1
|
Qiu H, Ye C. Phospholipid Biosynthesis: An Unforeseen Modulator of Nuclear Metabolism. Biol Cell 2025; 117:e70002. [PMID: 40123381 DOI: 10.1111/boc.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 02/27/2025] [Accepted: 03/05/2025] [Indexed: 03/25/2025]
Abstract
Glycerophospholipid biosynthesis is crucial not only for providing structural components required for membrane biogenesis during cell proliferation but also for facilitating membrane remodeling under stress conditions. The biosynthetic pathways for glycerophospholipid tails, glycerol backbones, and diverse head group classes intersect with various other metabolic processes, sharing intermediary metabolites. Recent studies have revealed intricate connections between glycerophospholipid synthesis and nuclear metabolism, including metabolite-mediated crosstalk with the epigenome, signaling pathways that govern genome integrity, and CTP-involved regulation of nucleotide and antioxidant biosynthesis. This review highlights recent advances in understanding the functional roles of glycerophospholipid biosynthesis beyond their structural functions in budding yeast and mammalian cells. We propose that glycerophospholipid biosynthesis plays an integrative role in metabolic regulation, providing a new perspective on lipid biology.
Collapse
Affiliation(s)
- Hong Qiu
- Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Cunqi Ye
- Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Hainan Institute of Zhejiang University, Zhejiang University, Sanya, China
| |
Collapse
|
2
|
Xie B, Sanford EJ, Hung SH, Wagner M, Heyer WD, Smolka MB. Multi-step control of homologous recombination via Mec1/ATR suppresses chromosomal rearrangements. EMBO J 2024; 43:3027-3043. [PMID: 38839993 PMCID: PMC11251156 DOI: 10.1038/s44318-024-00139-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
The Mec1/ATR kinase is crucial for genome stability, yet the mechanism by which it prevents gross chromosomal rearrangements (GCRs) remains unknown. Here we find that in cells with deficient Mec1 signaling, GCRs accumulate due to the deregulation of multiple steps in homologous recombination (HR). Mec1 primarily suppresses GCRs through its role in activating the canonical checkpoint kinase Rad53, which ensures the proper control of DNA end resection. Upon loss of Rad53 signaling and resection control, Mec1 becomes hyperactivated and triggers a salvage pathway in which the Sgs1 helicase is recruited to sites of DNA lesions via the 911-Dpb11 scaffolds and phosphorylated by Mec1 to favor heteroduplex rejection and limit HR-driven GCR accumulation. Fusing an ssDNA recognition domain to Sgs1 bypasses the requirement of Mec1 signaling for GCR suppression and nearly eliminates D-loop formation, thus preventing non-allelic recombination events. We propose that Mec1 regulates multiple steps of HR to prevent GCRs while ensuring balanced HR usage when needed for promoting tolerance to replication stress.
Collapse
Affiliation(s)
- Bokun Xie
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Ethan James Sanford
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Shih-Hsun Hung
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Mateusz Wagner
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Marcus B Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
3
|
Xie B, Sanford EJ, Hung SH, Wagner MM, Heyer WD, Smolka MB. Multi-Step Control of Homologous Recombination by Mec1/ATR Ensures Robust Suppression of Gross Chromosomal Rearrangements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.21.568146. [PMID: 38045423 PMCID: PMC10690203 DOI: 10.1101/2023.11.21.568146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The Mec1/ATR kinase is crucial for genome stability, yet the mechanism by which it prevents gross chromosomal rearrangements (GCRs) remains unknown. Here we find that in cells with deficient Mec1 signaling, GCRs accumulate due to the deregulation of multiple steps in homologous recombination (HR). Mec1 primarily suppresses GCRs through its role in activating the canonical checkpoint kinase Rad53, which ensures the proper control of DNA end resection. Upon loss of Rad53 signaling and resection control, Mec1 becomes hyperactivated and triggers a salvage pathway in which the Sgs1 helicase is recruited to sites of DNA lesions via the 911-Dpb11 scaffolds to favor heteroduplex rejection and limit HR-driven GCR accumulation. Fusing an ssDNA recognition domain to Sgs1 bypasses the requirement of Mec1 signaling for GCR suppression and nearly eliminates D-loop formation, thus preventing non-allelic recombination events. We propose that Mec1 regulates multiple steps of HR to prevent GCRs while ensuring balanced HR usage when needed for promoting tolerance to replication stress.
Collapse
Affiliation(s)
- Bokun Xie
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Ethan James Sanford
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Shih-Hsun Hung
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Mateusz Maciej Wagner
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Marcus B. Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
4
|
Pizzul P, Casari E, Gnugnoli M, Rinaldi C, Corallo F, Longhese MP. The DNA damage checkpoint: A tale from budding yeast. Front Genet 2022; 13:995163. [PMID: 36186482 PMCID: PMC9520983 DOI: 10.3389/fgene.2022.995163] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022] Open
Abstract
Studies performed in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe have led the way in defining the DNA damage checkpoint and in identifying most of the proteins involved in this regulatory network, which turned out to have structural and functional equivalents in humans. Subsequent experiments revealed that the checkpoint is an elaborate signal transduction pathway that has the ability to sense and signal the presence of damaged DNA and transduce this information to influence a multifaceted cellular response that is essential for cancer avoidance. This review focuses on the work that was done in Saccharomyces cerevisiae to articulate the checkpoint concept, to identify its players and the mechanisms of activation and deactivation.
Collapse
|
5
|
Galli M, Frigerio C, Longhese MP, Clerici M. The regulation of the DNA damage response at telomeres: focus on kinases. Biochem Soc Trans 2021; 49:933-943. [PMID: 33769480 DOI: 10.1042/bst20200856] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 11/17/2022]
Abstract
The natural ends of linear chromosomes resemble those of accidental double-strand breaks (DSBs). DSBs induce a multifaceted cellular response that promotes the repair of lesions and slows down cell cycle progression. This response is not elicited at chromosome ends, which are organized in nucleoprotein structures called telomeres. Besides counteracting DSB response through specialized telomere-binding proteins, telomeres also prevent chromosome shortening. Despite of the different fate of telomeres and DSBs, many proteins involved in the DSB response also localize at telomeres and participate in telomere homeostasis. In particular, the DSB master regulators Tel1/ATM and Mec1/ATR contribute to telomere length maintenance and arrest cell cycle progression when chromosome ends shorten, thus promoting a tumor-suppressive process known as replicative senescence. During senescence, the actions of both these apical kinases and telomere-binding proteins allow checkpoint activation while bulk DNA repair activities at telomeres are still inhibited. Checkpoint-mediated cell cycle arrest also prevents further telomere erosion and deprotection that would favor chromosome rearrangements, which are known to increase cancer-associated genome instability. This review summarizes recent insights into functions and regulation of Tel1/ATM and Mec1/ATR at telomeres both in the presence and in the absence of telomerase, focusing mainly on discoveries in budding yeast.
Collapse
Affiliation(s)
- Michela Galli
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy
| | - Chiara Frigerio
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy
| | - Michela Clerici
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy
| |
Collapse
|
6
|
Sanford EJ, Comstock WJ, Faça VM, Vega SC, Gnügge R, Symington LS, Smolka MB. Phosphoproteomics reveals a distinctive Mec1/ATR signaling response upon DNA end hyper-resection. EMBO J 2021; 40:e104566. [PMID: 33764556 DOI: 10.15252/embj.2020104566] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/16/2021] [Accepted: 02/22/2021] [Indexed: 01/27/2023] Open
Abstract
The Mec1/ATR kinase is crucial for genome maintenance in response to a range of genotoxic insults, but it remains unclear how it promotes context-dependent signaling and DNA repair. Using phosphoproteomic analyses, we uncovered a distinctive Mec1/ATR signaling response triggered by extensive nucleolytic processing (resection) of DNA ends. Budding yeast cells lacking Rad9, a checkpoint adaptor and an inhibitor of resection, exhibit a selective increase in Mec1-dependent phosphorylation of proteins associated with single-strand DNA (ssDNA) transactions, including the ssDNA-binding protein Rfa2, the translocase/ubiquitin ligase Uls1, and the Sgs1-Top3-Rmi1 (STR) complex that regulates homologous recombination (HR). Extensive Mec1-dependent phosphorylation of the STR complex, mostly on the Sgs1 helicase subunit, promotes an interaction between STR and the DNA repair scaffolding protein Dpb11. Fusion of Sgs1 to phosphopeptide-binding domains of Dpb11 strongly impairs HR-mediated repair, supporting a model whereby Mec1 signaling regulates STR upon hyper-resection to influence recombination outcomes. Overall, the identification of a distinct Mec1 signaling response triggered by hyper-resection highlights the multi-faceted action of this kinase in the coordination of checkpoint signaling and HR-mediated DNA repair.
