1
|
Trump BF. Mechanisms of Toxicity and Carcinogenesis. Toxicol Pathol 2016. [DOI: 10.1177/019262339402200610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
2
|
Calabrese EJ, O'Connor MK. Estimating Risk of Low Radiation Doses – A Critical Review of the BEIR VII Report and its Use of the Linear No-Threshold (LNT) Hypothesis. Radiat Res 2014; 182:463-74. [DOI: 10.1667/rr13829.1] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Origin of the linearity no threshold (LNT) dose-response concept. Arch Toxicol 2013; 87:1621-33. [PMID: 23887208 DOI: 10.1007/s00204-013-1104-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 07/11/2013] [Indexed: 12/16/2022]
Abstract
This paper identifies the origin of the linearity at low-dose concept [i.e., linear no threshold (LNT)] for ionizing radiation-induced mutation. After the discovery of X-ray-induced mutations, Olson and Lewis (Nature 121(3052):673-674, 1928) proposed that cosmic/terrestrial radiation-induced mutations provide the principal mechanism for the induction of heritable traits, providing the driving force for evolution. For this concept to be general, a LNT dose relationship was assumed, with genetic damage proportional to the energy absorbed. Subsequent studies suggested a linear dose response for ionizing radiation-induced mutations (Hanson and Heys in Am Nat 63(686):201-213, 1929; Oliver in Science 71:44-46, 1930), supporting the evolutionary hypothesis. Based on an evaluation of spontaneous and ionizing radiation-induced mutation with Drosophila, Muller argued that background radiation had a negligible impact on spontaneous mutation, discrediting the ionizing radiation-based evolutionary hypothesis. Nonetheless, an expanded set of mutation dose-response observations provided a basis for collaboration between theoretical physicists (Max Delbruck and Gunter Zimmer) and the radiation geneticist Nicolai Timoféeff-Ressovsky. They developed interrelated physical science-based genetics perspectives including a biophysical model of the gene, a radiation-induced gene mutation target theory and the single-hit hypothesis of radiation-induced mutation, which, when integrated, provided the theoretical mechanism and mathematical basis for the LNT model. The LNT concept became accepted by radiation geneticists and recommended by national/international advisory committees for risk assessment of ionizing radiation-induced mutational damage/cancer from the mid-1950s to the present. The LNT concept was later generalized to chemical carcinogen risk assessment and used by public health and regulatory agencies worldwide.
Collapse
|
4
|
Abstract
In an earlier review of our understanding of the mechanism of nucleotide excision repair (NER) we examined the process with respect to how it occurs in chromatin [1]. We described how much of our mechanistic understanding of NER was derived from biochemical studies that analysed the repair reaction in DNA substrates not representative of that which exists in the living cell. We pointed out that our efforts to understand how NER operates in chromatin had been hampered in part because of the well-known inhibition of NER that occurs when DNA is assembled into nucleosomes and used as the substrate to examine the repair reaction in vitro. Despite this technical bottleneck, we summarized the biochemical, genetic and cell-based studies which have provided insights into the molecular mechanism of NER in the cellular context. More recently, we revisited the topic of how UV induced DNA damage is repaired in chromatin. In this review we examined the commonly held view that depicts a struggle in which the DNA repair machinery battles to overcome the inhibitory effect of chromatin during the repair process. We suggested that in this interpretation of events, the DNA repair mechanisms might be described as 'tilting at windmills': fighting an imaginary foe [2]. We surmised that this scenario was overly simplistic, and we described an emerging picture in which the DNA repair process and chromatin remodeling were mechanistically linked and were in fact functioning cooperatively to organize the efficient removal of DNA damage from the genome. Here we discuss the latest findings, which contribute to the idea that DNA damage induced changes to chromatin represent an important way in which the DNA repair process is initiated and organized throughout the genome to promote the efficient removal of damage in response to UV radiation.
