all displayed NDMA-like HRMS, indicating mechanistically convergent mutational processes. The role of m6G in shaping the mutational spectrum of NDMA was probed by removing MGMT, the main cellular defense against m6G. MGMT-deficient mice displayed a strikingly enhanced mutant frequency, but identical HRMS, indicating that the mutational properties of these alkylators is likely owed to sequence-specific DNA binding. In sum, the HRMS of m6G-forming agents constitute an early-onset biomarker of exposure to DNA methylating carcinogens and drugs.
Collapse
Affiliation(s)
- Amanda L Armijo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Pennapa Thongararm
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bogdan I Fedeles
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Judy Yau
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jennifer E Kay
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joshua J Corrigan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Marisa Chancharoen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Supawadee Chawanthayatham
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Leona D Samson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sebastian E Carrasco
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, NY 10065, USA
| | - Bevin P Engelward
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - James G Fox
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert G Croy
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - John M Essigmann
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
3
|
Hedenmalm K, Quinten C, Kurz X, Bradley M, Lee H, Eworuke E. A collaborative study of the impact of N-nitrosamines presence and ARB recall on ARB utilization - results from IQVIA™ Disease Analyzer Germany. Eur J Clin Pharmacol 2023; 79:849-858. [PMID: 37095262 DOI: 10.1007/s00228-022-03439-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/06/2022] [Indexed: 04/26/2023]
Abstract
PURPOSE Regulators are increasingly concerned with the impact of recalls on drug adherence. In 2018, N-nitrosamines impurities were detected in valsartan containing medical products. Concerned products were immediately recalled in July 2018 by regulatory agencies internationally. In Germany, recalls were issued for valsartan, losartan and irbesartan from July 2018 to March 2019. This study examined angiotensin II receptor blocker (ARB) utilization trends and switching patterns in Germany before and after July 2018. METHODS Patients prescribed ARBs from January 2014 to June 2020 in general practices in Germany were included in a collaborative framework common protocol drug utilization study led by the US Food and Drug Administration. Trends in monthly and quarterly proportions of total ARB prescribing were analysed for individual ARBs using descriptive statistics and interrupted time series analysis. The rate of switching to an alternative ARB was analysed before and after the recalls. RESULTS The proportion of valsartan prescriptions immediately decreased from 35.9 to 17.8% following the first recalls in July 2018, mirrored by an increased proportion for candesartan. Increased switching from valsartan to candesartan was observed. No increased switching was observed after losartan recalls, whereas for irbesartan, increased switching was observed 6-12 months after the last recall. Increased switching from ARBs to angiotensin-converting enzyme (ACE) inhibitors or ARB treatment discontinuations were not observed. CONCLUSION This study showed that patients were able to continue ARB treatment despite the July 2018-March 2019 recalls, although many patients needed to switch to an alternative ARB. The duration of the impact of ARB recalls appeared to be limited.
Collapse
Affiliation(s)
- Karin Hedenmalm
- Data Analytics Workstream, Data Analytics and Methods Task Force, European Medicines Agency, Amsterdam, Netherlands
- Department of Laboratory Medicine, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Chantal Quinten
- Data Analytics Workstream, Data Analytics and Methods Task Force, European Medicines Agency, Amsterdam, Netherlands.