Collapse
Affiliation(s)
- Ethan J Sanford
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - William J Comstock
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Vitor M Faça
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA.,Department of Biochemistry and Immunology and Cell-Based Therapy Center, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Stephanie C Vega
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Robert Gnügge
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Lorraine S Symington
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Marcus B Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
7
|
Tong ZB, Ai HS, Li JB. The Mechanism of Chromatin Remodeler SMARCAD1/Fun30 in Response to DNA Damage. Front Cell Dev Biol 2020; 8:560098. [PMID: 33102471 PMCID: PMC7545370 DOI: 10.3389/fcell.2020.560098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/07/2020] [Indexed: 01/22/2023] Open
Abstract
DNA packs into highly condensed chromatin to organize the genome in eukaryotes but occludes many regulatory DNA elements. Access to DNA within nucleosomes is therefore required for a variety of biological processes in cells including transcription, replication, and DNA repair. To cope with this problem, cells employ a set of specialized ATP-dependent chromatin-remodeling protein complexes to enable dynamic access to packaged DNA. In the present review, we summarize the recent advances in the functional and mechanistic studies on a particular chromatin remodeler SMARCAD1Fun30 which has been demonstrated to play a key role in distinct cellular processes and gained much attention in recent years. Focus is given to how SMARCAD1Fun30 regulates various cellular processes through its chromatin remodeling activity, and especially the regulatory role of SMARCAD1Fun30 in gene expression control, maintenance and establishment of heterochromatin, and DNA damage repair. Moreover, we review the studies on the molecular mechanism of SMARCAD1Fun30 that promotes the DNA end-resection on double-strand break ends, including the mechanisms of recruitment, activity regulation and chromatin remodeling.
Collapse
Affiliation(s)
- Ze-Bin Tong
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China.,Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Hua-Song Ai
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Jia-Bin Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
8
|
Memisoglu G, Lanz MC, Eapen VV, Jordan JM, Lee K, Smolka MB, Haber JE. Mec1 ATR Autophosphorylation and Ddc2 ATRIP Phosphorylation Regulates DNA Damage Checkpoint Signaling. Cell Rep 2020; 28:1090-1102.e3. [PMID: 31340146 DOI: 10.1016/j.celrep.2019.06.068] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 02/21/2019] [Accepted: 06/18/2019] [Indexed: 11/26/2022] Open
Abstract
In budding yeast, a single DNA double-strand break (DSB) triggers the activation of Mec1ATR-dependent DNA damage checkpoint. After about 12 h, cells turn off the checkpoint signaling and adapt despite the persistence of the DSB. We report that the adaptation involves the autophosphorylation of Mec1 at site S1964. A non-phosphorylatable mec1-S1964A mutant causes cells to arrest permanently in response to a single DSB without affecting the initial kinase activity of Mec1. Autophosphorylation of S1964 is dependent on Ddc1Rad9 and Dpb11TopBP1, and it correlates with the timing of adaptation. We also report that Mec1's binding partner, Ddc2ATRIP, is an inherently stable protein that is degraded specifically upon DNA damage. Ddc2 is regulated extensively through phosphorylation, which, in turn, regulates the localization of the Mec1-Ddc2 complex to DNA lesions. Taken together, these results suggest that checkpoint response is regulated through the autophosphorylation of Mec1 kinase and through the changes in Ddc2 abundance and phosphorylation.
Collapse
Affiliation(s)
- Gonen Memisoglu
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Michael C Lanz
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Vinay V Eapen
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jacqueline M Jordan
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Kihoon Lee
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA; Seegene, Inc., Ogeum-ro, Songpa-gu, Seoul 05548, Korea
| | - Marcus B Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|
9
|
Yeast ATM and ATR kinases use different mechanisms to spread histone H2A phosphorylation around a DNA double-strand break. Proc Natl Acad Sci U S A 2020; 117:21354-21363. [PMID: 32817543 PMCID: PMC7474660 DOI: 10.1073/pnas.2002126117] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
One of the hallmarks of DNA damage is the rapid spreading of phosphorylated histone H2A (γ-H2AX) around a DNA double-strand break (DSB). In the budding yeast Saccharomyces cerevisiae, nearly all H2A isoforms can be phosphorylated, either by Mec1ATR or Tel1ATM checkpoint kinases. We induced a site-specific DSB with HO endonuclease at the MAT locus on chromosome III and monitored the formation of γ-H2AX by chromatin immunoprecipitation (ChIP)-qPCR in order to uncover the mechanisms by which Mec1ATR and Tel1ATM propagate histone modifications across chromatin. With either kinase, γ-H2AX spreads as far as ∼50 kb on both sides of the lesion within 1 h; but the kinetics and distribution of modification around the DSB are significantly different. The total accumulation of phosphorylation is reduced by about half when either of the two H2A genes is mutated to the nonphosphorylatable S129A allele. Mec1 activity is limited by the abundance of its ATRIP partner, Ddc2. Moreover, Mec1 is more efficient than Tel1 at phosphorylating chromatin in trans-at distant undamaged sites that are brought into physical proximity to the DSB. We compared experimental data to mathematical models of spreading mechanisms to determine whether the kinases search for target nucleosomes by primarily moving in three dimensions through the nucleoplasm or in one dimension along the chromatin. Bayesian model selection indicates that Mec1 primarily uses a three-dimensional diffusive mechanism, whereas Tel1 undergoes directed motion along the chromatin.
Collapse
|
10
|
Colombo CV, Gnugnoli M, Gobbini E, Longhese MP. How do cells sense DNA lesions? Biochem Soc Trans 2020; 48:677-691. [PMID: 32219379 DOI: 10.1042/bst20191118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/06/2020] [Accepted: 03/12/2020] [Indexed: 12/17/2023]
Abstract
DNA is exposed to both endogenous and exogenous DNA damaging agents that chemically modify it. To counteract the deleterious effects exerted by DNA lesions, eukaryotic cells have evolved a network of cellular pathways, termed DNA damage response (DDR). The DDR comprises both mechanisms devoted to repair DNA lesions and signal transduction pathways that sense DNA damage and transduce this information to specific cellular targets. These targets, in turn, impact a wide range of cellular processes including DNA replication, DNA repair and cell cycle transitions. The importance of the DDR is highlighted by the fact that DDR inactivation is commonly found in cancer and causes many different human diseases. The protein kinases ATM and ATR, as well as their budding yeast orthologs Tel1 and Mec1, act as master regulators of the DDR. The initiating events in the DDR entail both DNA lesion recognition and assembly of protein complexes at the damaged DNA sites. Here, we review what is known about the early steps of the DDR.
Collapse
Affiliation(s)
- Chiara Vittoria Colombo
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Marco Gnugnoli
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Elisa Gobbini
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| |
Collapse
|
11
|
Cassani C, Vertemara J, Bassani M, Marsella A, Tisi R, Zampella G, Longhese MP. The ATP-bound conformation of the Mre11-Rad50 complex is essential for Tel1/ATM activation. Nucleic Acids Res 2019; 47:3550-3567. [PMID: 30698745 PMCID: PMC6468247 DOI: 10.1093/nar/gkz038] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/17/2018] [Accepted: 01/15/2019] [Indexed: 01/01/2023] Open
Abstract
Activation of the checkpoint protein Tel1 requires the Mre11–Rad50–Xrs2 (MRX) complex, which recruits Tel1 at DNA double-strand breaks (DSBs) through direct interaction between Tel1 and Xrs2. However, in vitro Tel1 activation by MRX requires ATP binding to Rad50, suggesting a role also for the MR subcomplex in Tel1 activation. Here we describe two separation-of-functions alleles, mre11-S499P and rad50-A78T, which we show to specifically affect Tel1 activation without impairing MRX functions in DSB repair. Both Mre11-S499P and Rad50-A78T reduce Tel1–MRX interaction leading to poor Tel1 association at DSBs and consequent loss of Tel1 activation. The Mre11-S499P variant reduces Mre11–Rad50 interaction, suggesting an important role for MR complex formation in Tel1 activation. Molecular dynamics simulations show that the wild type MR subcomplex bound to ATP lingers in a tightly ‘closed’ conformation, while ADP presence leads to the destabilization of Rad50 dimer and of Mre11–Rad50 association, both events being required for MR conformational transition to an open state. By contrast, MRA78T undertakes complex opening even if Rad50 is bound to ATP, indicating that defective Tel1 activation caused by MRA78T results from destabilization of the ATP-bound conformational state.
