1
|
Wu J, Liang J, Li S, Lu J, Li Y, Zhang B, Gao M, Zhou J, Zhang Y, Chen J. Cancer vaccine designed from homologous ferritin-based fusion protein with enhanced DC-T cell crosstalk for durable adaptive immunity against tumors. Bioact Mater 2025; 46:516-530. [PMID: 39868073 PMCID: PMC11764028 DOI: 10.1016/j.bioactmat.2024.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/30/2024] [Accepted: 12/27/2024] [Indexed: 01/28/2025] Open
Abstract
Peptide vaccines based on tumor antigens face the challenges of rapid clearance of peptides, low immunogenicity, and immune suppressive tumor microenvironment. However, the traditional solution mainly uses exogenous substances as adjuvants or carriers to enhance innate immune responses, but excessive inflammation can damage adaptive immunity. In the current study, we propose a straightforward novel nanovaccine strategy by employing homologous human ferritin light chain for minimized innate immunity and dendritic cell (DC) targeting, the cationic KALA peptide for enhanced cellular uptake, and suppressor of cytokine signaling 1 (SOCS1) siRNA for modulating DC activity. Upon fusing with the KALA peptide, this nanovaccine presents as a novel 40-mer cage structure, with highly enriched antigen peptides of proper size (25 nm) for targeted delivery to lymph nodes. The loading of SOCS1 siRNA onto the KALA peptide promoted DC maturation in tumor environment, leading to a 3-fold increase in antigen presentation compared to alum adjuvant. Moreover, it demonstrates remarkable efficacy in suppressing tumor progression and metastasis, together with prolonged survival. In addition, the nanovaccine stimulates up to 40 % memory T cells, thereby achieving sustained protection against tumor re-challenge. This unprecedented nanovaccine platform can ignite fresh interdisciplinary discussions on interactive strategies for future peptide vaccine development.
Collapse
Affiliation(s)
- Jun Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
- School of Chemical & Material Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Jing Liang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Sichen Li
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Jinjin Lu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Yi Li
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Bin Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Min Gao
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Juan Zhou
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Yan Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Jinghua Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| |
Collapse
|
2
|
Miranda JA, Revollo JR. Assessment of in vivo chemical mutagenesis by long-read sequencing. Toxicol Sci 2024; 202:96-102. [PMID: 39141500 DOI: 10.1093/toxsci/kfae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Abstract
Evaluating the mutagenic properties of chemicals is crucial for understanding their potential cancer risks. Recent Illumina-based error-corrected sequencing techniques have enabled the direct detection of mutations induced de novo by mutagens. However, as the Illumina platform lacks intrinsic error-correction capabilities, complex library preparations and bioinformatic processes are necessary to identify these rare mutations. In this study, we evaluated whether long-read PacBio-based HiFi sequencing (HiFi seq), which has integrated error-correction, can detect de novo mutations induced by mutagens in C57BL/6 mouse tissues. Using HiFi seq, dose-dependent increases in mutation frequencies were found in tissues from mice exposed to 7,12-dimethylbenz[a]anthracene, procarbazine, and N-propyl-N-nitrosourea. Furthermore, the mutational signatures derived from these exposures were consistent with those previously reported for these mutagens. This study demonstrates that HiFi seq can complement established mutation detection assays to facilitate the identification of hazardous compounds.
Collapse
Affiliation(s)
- Jaime A Miranda
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States
| | - Javier R Revollo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States
| |
Collapse
|
3
|
Seo JE, Le Y, Revollo J, Miranda-Colon J, Xu H, McKinzie P, Mei N, Chen T, Heflich RH, Zhou T, Robison T, Bonzo JA, Guo X. Evaluating the mutagenicity of N-nitrosodimethylamine in 2D and 3D HepaRG cell cultures using error-corrected next generation sequencing. Arch Toxicol 2024; 98:1919-1935. [PMID: 38584193 PMCID: PMC11106104 DOI: 10.1007/s00204-024-03731-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/07/2024] [Indexed: 04/09/2024]
Abstract
Human liver-derived metabolically competent HepaRG cells have been successfully employed in both two-dimensional (2D) and 3D spheroid formats for performing the comet assay and micronucleus (MN) assay. In the present study, we have investigated expanding the genotoxicity endpoints evaluated in HepaRG cells by detecting mutagenesis using two error-corrected next generation sequencing (ecNGS) technologies, Duplex Sequencing (DS) and High-Fidelity (HiFi) Sequencing. Both HepaRG 2D cells and 3D spheroids were exposed for 72 h to N-nitrosodimethylamine (NDMA), followed by an additional incubation for the fixation of induced mutations. NDMA-induced DNA damage, chromosomal damage, and mutagenesis were determined using the comet assay, MN assay, and ecNGS, respectively. The 72-h treatment with NDMA resulted in concentration-dependent increases in cytotoxicity, DNA damage, MN formation, and mutation frequency in both 2D and 3D cultures, with greater responses observed in the 3D spheroids compared to 2D cells. The mutational spectrum analysis showed that NDMA induced predominantly A:T → G:C transitions, along with a lower frequency of G:C → A:T transitions, and exhibited a different trinucleotide signature relative to the negative control. These results demonstrate that the HepaRG 2D cells and 3D spheroid models can be used for mutagenesis assessment using both DS and HiFi Sequencing, with the caveat that severe cytotoxic concentrations should be avoided when conducting DS. With further validation, the HepaRG 2D/3D system may become a powerful human-based metabolically competent platform for genotoxicity testing.
Collapse
Affiliation(s)
- Ji-Eun Seo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Yuan Le
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Javier Revollo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Jaime Miranda-Colon
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Hannah Xu
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Page McKinzie
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Tao Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Robert H Heflich
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Tong Zhou
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, MD, 20855, USA
| | - Timothy Robison
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Jessica A Bonzo
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.
| |
Collapse
|