Collapse
Affiliation(s)
- Simon H Reed
- Department of Medical Genetics, Haematology and Pathology, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|
5
|
Hanawalt P. Growing up with DNA repair and joining the EMS. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:890-896. [PMID: 20740638 DOI: 10.1002/em.20608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
I recount some personal history, as I rode the crest of the wave of discovery and excitement in the DNA repair field from the early 1960s and eventually came to appreciate that the Environmental Mutagen Society is the appropriate professional "home" for researchers in this field: it places them in the context of the broader genetic, societal, and regulatory issues raised from their studies. In return, the wisdom provided from basic research on cellular processing of damaged DNA is essential to mechanism-based decisions in the domain of genetic toxicology.
Collapse
Affiliation(s)
- Philip Hanawalt
- Department of Biology, Stanford University, Stanford, California 94305-5020, USA.
| |
Collapse
|
6
|
Heydari AR, Unnikrishnan A, Lucente LV, Richardson A. Caloric restriction and genomic stability. Nucleic Acids Res 2007; 35:7485-96. [PMID: 17942423 PMCID: PMC2190719 DOI: 10.1093/nar/gkm860] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Caloric restriction (CR) reduces the incidence and progression of spontaneous and induced tumors in laboratory rodents while increasing mean and maximum life spans. It has been suggested that CR extends longevity and reduces age-related pathologies by reducing the levels of DNA damage and mutations that accumulate with age. This hypothesis is attractive because the integrity of the genome is essential to a cell/organism and because it is supported by observations that both cancer and immunological defects, which increase significantly with age and are delayed by CR, are associated with changes in DNA damage and/or DNA repair. Over the last three decades, numerous laboratories have examined the effects of CR on the integrity of the genome and the ability of cells to repair DNA. The majority of studies performed indicate that the age-related increase in oxidative damage to DNA is significantly reduced by CR. Early studies suggest that CR reduces DNA damage by enhancing DNA repair. With the advent of genomic technology and our increased understanding of specific repair pathways, CR has been shown to have a significant effect on major DNA repair pathways, such as NER, BER and double-strand break repair.
Collapse
Affiliation(s)
- Ahmad R Heydari
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48202, USA
| | | | | | | |
Collapse
|
7
|
Subba Rao K. Mechanisms of Disease: DNA repair defects and neurological disease. ACTA ACUST UNITED AC 2007; 3:162-72. [PMID: 17342192 DOI: 10.1038/ncpneuro0448] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Accepted: 01/19/2007] [Indexed: 12/20/2022]
Abstract
In this Review, familial and sporadic neurological disorders reported to have an etiological link with DNA repair defects are discussed, with special emphasis placed on the molecular link between the disease phenotype and the precise DNA repair defect. Of the 15 neurological disorders listed, some of which have symptoms of progeria, six--spinocerebellar ataxia with axonal neuropathy-1, Huntington's disease, Alzheimer's disease, Parkinson's disease, Down syndrome and amyotrophic lateral sclerosis--seem to result from increased oxidative stress, and the inability of the base excision repair pathway to handle the damage to DNA that this induces. Five of the conditions (xeroderma pigmentosum, Cockayne's syndrome, trichothiodystrophy, Down syndrome, and triple-A syndrome) display a defect in the nucleotide excision repair pathway, four (Huntington's disease, various spinocerebellar ataxias, Friedreich's ataxia and myotonic dystrophy types 1 and 2) exhibit an unusual expansion of repeat sequences in DNA, and four (ataxia-telangiectasia, ataxia-telangiectasia-like disorder, Nijmegen breakage syndrome and Alzheimer's disease) exhibit defects in genes involved in repairing double-strand breaks. The current overall picture indicates that oxidative stress is a major causative factor in genomic instability in the brain, and that the nature of the resulting neurological phenotype depends on the pathway through which the instability is normally repaired.
Collapse
Affiliation(s)
- Kalluri Subba Rao
- Indian Council of Medical Research Centre for Research on Aging and Brain, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India.
| |
Collapse
|
8
|
Reed SH. Nucleotide excision repair in chromatin: The shape of things to come. DNA Repair (Amst) 2005; 4:909-18. [PMID: 15905137 DOI: 10.1016/j.dnarep.2005.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2005] [Indexed: 11/26/2022]
Abstract
Much of our mechanistic understanding of nucleotide excision repair (NER) has been derived from biochemical studies that have analysed the reaction as it occurs on DNA substrates that are not representative of DNA as it exists in the living cell. These studies have been extremely useful in deciphering the core mechanism of the NER reaction, but efforts to understand how NER operates in chromatin have been hampered in part because assembling DNA into nucleosomes, the first level of chromatin compaction, is inhibitory to NER in vitro. However, recent research using biochemical, genetic and cell-based studies is now providing us with the first insights into the molecular mechanism of NER as it occurs in the cellular context. A number of recent studies have provided glimpses of a chromatin--NER connection. Here I review this literature and evaluate how it might aid our understanding, and shape our future research into NER.