Collapse
Affiliation(s)
- Corinne Cassani
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano - Bicocca, 20126 Milano, Italy
| | - Jacopo Vertemara
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano - Bicocca, 20126 Milano, Italy
| | - Matteo Bassani
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano - Bicocca, 20126 Milano, Italy
| | - Antonio Marsella
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano - Bicocca, 20126 Milano, Italy
| | - Renata Tisi
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano - Bicocca, 20126 Milano, Italy
| | - Giuseppe Zampella
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano - Bicocca, 20126 Milano, Italy
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano - Bicocca, 20126 Milano, Italy
| |
Collapse
|
12
|
Lanz MC, Dibitetto D, Smolka MB. DNA damage kinase signaling: checkpoint and repair at 30 years. EMBO J 2019; 38:e101801. [PMID: 31393028 PMCID: PMC6745504 DOI: 10.15252/embj.2019101801] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/03/2019] [Accepted: 07/24/2019] [Indexed: 12/27/2022] Open
Abstract
From bacteria to mammalian cells, damaged DNA is sensed and targeted by DNA repair pathways. In eukaryotes, kinases play a central role in coordinating the DNA damage response. DNA damage signaling kinases were identified over two decades ago and linked to the cell cycle checkpoint concept proposed by Weinert and Hartwell in 1988. Connections between the DNA damage signaling kinases and DNA repair were scant at first, and the initial perception was that the importance of these kinases for genome integrity was largely an indirect effect of their roles in checkpoints, DNA replication, and transcription. As more substrates of DNA damage signaling kinases were identified, it became clear that they directly regulate a wide range of DNA repair factors. Here, we review our current understanding of DNA damage signaling kinases, delineating the key substrates in budding yeast and humans. We trace the progress of the field in the last 30 years and discuss our current understanding of the major substrate regulatory mechanisms involved in checkpoint responses and DNA repair.
Collapse
Affiliation(s)
- Michael Charles Lanz
- Department of Molecular Biology and GeneticsWeill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| | - Diego Dibitetto
- Department of Molecular Biology and GeneticsWeill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| | - Marcus Bustamante Smolka
- Department of Molecular Biology and GeneticsWeill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| |
Collapse
|
13
|
Bantele SCS, Pfander B. Nucleosome Remodeling by Fun30 SMARCAD1 in the DNA Damage Response. Front Mol Biosci 2019; 6:78. [PMID: 31555662 PMCID: PMC6737033 DOI: 10.3389/fmolb.2019.00078] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022] Open
Abstract
Many cellular pathways are dedicated to maintain the integrity of the genome. In eukaryotes, the underlying DNA transactions occur in the context of chromatin. Cells utilize chromatin and its dynamic nature to regulate those genome integrity pathways. Accordingly, chromatin becomes restructured and modified around DNA damage sites. Here, we review the current knowledge of a chromatin remodeler Fun30SMARCAD1, which plays a key role in genome maintenance. Fun30SMARCAD1 promotes DNA end resection and the repair of DNA double-stranded breaks (DSBs). Notably, however, Fun30SMARCAD1 plays additional roles in maintaining heterochromatin and promoting transcription. Overall, Fun30SMARCAD1 is involved in distinct processes and the specific roles of Fun30SMARCAD1 at DSBs, replication forks and sites of transcription appear discordant at first view. Nonetheless, a picture emerges in which commonalities within these context-dependent roles of Fun30SMARCAD1 exist, which may help to gain a more global understanding of chromatin alterations induced by Fun30SMARCAD1.
Collapse
Affiliation(s)
- Susanne C S Bantele
- Max Planck Institute of Biochemistry, DNA Replication and Genome Integrity, Martinsried, Germany
| | - Boris Pfander
- Max Planck Institute of Biochemistry, DNA Replication and Genome Integrity, Martinsried, Germany
| |
Collapse
|
14
|
Biswas H, Goto G, Wang W, Sung P, Sugimoto K. Ddc2ATRIP promotes Mec1ATR activation at RPA-ssDNA tracts. PLoS Genet 2019; 15:e1008294. [PMID: 31369547 PMCID: PMC6692047 DOI: 10.1371/journal.pgen.1008294] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 08/13/2019] [Accepted: 07/07/2019] [Indexed: 11/19/2022] Open
Abstract
The DNA damage checkpoint response is controlled by the phosphatidylinositol 3-kinase-related kinases (PIKK), including ataxia telangiectasia-mutated (ATM) and ATM and Rad3-related (ATR). ATR forms a complex with its partner ATRIP. In budding yeast, ATR and ATRIP correspond to Mec1 and Ddc2, respectively. ATRIP/Ddc2 interacts with replication protein A-bound single-stranded DNA (RPA-ssDNA) and recruits ATR/Mec1 to sites of DNA damage. Mec1 is stimulated by the canonical activators including Ddc1, Dpb11 and Dna2. We have characterized the ddc2-S4 mutation and shown that Ddc2 not only recruits Mec1 to sites of DNA damage but also stimulates Mec1 kinase activity. However, the underlying mechanism of Ddc2-dependent Mec1 activation remains to be elucidated. Here we show that Ddc2 promotes Mec1 activation independently of Ddc1/Dpb11/Dna2 function in vivo and through ssDNA recognition in vitro. The ddc2-S4 mutation diminishes damage-induced phosphorylation of the checkpoint mediators, Rad9 and Mrc1. Rad9 controls checkpoint throughout the cell-cycle whereas Mrc1 is specifically required for the S-phase checkpoint. Notably, S-phase checkpoint signaling is more defective in ddc2-S4 mutants than in cells where the Mec1 activators (Ddc1/Dpb11 and Dna2) are dysfunctional. To understand a role of Ddc2 in Mec1 activation, we reconstituted an in vitro assay using purified Mec1-Ddc2 complex, RPA and ssDNA. Whereas ssDNA stimulates kinase activity of the Mec1-Ddc2 complex, RPA does not. However, RPA can promote ssDNA-dependent Mec1 activation. Neither ssDNA nor RPA-ssDNA efficiently stimulates the Mec1-Ddc2 complex containing Ddc2-S4 mutant. Together, our data support a model in which Ddc2 promotes Mec1 activation at RPA-ssDNA tracts.
Collapse
Affiliation(s)
- Himadri Biswas
- Department of Microbiology, Biochemistry and Molecular Genetics, International Center for Public Health, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Greicy Goto
- Department of Microbiology, Biochemistry and Molecular Genetics, International Center for Public Health, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Weibin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Katsunori Sugimoto
- Department of Microbiology, Biochemistry and Molecular Genetics, International Center for Public Health, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
15
|
Quantitative mechanisms of DNA damage sensing and signaling. Curr Genet 2019; 66:59-62. [PMID: 31227863 PMCID: PMC7021746 DOI: 10.1007/s00294-019-01007-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 11/13/2022]
Abstract
DNA damage occurs abundantly during normal cellular proliferation. This necessitates that cellular DNA damage response and checkpoint pathways monitor the cellular DNA damage load and that DNA damage signaling is quantitative. Yet, how DNA lesions are counted and converted into a quantitative response remains poorly understood. We have recently obtained insights into this question investigating DNA damage signaling elicited by single-stranded DNA (ssDNA). Intriguingly, our findings suggest that local and global DNA damage signaling react differentially to increasing amounts of DNA damage. In this mini-review, we will discuss these findings and put them into perspective of current knowledge on the DNA damage response.