| | - Xavier Kurz
- Data Analytics Workstream, Data Analytics and Methods Task Force, European Medicines Agency, Amsterdam, Netherlands
| | - Marie Bradley
- Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, USA
| | - Hana Lee
- Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, USA
| | - Efe Eworuke
- Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, USA
| |
Collapse
|
4
|
Blum K, FitzGerald R, Wilks MF, Barle EL, Hopf NB. Use of the benchmark-dose (BMD) approach to derive occupational exposure limits (OELs) for genotoxic carcinogens: N-nitrosamines. J Appl Toxicol 2023. [PMID: 36840679 DOI: 10.1002/jat.4455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/29/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023]
Abstract
N-Nitrosamines are potent carcinogens and considered non-threshold carcinogens in various regulatory domains. However, recent data indicate the existence of a threshold for genotoxicity, which can be adequately demonstrated. This aspect has a critical impact on selecting the methodology that is applied to derive occupational exposure limits (OELs). OELs are used to protect workers potentially exposed to various chemicals by supporting the selection of appropriate control measures and ultimately reducing the risk of occupational cancer. Occupational exposures to nitrosamines occur during manufacturing processes, mainly in the rubber and chemical industry. The present study derives OELs for inhaled N-nitrosamines, employing the benchmark dose (BMD) approach if data are adequate and read-across for nitrosamines without adequate data. Additionally, benchmark dose lower confidence limit (BMDL) is preferred and more suitable point-of-departure (PoD) to calculate human health guidance values, including OEL. The lowest OEL (0.2 μg/m3 ) was derived for nitrosodiethylamine (NDEA), and nitrosopiperidine (NPIP) (OEL = 0.2 μg/m3 ), followed by nitrosopyrrolidine (NPYR) (0.4 μg/m3 ), nitrosodimethylamine (NDMA), nitrosodimethylamine (NMEA), and nitrosodipropylamine (NDPA) (0.5 μg/m3 ), nitrosomorpholine (NMOR) (OEL = 1 μg/m3 ), and nitrosodibutylamine (NDBA) (OEL = 2.5 μg/m3 ). Limits based on "non-threshold" TD50 slope calculation were within a 10-fold range. These proposed OELs do not consider skin absorption of nitrosamines, which is also a possible route of entry into the body, nor oral or other environmental sources. Furthermore, we recommend setting a limit for total nitrosamines based on the occupational exposure scenario and potency of components.
Collapse
Affiliation(s)
- Kamila Blum
- Environment, Health & Safety Department, GlaxoSmithKline, Munich, Germany.,Faculty of Science and Medicine, University of Geneva, Switzerland
| | - Rex FitzGerald
- Swiss Centre for Applied Human Toxicology (SCAHT) & Department of Pharmaceutical Sciences, University of Basel, Switzerland
| | - Martin F Wilks
- Swiss Centre for Applied Human Toxicology (SCAHT) & Department of Pharmaceutical Sciences, University of Basel, Switzerland
| | | | - Nancy B Hopf
- Swiss Centre for Applied Human Toxicology (SCAHT) & Department of Pharmaceutical Sciences, University of Basel, Switzerland.,Department for Occupational and Environmental Health, Centre for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Amolegbe SM, Carlin DJ, Henry HF, Heacock ML, Trottier BA, Suk WA. Understanding exposures and latent disease risk within the National Institute of Environmental Health Sciences Superfund Research Program. Exp Biol Med (Maywood) 2022; 247:529-537. [PMID: 35253496 DOI: 10.1177/15353702221079620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Understanding the health effects of exposures when there is a lag between exposure and the onset of disease is an important and challenging topic in environmental health research. The National Institute of Environmental Health Sciences (NIEHS) Superfund Basic Research and Training Program (SRP) is a National Institutes of Health (NIH) grant program that uses a multidisciplinary approach to support biomedical and environmental science and engineering research. Because of the multidisciplinary nature of the program, SRP grantees are well-positioned to study exposure and latent disease risk across humans, animal models, and various life stages. SRP-funded scientists are working to address the challenge of connecting exposures that occur early in life and prior to conception with diseases that manifest much later, including developing new tools and approaches to predict how chemicals may affect long-term health. Here, we highlight research from the SRP focused on understanding the health effects of exposures with a lag between exposure and the onset of the disease as well as provide future directions for addressing knowledge gaps for this highly complex and challenging topic. Advancing the knowledge of latency to disease will require a multidisciplinary approach to research, the need for data sharing and integration, and new tools and computation approaches to make better predications about the timing of disease onset. A better understanding of exposures that may contribute to later-life diseases is essential to supporting the implementation of prevention and intervention strategies to reduce or modulate exposures to reduce disease burden.
Collapse
Affiliation(s)
- Sara M Amolegbe
- Superfund Research Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, NC 27560, USA
| | - Danielle J Carlin
- Superfund Research Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, NC 27560, USA
| | - Heather F Henry
- Superfund Research Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, NC 27560, USA
| | - Michelle L Heacock
- Superfund Research Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, NC 27560, USA
| | - Brittany A Trottier
- Superfund Research Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, NC 27560, USA
| | - William A Suk
- Superfund Research Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, NC 27560, USA
| |
Collapse
|