Collapse
Affiliation(s)
- Simon H Reed
- Department of Pathology, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|
9
|
Abstract
A brief history of the evolution of the DNA repair field over the past four decades is presented, as documented through the Proceedings from a selected series of five scientific meetings, beginning with the 1965 Radiation Microbiology Conference, held at the University of Chicago with only 40 participants, and extending through the 1988 UCLA Symposium on "Mechanisms and Consequences of DNA Damage Processing", convened in Taos, New Mexico, with over 400 participants. The published proceedings and recorded discussions from these early conferences contain notable insights, of which many have turned out to be remarkably clairvoyant while others must be reevaluated in light of recent discoveries and developments in the field.
Collapse
|
10
|
Cabelof DC, Raffoul JJ, Yanamadala S, Ganir C, Guo Z, Heydari AR. Attenuation of DNA polymerase beta-dependent base excision repair and increased DMS-induced mutagenicity in aged mice. Mutat Res 2002; 500:135-45. [PMID: 11890943 PMCID: PMC3339152 DOI: 10.1016/s0027-5107(02)00003-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The biological mechanisms responsible for aging remain poorly understood. We propose that increases in DNA damage and mutations that occur with age result from a reduced ability to repair DNA damage. To test this hypothesis, we have measured the ability to repair DNA damage in vitro by the base excision repair (BER) pathway in tissues of young (4-month-old) and old (24-month-old) C57BL/6 mice. We find in all tissues tested (brain, liver, spleen and testes), the ability to repair damage is significantly reduced (50-75%; P<0.01) with age, and that the reduction in repair capacity seen with age correlates with decreased levels of DNA polymerase beta (beta-pol) enzymatic activity, protein and mRNA. To determine the biological relevance of this age-related decline in BER, we measured spontaneous and chemically induced lacI mutation frequency in young and old animals. In line with previous findings, we observed a three-fold increase in spontaneous mutation frequency in aged animals. Interestingly, lacI mutation frequency in response to dimethyl sulfate (DMS) does not significantly increase in young animals whereas identical exposure in aged animals results in a five-fold increase in mutation frequency. Because DMS induces DNA damage processed by the BER pathway, it is suggested that the increased mutagenicity of DMS with age is related to the decline in BER capacity that occurs with age. The inability of the BER pathway to repair damages that accumulate with age may provide a mechanistic explanation for the well-established phenotype of DNA damage accumulation with age.
Collapse
Affiliation(s)
- Diane C. Cabelof
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48202, USA
| | - Julian J. Raffoul
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48202, USA
| | - Sunitha Yanamadala
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48202, USA
| | - Cirlette Ganir
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48202, USA
| | - ZhongMao Guo
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78284, USA
| | - Ahmad R. Heydari
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
11
|
Hess MT, Schwitter U, Petretta M, Giese B, Naegeli H. Bipartite substrate discrimination by human nucleotide excision repair. Proc Natl Acad Sci U S A 1997; 94:6664-9. [PMID: 9192622 PMCID: PMC21215 DOI: 10.1073/pnas.94.13.6664] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Mammalian nucleotide excision repair (NER) eliminates carcinogen-DNA adducts by double endonucleolytic cleavage and subsequent release of 24-32 nucleotide-long single-stranded fragments. Here we manipulated the deoxyribose-phosphate backbone of DNA to analyze the mechanism by which damaged strands are discriminated as substrates for dual incision. We found that human NER is completely inactive on DNA duplexes containing single C4'-modified backbone residues. However, the same C4' backbone variants, which by themselves do not perturb complementary hydrogen bonds, induced strong NER reactions when incorporated into short segments of mispaired bases. No oligonucleotide excision was detected when DNA contained abnormal base pairs without concomitant changes in deoxyribose-phosphate composition. Thus, neither C4' backbone lesions nor improper base pairing stimulated human NER, but the combination of these two substrate alterations constituted an extremely potent signal for double DNA incision. In summary, we used C4'-modified backbone residues as molecular tools to dissect DNA damage recognition by human NER into separate components and identified a bipartite discrimination mechanism that requires changes in DNA chemistry with concurrent disruption of Watson-Crick base pairing.