Collapse
|
16
|
Casari E, Rinaldi C, Marsella A, Gnugnoli M, Colombo CV, Bonetti D, Longhese MP. Processing of DNA Double-Strand Breaks by the MRX Complex in a Chromatin Context. Front Mol Biosci 2019; 6:43. [PMID: 31231660 PMCID: PMC6567933 DOI: 10.3389/fmolb.2019.00043] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/21/2019] [Indexed: 12/24/2022] Open
Abstract
DNA double-strand breaks (DSBs) are highly cytotoxic lesions that must be repaired to ensure genomic stability and avoid cell death. The cellular response to DSBs is initiated by the evolutionarily conserved Mre11-Rad50-Xrs2/NBS1 (MRX/MRN) complex that has structural and catalytic functions. Furthermore, it is responsible for DSB signaling through the activation of the checkpoint kinase Tel1/ATM. Here, we review functions and regulation of the MRX/MRN complex in DSB processing in a chromatin context, as well as its interplay with Tel1/ATM.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milan, Italy
| |
Collapse
|
17
|
Quantitative sensing and signalling of single-stranded DNA during the DNA damage response. Nat Commun 2019; 10:944. [PMID: 30808869 PMCID: PMC6391461 DOI: 10.1038/s41467-019-08889-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 02/05/2019] [Indexed: 12/11/2022] Open
Abstract
The DNA damage checkpoint senses the presence of DNA lesions and controls the cellular response thereto. A crucial DNA damage signal is single-stranded DNA (ssDNA), which is frequently found at sites of DNA damage and recruits the sensor checkpoint kinase Mec1-Ddc2. However, how this signal – and therefore the cell's DNA damage load – is quantified, is poorly understood. Here, we use genetic manipulation of DNA end resection to induce quantitatively different ssDNA signals at a site-specific double strand break in budding yeast and identify two distinct signalling circuits within the checkpoint. The local checkpoint signalling circuit leading to γH2A phosphorylation is unresponsive to increased amounts of ssDNA, while the global checkpoint signalling circuit, which triggers Rad53 activation, integrates the ssDNA signal quantitatively. The global checkpoint signal critically depends on the 9-1-1 and its downstream acting signalling axis, suggesting that ssDNA quantification depends on at least two sensor complexes. DNA damage triggers checkpoint signalling mechanisms. Here the authors reveal differential phosphorylation of targets of the Mec1-Ddc2 checkpoint kinase by analyzing the effect of quantitatively different ssDNA signals.
Collapse
|
18
|
Uncoupling Sae2 Functions in Downregulation of Tel1 and Rad53 Signaling Activities. Genetics 2018; 211:515-530. [PMID: 30538107 DOI: 10.1534/genetics.118.301830] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/09/2018] [Indexed: 11/18/2022] Open
Abstract
The Mre11-Rad50-Xrs2 (MRX) complex acts together with the Sae2 protein to initiate resection of DNA double-strand breaks (DSBs) and to regulate a checkpoint response that couples cell cycle progression with DSB repair. Sae2 supports resistance to DNA damage and downregulates the signaling activities of MRX, Tel1, and Rad53 checkpoint proteins at the sites of damage. How these functions are connected to each other is not known. Here, we describe the separation-of-function sae2-ms mutant that, similar to SAE2 deletion, upregulates MRX and Tel1 signaling activities at DSBs by reducing Mre11 endonuclease activity. However, unlike SAE2 deletion, Sae2-ms causes neither DNA damage sensitivity nor enhanced Rad53 activation, indicating that DNA damage resistance depends mainly on Sae2-mediated Rad53 inhibition. The lack of Sae2, but not the presence of Sae2-ms, impairs long-range resection and increases both Rad9 accumulation at DSBs and Rad53-Rad9 interaction independently of Mre11 nuclease activity. Altogether, these data lead to a model whereby Sae2 plays distinct functions in limiting MRX-Tel1 and Rad9 abundance at DSBs, with the control on Rad9 association playing the major role in supporting DNA damage resistance and in regulating long-range resection and checkpoint activation.
Collapse
|
19
|
Sae2 antagonizes Rad9 accumulation at DNA double-strand breaks to attenuate checkpoint signaling and facilitate end resection. Proc Natl Acad Sci U S A 2018; 115:E11961-E11969. [PMID: 30510002 DOI: 10.1073/pnas.1816539115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Mre11-Rad50-Xrs2NBS1 complex plays important roles in the DNA damage response by activating the Tel1ATM kinase and catalyzing 5'-3' resection at DNA double-strand breaks (DSBs). To initiate resection, Mre11 endonuclease nicks the 5' strands at DSB ends in a reaction stimulated by Sae2CtIP Accordingly, Mre11-nuclease deficient (mre11-nd) and sae2Δ mutants are expected to exhibit similar phenotypes; however, we found several notable differences. First, sae2Δ cells exhibit greater sensitivity to genotoxins than mre11-nd cells. Second, sae2Δ is synthetic lethal with sgs1Δ, whereas the mre11-nd sgs1Δ mutant is viable. Third, Sae2 attenuates the Tel1-Rad53CHK2 checkpoint and antagonizes Rad953BP1 accumulation at DSBs independent of Mre11 nuclease. We show that Sae2 competes with other Tel1 substrates, thus reducing Rad9 binding to chromatin and to Rad53. We suggest that persistent Sae2 binding at DSBs in the mre11-nd mutant counteracts the inhibitory effects of Rad9 and Rad53 on Exo1 and Dna2-Sgs1-mediated resection, accounting for the different phenotypes conferred by mre11-nd and sae2Δ mutations. Collectively, these data show a resection initiation independent role for Sae2 at DSBs by modulating the DNA damage checkpoint.
Collapse
|
20
|
Adaptation to DNA damage checkpoint in senescent telomerase-negative cells promotes genome instability. Genes Dev 2018; 32:1499-1513. [PMID: 30463903 PMCID: PMC6295172 DOI: 10.1101/gad.318485.118] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/03/2018] [Indexed: 01/04/2023]
Abstract
Here, Coutelier et al. used a microfluidic-based approach and live-cell imaging in yeast to capture early mutation events during replicative senescence and observed that prolonged checkpoint arrests occurred frequently in telomerase-negative lineages. Their results demonstrate that the adaptation pathway is a major contributor to the genome instability induced during replicative senescence. In cells lacking telomerase, telomeres gradually shorten during each cell division to reach a critically short length, permanently activate the DNA damage checkpoint, and trigger replicative senescence. The increase in genome instability that occurs as a consequence may contribute to the early steps of tumorigenesis. However, because of the low frequency of mutations and the heterogeneity of telomere-induced senescence, the timing and mechanisms of genome instability increase remain elusive. Here, to capture early mutation events during replicative senescence, we used a combined microfluidic-based approach and live-cell imaging in yeast. We analyzed DNA damage checkpoint activation in consecutive cell divisions of individual cell lineages in telomerase-negative yeast cells and observed that prolonged checkpoint arrests occurred frequently in telomerase-negative lineages. Cells relied on the adaptation to the DNA damage pathway to bypass the prolonged checkpoint arrests, allowing further cell divisions despite the presence of unrepaired DNA damage. We demonstrate that the adaptation pathway is a major contributor to the genome instability induced during replicative senescence. Therefore, adaptation plays a critical role in shaping the dynamics of genome instability during replicative senescence.
Collapse
|
21
|
Bonetti D, Colombo CV, Clerici M, Longhese MP. Processing of DNA Ends in the Maintenance of Genome Stability. Front Genet 2018; 9:390. [PMID: 30258457 PMCID: PMC6143663 DOI: 10.3389/fgene.2018.00390] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/29/2018] [Indexed: 12/17/2022] Open
Abstract
DNA double-strand breaks (DSBs) are particularly hazardous lesions as their inappropriate repair can result in chromosome rearrangements, an important driving force of tumorigenesis. DSBs can be repaired by end joining mechanisms or by homologous recombination (HR). HR requires the action of several nucleases that preferentially remove the 5′-terminated strands at both DSB ends in a process called DNA end resection. The same nucleases are also involved in the processing of replication fork structures. Much of our understanding of these pathways has come from studies in the model organism Saccharomyces cerevisiae. Here, we review the current knowledge of the mechanism of resection at DNA DSBs and replication forks.
Collapse
Affiliation(s)
- Diego Bonetti
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | | | - Michela Clerici
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| |
Collapse
|
22
|
Gobbini E, Cassani C, Vertemara J, Wang W, Mambretti F, Casari E, Sung P, Tisi R, Zampella G, Longhese MP. The MRX complex regulates Exo1 resection activity by altering DNA end structure. EMBO J 2018; 37:embj.201798588. [PMID: 29925516 DOI: 10.15252/embj.201798588] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 05/24/2018] [Accepted: 05/30/2018] [Indexed: 01/19/2023] Open
Abstract
Homologous recombination is triggered by nucleolytic degradation (resection) of DNA double-strand breaks (DSBs). DSB resection requires the Mre11-Rad50-Xrs2 (MRX) complex, which promotes the activity of Exo1 nuclease through a poorly understood mechanism. Here, we describe the Mre11-R10T mutant variant that accelerates DSB resection compared to wild-type Mre11 by potentiating Exo1-mediated processing. This increased Exo1 resection activity leads to a decreased association of the Ku complex to DSBs and an enhanced DSB resection in G1, indicating that Exo1 has a direct function in preventing Ku association with DSBs. Molecular dynamics simulations show that rotation of the Mre11 capping domains is able to induce unwinding of double-strand DNA (dsDNA). The R10T substitution causes altered orientation of the Mre11 capping domain that leads to persistent melting of the dsDNA end. We propose that MRX creates a specific DNA end structure that promotes Exo1 resection activity by facilitating the persistence of this nuclease on the DSB ends, uncovering a novel MRX function in DSB resection.
Collapse
Affiliation(s)
- Elisa Gobbini
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Corinne Cassani
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Jacopo Vertemara
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Weibin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | - Fabiana Mambretti
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Erika Casari
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | - Renata Tisi
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Giuseppe Zampella
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| |
Collapse
|
23
|
Paudyal SC, Li S, Yan H, Hunter T, You Z. Dna2 initiates resection at clean DNA double-strand breaks. Nucleic Acids Res 2017; 45:11766-11781. [PMID: 28981724 PMCID: PMC5714177 DOI: 10.1093/nar/gkx830] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/30/2017] [Accepted: 09/06/2017] [Indexed: 02/07/2023] Open
Abstract
Nucleolytic resection of DNA double-strand breaks (DSBs) is essential for both checkpoint activation and homology-mediated repair; however, the precise mechanism of resection, especially the initiation step, remains incompletely understood. Resection of blocked ends with protein or chemical adducts is believed to be initiated by the MRN complex in conjunction with CtIP through internal cleavage of the 5' strand DNA. However, it is not clear whether resection of clean DSBs with free ends is also initiated by the same mechanism. Using the Xenopus nuclear extract system, here we show that the Dna2 nuclease directly initiates the resection of clean DSBs by cleaving the 5' strand DNA ∼10-20 nucleotides away from the ends. In the absence of Dna2, MRN together with CtIP mediate an alternative resection initiation pathway where the nuclease activity of MRN apparently directly cleaves the 5' strand DNA at more distal sites. MRN also facilitates resection initiation by promoting the recruitment of Dna2 and CtIP to the DNA substrate. The ssDNA-binding protein RPA promotes both Dna2- and CtIP-MRN-dependent resection initiation, but a RPA mutant can distinguish between these pathways. Our results strongly suggest that resection of blocked and clean DSBs is initiated via distinct mechanisms.
Collapse
Affiliation(s)
- Sharad C. Paudyal
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Shan Li
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Hong Yan
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Tony Hunter
- Salk Institute, 10010 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Zhongsheng You
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
24
|
Pedroza-García JA, Mazubert C, Del Olmo I, Bourge M, Domenichini S, Bounon R, Tariq Z, Delannoy E, Piñeiro M, Jarillo JA, Bergounioux C, Benhamed M, Raynaud C. Function of the Plant DNA Polymerase Epsilon in Replicative Stress Sensing, a Genetic Analysis. PLANT PHYSIOLOGY 2017; 173:1735-1749. [PMID: 28153919 PMCID: PMC5338674 DOI: 10.1104/pp.17.00031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 01/30/2017] [Indexed: 05/17/2023]
Abstract
Faithful transmission of the genetic information is essential in all living organisms. DNA replication is therefore a critical step of cell proliferation, because of the potential occurrence of replication errors or DNA damage when progression of a replication fork is hampered causing replicative stress. Like other types of DNA damage, replicative stress activates the DNA damage response, a signaling cascade allowing cell cycle arrest and repair of lesions. The replicative DNA polymerase ε (Pol ε) was shown to activate the S-phase checkpoint in yeast in response to replicative stress, but whether this mechanism functions in multicellular eukaryotes remains unclear. Here, we explored the genetic interaction between Pol ε and the main elements of the DNA damage response in Arabidopsis (Arabidopsis thaliana). We found that mutations affecting the polymerase domain of Pol ε trigger ATR-dependent signaling leading to SOG1 activation, WEE1-dependent cell cycle inhibition, and tolerance to replicative stress induced by hydroxyurea, but result in enhanced sensitivity to a wide range of DNA damaging agents. Using knock-down lines, we also provide evidence for the direct role of Pol ε in replicative stress sensing. Together, our results demonstrate that the role of Pol ε in replicative stress sensing is conserved in plants, and provide, to our knowledge, the first genetic dissection of the downstream signaling events in a multicellular eukaryote.
Collapse
Affiliation(s)
- José-Antonio Pedroza-García
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Évry, Université Paris-Saclay, 91405 Orsay, France (J.A.P.-G., C.M., S.D., R.B., Z.T., E.D., C.B., M.B., C.R.)
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, 91405 Orsay, France (J.A.P.-G., C.M., S.D., R.B., Z.T., E.D., C.B., M.B., C.R.)
- Centro de Biotecnología y Genómica de Plantas Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM 28223-Pozuelo de Alarcón (Madrid), Spain (I.d.O., M.P., J.A.J.); and
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France (M.B.)
| | - Christelle Mazubert
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Évry, Université Paris-Saclay, 91405 Orsay, France (J.A.P.-G., C.M., S.D., R.B., Z.T., E.D., C.B., M.B., C.R.)
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, 91405 Orsay, France (J.A.P.-G., C.M., S.D., R.B., Z.T., E.D., C.B., M.B., C.R.)
- Centro de Biotecnología y Genómica de Plantas Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM 28223-Pozuelo de Alarcón (Madrid), Spain (I.d.O., M.P., J.A.J.); and
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France (M.B.)
| | - Ivan Del Olmo
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Évry, Université Paris-Saclay, 91405 Orsay, France (J.A.P.-G., C.M., S.D., R.B., Z.T., E.D., C.B., M.B., C.R.)
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, 91405 Orsay, France (J.A.P.-G., C.M., S.D., R.B., Z.T., E.D., C.B., M.B., C.R.)
- Centro de Biotecnología y Genómica de Plantas Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM 28223-Pozuelo de Alarcón (Madrid), Spain (I.d.O., M.P., J.A.J.); and
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France (M.B.)
| | - Mickael Bourge
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Évry, Université Paris-Saclay, 91405 Orsay, France (J.A.P.-G., C.M., S.D., R.B., Z.T., E.D., C.B., M.B., C.R.)
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, 91405 Orsay, France (J.A.P.-G., C.M., S.D., R.B., Z.T., E.D., C.B., M.B., C.R.)
- Centro de Biotecnología y Genómica de Plantas Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM 28223-Pozuelo de Alarcón (Madrid), Spain (I.d.O., M.P., J.A.J.); and
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France (M.B.)
| | - Séverine Domenichini
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Évry, Université Paris-Saclay, 91405 Orsay, France (J.A.P.-G., C.M., S.D., R.B., Z.T., E.D., C.B., M.B., C.R.)
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, 91405 Orsay, France (J.A.P.-G., C.M., S.D., R.B., Z.T., E.D., C.B., M.B., C.R.)
- Centro de Biotecnología y Genómica de Plantas Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM 28223-Pozuelo de Alarcón (Madrid), Spain (I.d.O., M.P., J.A.J.); and
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France (M.B.)
| | - Rémi Bounon
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Évry, Université Paris-Saclay, 91405 Orsay, France (J.A.P.-G., C.M., S.D., R.B., Z.T., E.D., C.B., M.B., C.R.)
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, 91405 Orsay, France (J.A.P.-G., C.M., S.D., R.B., Z.T., E.D., C.B., M.B., C.R.)
- Centro de Biotecnología y Genómica de Plantas Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM 28223-Pozuelo de Alarcón (Madrid), Spain (I.d.O., M.P., J.A.J.); and
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France (M.B.)
| | - Zakia Tariq
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Évry, Université Paris-Saclay, 91405 Orsay, France (J.A.P.-G., C.M., S.D., R.B., Z.T., E.D., C.B., M.B., C.R.)
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, 91405 Orsay, France (J.A.P.-G., C.M., S.D., R.B., Z.T., E.D., C.B., M.B., C.R.)
- Centro de Biotecnología y Genómica de Plantas Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM 28223-Pozuelo de Alarcón (Madrid), Spain (I.d.O., M.P., J.A.J.); and
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France (M.B.)
| | - Etienne Delannoy
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Évry, Université Paris-Saclay, 91405 Orsay, France (J.A.P.-G., C.M., S.D., R.B., Z.T., E.D., C.B., M.B., C.R.)