Collapse
Affiliation(s)
- M T Hess
- Institute of Pharmacology and Toxicology, University of Zürich-Tierspital, Winterthurerstrasse 260, 8057 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
12
|
Rasmussen RE, Menzel DB. Variation in arsenic-induced sister chromatid exchange in human lymphocytes and lymphoblastoid cell lines. Mutat Res 1997; 386:299-306. [PMID: 9219567 DOI: 10.1016/s1383-5742(97)00010-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study was undertaken to compare the genotoxic effects of arsenite in cultured human lymphocytes and lymphoblastoid cell lines from a group of normal human volunteers. The goal was to determine whether, as found with other genotoxins, subgroups might exist which showed relative high or low sensitivity to induction of sister chromatid exchanges (SCEs) by this metal. Primary lymphoblast cultures were established by treatment with phytohemagglutinin (PHA-L). Lymphoblastoid cell lines were established by transformation with Epstein-Barr virus. Cultures were exposed for 40 h to sodium arsenite (AsIII) and SCEs assayed by 5-bromo-2'-deoxyuridine incorporation and staining by fluorescence plus Giemsa. SCEs were increased by arsenite in a dose-dependent manner over the concentration range of 10(-7)-10(-5) M. SCEs could not be scored above 10(-5) M because of cytotoxicity. Comparison of SCE frequency in primary lymphocyte cultures among individuals showed substantial variation in sensitivity to arsenite, with some showing no significant effect while others showed a 2-3-fold increase in SCE frequency. In one lymphoblastoid cell line especially sensitive to arsenite, arsenic acid (AsV) or dimethylarsinic acid (DMA) at concentrations up to 10(-5) M did not increase the SCE frequency suggesting that AsIII is the active form of arsenic. When pooled data from the primary lymphocytes was compared to that obtained with the lymphoblastoid cells, the slopes of the dose-response curves for ASIII-induced SCEs were similar. The sensitivity of the majority of the individual primary lymphocyte cultures to SCE induction by arsenite was correlated with the sensitivity of the lymphoblastoid cultures established from the same individual. However, in three individuals no correlation was found. Individual lymphoblastoid cell lines retained their As sensitivity after cryopreservation and subsequent revival. Whether the genotoxic response to As is genetically controlled or the result of phenotypic selection is being explored in these stable lymphoblastoid cell lines.
Collapse
Affiliation(s)
- R E Rasmussen
- Department of Community and Environmental Medicine, College of Medicine, University of California, Irvine 92717-1825, USA
| | | |
Collapse
|
13
|
Abstract
A cell responds to damage to its DNA in one of three ways: by tolerating the damage, by repairing the damage or by undergoing apoptosis. The latter two responses represent defenses against genomic instability and tumorigenesis resulting from unrepaired damage. There are multiple DNA repair pathways to cope with a variety of damage reflecting the importance of DNA repair in maintaining both cell viability and genomic stability. These include base excision repair, mismatch repair, double-strand break repair and nucleotide excision repair. Several signal transduction pathways are activated by DNA damage resulting in cell-cycle arrest. Cell-cycle arrest increases the time available for DNA repair before DNA replication and mutation fixation. Recently, there has been tremendous progress in our understanding of the molecular components repair processes and to examine recently observed interactions between DNA repair, signal transduction pathways and other cellular processes such as cell-cycle control, transcription, replication and recombination.
Collapse
Affiliation(s)
- C M ap Rhys
- Laboratory of Molecular Genetics, National Institutes on Aging, National Institute of Health, Baltimore, MD 21224, USA
| | | |
Collapse
|
14
|
Affiliation(s)
- P C Hanawalt
- Department of Biological Sciences, Stanford University, CA 94305-5020
| |
Collapse
|