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, 91405 Orsay, France (J.A.P.-G., C.M., S.D., R.B., Z.T., E.D., C.B., M.B., C.R.)
- Centro de Biotecnología y Genómica de Plantas Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM 28223-Pozuelo de Alarcón (Madrid), Spain (I.d.O., M.P., J.A.J.); and
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France (M.B.)
| | - Manuel Piñeiro
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Évry, Université Paris-Saclay, 91405 Orsay, France (J.A.P.-G., C.M., S.D., R.B., Z.T., E.D., C.B., M.B., C.R.)
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, 91405 Orsay, France (J.A.P.-G., C.M., S.D., R.B., Z.T., E.D., C.B., M.B., C.R.)
- Centro de Biotecnología y Genómica de Plantas Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM 28223-Pozuelo de Alarcón (Madrid), Spain (I.d.O., M.P., J.A.J.); and
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France (M.B.)
| | - José A Jarillo
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Évry, Université Paris-Saclay, 91405 Orsay, France (J.A.P.-G., C.M., S.D., R.B., Z.T., E.D., C.B., M.B., C.R.)
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, 91405 Orsay, France (J.A.P.-G., C.M., S.D., R.B., Z.T., E.D., C.B., M.B., C.R.)
- Centro de Biotecnología y Genómica de Plantas Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM 28223-Pozuelo de Alarcón (Madrid), Spain (I.d.O., M.P., J.A.J.); and
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France (M.B.)
| | - Catherine Bergounioux
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Évry, Université Paris-Saclay, 91405 Orsay, France (J.A.P.-G., C.M., S.D., R.B., Z.T., E.D., C.B., M.B., C.R.)
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, 91405 Orsay, France (J.A.P.-G., C.M., S.D., R.B., Z.T., E.D., C.B., M.B., C.R.)
- Centro de Biotecnología y Genómica de Plantas Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM 28223-Pozuelo de Alarcón (Madrid), Spain (I.d.O., M.P., J.A.J.); and
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France (M.B.)
| | - Moussa Benhamed
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Évry, Université Paris-Saclay, 91405 Orsay, France (J.A.P.-G., C.M., S.D., R.B., Z.T., E.D., C.B., M.B., C.R.)
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, 91405 Orsay, France (J.A.P.-G., C.M., S.D., R.B., Z.T., E.D., C.B., M.B., C.R.)
- Centro de Biotecnología y Genómica de Plantas Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM 28223-Pozuelo de Alarcón (Madrid), Spain (I.d.O., M.P., J.A.J.); and
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France (M.B.)
| | - Cécile Raynaud
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Évry, Université Paris-Saclay, 91405 Orsay, France (J.A.P.-G., C.M., S.D., R.B., Z.T., E.D., C.B., M.B., C.R.);
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, 91405 Orsay, France (J.A.P.-G., C.M., S.D., R.B., Z.T., E.D., C.B., M.B., C.R.);
- Centro de Biotecnología y Genómica de Plantas Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM 28223-Pozuelo de Alarcón (Madrid), Spain (I.d.O., M.P., J.A.J.); and
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France (M.B.)
| |
Collapse
|
25
|
Liu Y, Cussiol JR, Dibitetto D, Sims JR, Twayana S, Weiss RS, Freire R, Marini F, Pellicioli A, Smolka MB. TOPBP1 Dpb11 plays a conserved role in homologous recombination DNA repair through the coordinated recruitment of 53BP1 Rad9. J Cell Biol 2017; 216:623-639. [PMID: 28228534 PMCID: PMC5350513 DOI: 10.1083/jcb.201607031] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/30/2016] [Accepted: 01/09/2017] [Indexed: 01/24/2023] Open
Abstract
The scaffold protein TOPBP1Dpb11 has been implicated in homologous recombination DNA repair, but its function and mechanism of action remain unclear. Liu et al. define a conserved role for TOPBP1Dpb11 in recombination control through regulated, opposing interactions with pro- and anti-resection factors. Genome maintenance and cancer suppression require homologous recombination (HR) DNA repair. In yeast and mammals, the scaffold protein TOPBP1Dpb11 has been implicated in HR, although its precise function and mechanism of action remain elusive. In this study, we show that yeast Dpb11 plays an antagonistic role in recombination control through regulated protein interactions. Dpb11 mediates opposing roles in DNA end resection by coordinating both the stabilization and exclusion of Rad9 from DNA lesions. The Mec1 kinase promotes the pro-resection function of Dpb11 by mediating its interaction with the Slx4 scaffold. Human TOPBP1Dpb11 engages in interactions with the anti-resection factor 53BP1 and the pro-resection factor BRCA1, suggesting that TOPBP1 also mediates opposing functions in HR control. Hyperstabilization of the 53BP1–TOPBP1 interaction enhances the recruitment of 53BP1 to nuclear foci in the S phase, resulting in impaired HR and the accumulation of chromosomal aberrations. Our results support a model in which TOPBP1Dpb11 plays a conserved role in mediating a phosphoregulated circuitry for the control of recombinational DNA repair.
Collapse
Affiliation(s)
- Yi Liu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - José Renato Cussiol
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Diego Dibitetto
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Jennie Rae Sims
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Shyam Twayana
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | | | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologias Biomedicas, 38320 Tenerife, Spain
| | - Federica Marini
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | | | - Marcus Bustamante Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
26
|
Villa M, Cassani C, Gobbini E, Bonetti D, Longhese MP. Coupling end resection with the checkpoint response at DNA double-strand breaks. Cell Mol Life Sci 2016; 73:3655-63. [PMID: 27141941 PMCID: PMC11108263 DOI: 10.1007/s00018-016-2262-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/08/2016] [Accepted: 04/29/2016] [Indexed: 10/21/2022]
Abstract
DNA double-strand breaks (DSBs) are a nasty form of damage that needs to be repaired to ensure genome stability. The DSB ends can undergo a strand-biased nucleolytic processing (resection) to generate 3'-ended single-stranded DNA (ssDNA) that channels DSB repair into homologous recombination. Generation of ssDNA also triggers the activation of the DNA damage checkpoint, which couples cell cycle progression with DSB repair. The checkpoint response is intimately linked to DSB resection, as some checkpoint proteins regulate the resection process. The present review will highlight recent works on the mechanism and regulation of DSB resection and its interplays with checkpoint activation/inactivation in budding yeast.
Collapse
Affiliation(s)
- Matteo Villa
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Corinne Cassani
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Elisa Gobbini
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Diego Bonetti
- Institute of Molecular Biology gGmbH (IMB), 55128, Mainz, Germany
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy.
| |
Collapse
|
27
|
Rawal CC, Riccardo S, Pesenti C, Ferrari M, Marini F, Pellicioli A. Reduced kinase activity of polo kinase Cdc5 affects chromosome stability and DNA damage response in S. cerevisiae. Cell Cycle 2016; 15:2906-2919. [PMID: 27565373 DOI: 10.1080/15384101.2016.1222338] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Polo-like kinases (PLKs) control several aspects of eukaryotic cell division and DNA damage response. Remarkably, PLKs are overexpressed in several types of cancer, being therefore a marker of bad prognosis. As such, specific PLK kinase activity inhibitors are already used in clinical trials and the regulation of PLK activation is a relevant topic of cancer research. Phosphorylation of threonine residues in the T-loop of the kinase domain is pivotal for PLKs activation. Here, we show that T238A substitution in the T-loop reduces the kinase activity of Cdc5, the only PLK in Saccharomyces cerevisiae, with minor effect on cell growth in unperturbed conditions. However, the cdc5-T238A cells have increased rate of chromosome loss and gross chromosomal rearrangements, indicating altered genome stability. Moreover, the T238A mutation affects timely localization of Cdc5 to the spindle pole bodies and blocks cell cycle restart after one irreparable double-strand break. In cells responding to alkylating agent metylmethane sulfonate (MMS), the cdc5-T238A mutation reduces the phosphorylation of Mus81-Mms4 resolvase and exacerbates the MMS sensitivity of sgs1Δ cells that accumulate Holliday junctions. Of importance, the previously described checkpoint adaptation defective allele, cdc5-ad does not show reduced kinase activity, defective Mms4 phosphorylation and genetic interaction with sgs1Δ. Our data define the importance of regulating Cdc5 activity through T-loop phosphorylation to preserve genome integrity and respond to DNA damage.
Collapse
Affiliation(s)
- Chetan C Rawal
- a Department of Biosciences , University of Milan , Milano , Italy
| | - Sara Riccardo
- a Department of Biosciences , University of Milan , Milano , Italy
| | - Chiara Pesenti
- a Department of Biosciences , University of Milan , Milano , Italy.,b Department of Pathophysiology & Transplantation , Universitá degli Studi di Milano , Milan , Italy.,c Division of Pathology , Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milan , Italy
| | - Matteo Ferrari
- a Department of Biosciences , University of Milan , Milano , Italy
| | - Federica Marini
- a Department of Biosciences , University of Milan , Milano , Italy
| | | |
Collapse
|
28
|
Paudyal SC, You Z. Sharpening the ends for repair: mechanisms and regulation of DNA resection. Acta Biochim Biophys Sin (Shanghai) 2016; 48:647-57. [PMID: 27174871 DOI: 10.1093/abbs/gmw043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 04/12/2016] [Indexed: 12/23/2022] Open
Abstract
DNA end resection is a key process in the cellular response to DNA double-strand break damage that is essential for genome maintenance and cell survival. Resection involves selective processing of 5' ends of broken DNA to generate ssDNA overhangs, which in turn control both DNA repair and checkpoint signaling. DNA resection is the first step in homologous recombination-mediated repair and a prerequisite for the activation of the ataxia telangiectasia mutated and Rad3-related (ATR)-dependent checkpoint that coordinates repair with cell cycle progression and other cellular processes. Resection occurs in a cell cycle-dependent manner and is regulated by multiple factors to ensure an optimal amount of ssDNA required for proper repair and genome stability. Here, we review the latest findings on the molecular mechanisms and regulation of the DNA end resection process and their implications for cancer formation and treatment.
Collapse
Affiliation(s)
- Sharad C Paudyal
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Zhongsheng You
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
29
|
Cussiol JR, Dibitetto D, Pellicioli A, Smolka MB. Slx4 scaffolding in homologous recombination and checkpoint control: lessons from yeast. Chromosoma 2016; 126:45-58. [PMID: 27165041 DOI: 10.1007/s00412-016-0600-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/27/2016] [Accepted: 04/29/2016] [Indexed: 01/07/2023]
Abstract
Homologous recombination-mediated DNA repair is essential for maintaining genome integrity. It is a multi-step process that involves resection of DNA ends, strand invasion, DNA synthesis and/or DNA end ligation, and finally, the processing of recombination intermediates such as Holliday junctions or other joint molecules. Over the last 15 years, it has been established that the Slx4 protein plays key roles in the processing of recombination intermediates, functioning as a scaffold to coordinate the action of structure-specific endonucleases. Recent work in budding yeast has uncovered unexpected roles for Slx4 in the initial step of DNA-end resection and in the modulation of DNA damage checkpoint signaling. Here we review these latest findings and discuss the emerging role of yeast Slx4 as an important coordinator of DNA damage signaling responses and a regulator of multiple steps in homologous recombination-mediated repair.
Collapse
Affiliation(s)
- José R Cussiol
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Diego Dibitetto
- Department of Biosciences, University of Milan, 20133, Milan, Italy
| | | | - Marcus B Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
30
|
Abstract
The repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) is initiated by nucleolytic degradation of the 5'-terminated strands in a process termed end resection. End resection generates 3'-single-stranded DNA tails, substrates for Rad51 to catalyze homologous pairing and DNA strand exchange, and for activation of the DNA damage checkpoint. The commonly accepted view is that end resection occurs by a two-step mechanism. In the first step, Sae2/CtIP activates the Mre11-Rad50-Xrs2/Nbs1 (MRX/N) complex to endonucleolytically cleave the 5'-terminated DNA strands close to break ends, and in the second step Exo1 and/or Dna2 nucleases extend the resected tracts to produce long 3'-ssDNA-tailed intermediates. Initiation of resection commits a cell to repair a DSB by HR because long ssDNA overhangs are poor substrates for non-homologous end joining (NHEJ). Thus, the initiation of end resection has emerged as a critical control point for repair pathway choice. Here, I review recent studies on the mechanism of end resection and how this process is regulated to ensure the most appropriate repair outcome.
Collapse
Affiliation(s)
- Lorraine S Symington
- a Department of Microbiology & Immunology , Columbia University Medical Center , New York , USA
| |
Collapse
|
31
|
Kibe T, Zimmermann M, de Lange T. TPP1 Blocks an ATR-Mediated Resection Mechanism at Telomeres. Mol Cell 2016; 61:236-46. [PMID: 26778124 PMCID: PMC4724337 DOI: 10.1016/j.molcel.2015.12.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 11/17/2015] [Accepted: 12/10/2015] [Indexed: 01/29/2023]
Abstract
The regulation of 5' end resection at DSBs and telomeres prevents genome instability. DSB resection is positively and negatively regulated by ATM signaling through CtIP/MRN and 53BP1-bound Rif1, respectively. Similarly, telomeres lacking TRF2 undergo ATM-controlled CtIP-dependent hyper-resection when the repression by 53BP1/Rif1 is alleviated. However, telomere resection in the absence of 53BP1/Rif1 is more extensive upon complete removal of shelterin, indicating additional protection against resection by shelterin. Here we show that TPP1 and POT1a/b in shelterin block a resection pathway distinct from that repressed by TRF2. This second pathway is regulated by ATR signaling, involves Exo1 and BLM, and is inhibited by 53BP1/Rif1. Thus, mammalian cells have two distinct 5' end-resection pathways that are regulated by DNA damage signaling, in part through Rif1-mediated inhibition. The data show that telomeres are protected from hyper-resection through the repression of the ATM and ATR kinases by TRF2 and TPP1-bound POT1a/b, respectively.
Collapse
Affiliation(s)
- Tatsuya Kibe
- Laboratory for Cell Biology and Genetics, Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Michal Zimmermann
- Laboratory for Cell Biology and Genetics, Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
32
|
Chen X, Niu H, Yu Y, Wang J, Zhu S, Zhou J, Papusha A, Cui D, Pan X, Kwon Y, Sung P, Ira G. Enrichment of Cdk1-cyclins at DNA double-strand breaks stimulates Fun30 phosphorylation and DNA end resection. Nucleic Acids Res 2016; 44:2742-53. [PMID: 26801641 PMCID: PMC4824098 DOI: 10.1093/nar/gkv1544] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/28/2015] [Indexed: 01/15/2023] Open
Abstract
DNA double-strand breaks (DSBs) are one of the most cytotoxic types of DNA lesion challenging genome integrity. The activity of cyclin-dependent kinase Cdk1 is essential for DSB repair by homologous recombination and for DNA damage signaling. Here we identify the Fun30 chromatin remodeler as a new target of Cdk1. Fun30 is phosphorylated by Cdk1 on Serine 28 to stimulate its functions in DNA damage response including resection of DSB ends. Importantly, Cdk1-dependent phosphorylation of Fun30-S28 increases upon DNA damage and requires the recruitment of Fun30 to DSBs, suggesting that phosphorylation increases in situ at the DNA damage. Consistently, we find that Cdk1 and multiple cyclins become highly enriched at DSBs and that the recruitment of Cdk1 and cyclins Clb2 and Clb5 ensures optimal Fun30 phosphorylation and checkpoint activation. We propose that the enrichment of Cdk1-cyclin complexes at DSBs serves as a mechanism for enhanced targeting and modulating of the activity of DNA damage response proteins.
Collapse
Affiliation(s)
- Xuefeng Chen
- College of Life Sciences and Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 40072, China
| | - Hengyao Niu
- Department of Biochemistry and Biophysics, Yale University School of Medicine, New Haven, CT, USA
| | - Yang Yu
- Department of Molecular ad Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jingjing Wang
- College of Life Sciences and Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 40072, China
| | - Shuangyi Zhu
- College of Life Sciences and Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 40072, China
| | - Jianjie Zhou
- College of Life Sciences and Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 40072, China
| | - Alma Papusha
- Department of Molecular ad Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Dandan Cui
- Department of Molecular ad Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Xuewen Pan
- Department of Molecular ad Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Youngho Kwon
- Department of Biochemistry and Biophysics, Yale University School of Medicine, New Haven, CT, USA
| | - Patrick Sung
- Department of Biochemistry and Biophysics, Yale University School of Medicine, New Haven, CT, USA
| | - Grzegorz Ira
- Department of Molecular ad Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
33
|
Gobbini E, Villa M, Gnugnoli M, Menin L, Clerici M, Longhese MP. Sae2 Function at DNA Double-Strand Breaks Is Bypassed by Dampening Tel1 or Rad53 Activity. PLoS Genet 2015; 11:e1005685. [PMID: 26584331 PMCID: PMC4652893 DOI: 10.1371/journal.pgen.1005685] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/29/2015] [Indexed: 11/30/2022] Open
Abstract
The MRX complex together with Sae2 initiates resection of DNA double-strand breaks (DSBs) to generate single-stranded DNA (ssDNA) that triggers homologous recombination. The absence of Sae2 not only impairs DSB resection, but also causes prolonged MRX binding at the DSBs that leads to persistent Tel1- and Rad53-dependent DNA damage checkpoint activation and cell cycle arrest. Whether this enhanced checkpoint signaling contributes to the DNA damage sensitivity and/or the resection defect of sae2Δ cells is not known. By performing a genetic screen, we identify rad53 and tel1 mutant alleles that suppress both the DNA damage hypersensitivity and the resection defect of sae2Δ cells through an Sgs1-Dna2-dependent mechanism. These suppression events do not involve escaping the checkpoint-mediated cell cycle arrest. Rather, defective Rad53 or Tel1 signaling bypasses Sae2 function at DSBs by decreasing the amount of Rad9 bound at DSBs. As a consequence, reduced Rad9 association to DNA ends relieves inhibition of Sgs1-Dna2 activity, which can then compensate for the lack of Sae2 in DSB resection and DNA damage resistance. We propose that persistent Tel1 and Rad53 checkpoint signaling in cells lacking Sae2 increases the association of Rad9 at DSBs, which in turn inhibits DSB resection by limiting the activity of the Sgs1-Dna2 resection machinery. Genome instability is one of the most pervasive characteristics of cancer cells and can be due to DNA repair defects and failure to arrest the cell cycle. Among the many types of DNA damage, the DNA double strand break (DSB) is one of the most severe, because it can cause mutations and chromosomal rearrangements. Generation of DSBs triggers a highly conserved mechanism, known as DNA damage checkpoint, which arrests the cell cycle until DSBs are repaired. DSBs can be repaired by homologous recombination, which requires the DSB ends to be nucleolytically processed (resected) to generate single-stranded DNA. In Saccharomyces cerevisiae, DSB resection is initiated by the MRX complex together with Sae2, whereas more extensive resection is catalyzed by both Exo1 and Dna2-Sgs1. The absence of Sae2 not only impairs DSB resection, but also leads to the hyperactivation of the checkpoint proteins Tel1/ATM and Rad53, leading to persistent cell cycle arrest. In this manuscript we show that persistent Tel1 and Rad53 signaling activities in sae2Δ cells cause DNA damage hypersensitivity and defective DSB resection by increasing the amount of Rad9 bound at the DSBs, which in turn inhibits the Sgs1-Dna2 resection machinery. As ATM inhibition has been proposed as a strategy for cancer treatment, the finding that defective Tel1 signaling activity restores DNA damage resistance in sae2Δ cells might have implications in cancer therapies that use ATM inhibitors for synthetic lethal approaches that are devised to kill tumor cells with defective DSB repair.
Collapse
Affiliation(s)
- Elisa Gobbini
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Matteo Villa
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Marco Gnugnoli
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Luca Menin
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Michela Clerici
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
- * E-mail:
| |
Collapse
|
34
|
Dibitetto D, Ferrari M, Rawal CC, Balint A, Kim T, Zhang Z, Smolka MB, Brown GW, Marini F, Pellicioli A. Slx4 and Rtt107 control checkpoint signalling and DNA resection at double-strand breaks. Nucleic Acids Res 2015; 44:669-82. [PMID: 26490958 PMCID: PMC4737138 DOI: 10.1093/nar/gkv1080] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/06/2015] [Indexed: 11/13/2022] Open
Abstract
The DNA damage checkpoint pathway is activated in response to DNA lesions and replication stress to preserve genome integrity. However, hyper-activation of this surveillance system is detrimental to the cell, because it might prevent cell cycle re-start after repair, which may also lead to senescence. Here we show that the scaffold proteins Slx4 and Rtt107 limit checkpoint signalling at a persistent double-strand DNA break (DSB) and at uncapped telomeres. We found that Slx4 is recruited within a few kilobases of an irreparable DSB, through the interaction with Rtt107 and the multi-BRCT domain scaffold Dpb11. In the absence of Slx4 or Rtt107, Rad9 binding near the irreparable DSB is increased, leading to robust checkpoint signalling and slower nucleolytic degradation of the 5′ strand. Importantly, in slx4Δ sae2Δ double mutant cells these phenotypes are exacerbated, causing a severe Rad9-dependent defect in DSB repair. Our study sheds new light on the molecular mechanism that coordinates the processing and repair of DSBs with DNA damage checkpoint signalling, preserving genome integrity.
Collapse
Affiliation(s)
- Diego Dibitetto
- Department of Biosciences, University of Milan, 20133, Milano, Italy
| | - Matteo Ferrari
- Department of Biosciences, University of Milan, 20133, Milano, Italy
| | - Chetan C Rawal
- Department of Biosciences, University of Milan, 20133, Milano, Italy
| | - Attila Balint
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S3E1, Canada Donnelly Centre, University of Toronto, Toronto, Ontario, M5S3E1, Canada
| | - TaeHyung Kim
- Donnelly Centre, University of Toronto, Toronto, Ontario, M5S3E1, Canada Department of Computer Science, University of Toronto, Toronto, Ontario, M5S3E1, Canada
| | - Zhaolei Zhang
- Donnelly Centre, University of Toronto, Toronto, Ontario, M5S3E1, Canada Department of Computer Science, University of Toronto, Toronto, Ontario, M5S3E1, Canada
| | - Marcus B Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Grant W Brown
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S3E1, Canada Donnelly Centre, University of Toronto, Toronto, Ontario, M5S3E1, Canada
| | - Federica Marini
- Department of Biosciences, University of Milan, 20133, Milano, Italy
| | | |
Collapse
|
35
|
Manfrini N, Clerici M, Wery M, Colombo CV, Descrimes M, Morillon A, d'Adda di Fagagna F, Longhese MP. Resection is responsible for loss of transcription around a double-strand break in Saccharomyces cerevisiae. eLife 2015; 4. [PMID: 26231041 PMCID: PMC4541074 DOI: 10.7554/elife.08942] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 07/30/2015] [Indexed: 11/13/2022] Open
Abstract
Emerging evidence indicate that the mammalian checkpoint kinase ATM induces transcriptional silencing in cis to DNA double-strand breaks (DSBs) through a poorly understood mechanism. Here we show that in Saccharomyces cerevisiae a single DSB causes transcriptional inhibition of proximal genes independently of Tel1/ATM and Mec1/ATR. Since the DSB ends undergo nucleolytic degradation (resection) of their 5'-ending strands, we investigated the contribution of resection in this DSB-induced transcriptional inhibition. We discovered that resection-defective mutants fail to stop transcription around a DSB, and the extent of this failure correlates with the severity of the resection defect. Furthermore, Rad9 and generation of γH2A reduce this DSB-induced transcriptional inhibition by counteracting DSB resection. Therefore, the conversion of the DSB ends from double-stranded to single-stranded DNA, which is necessary to initiate DSB repair by homologous recombination, is responsible for loss of transcription around a DSB in S. cerevisiae.
Collapse
Affiliation(s)
- Nicola Manfrini
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Michela Clerici
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Maxime Wery
- Institut Curie, Dynamics of Genetic Information: Fundamental Basis and Cancer, Université Pierre et Marie Curie, Paris, France
| | | | - Marc Descrimes
- Institut Curie, Dynamics of Genetic Information: Fundamental Basis and Cancer, Université Pierre et Marie Curie, Paris, France
| | - Antonin Morillon
- Institut Curie, Dynamics of Genetic Information: Fundamental Basis and Cancer, Université Pierre et Marie Curie, Paris, France
| | | | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| |
Collapse
|
36
|
DNA damage during the G0/G1 phase triggers RNA-templated, Cockayne syndrome B-dependent homologous recombination. Proc Natl Acad Sci U S A 2015; 112:E3495-504. [PMID: 26100862 DOI: 10.1073/pnas.1507105112] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Damage repair mechanisms at transcriptionally active sites during the G0/G1 phase are largely unknown. To elucidate these mechanisms, we introduced genome site-specific oxidative DNA damage and determined the role of transcription in repair factor assembly. We find that KU and NBS1 are recruited to damage sites independent of transcription. However, assembly of RPA1, RAD51C, RAD51, and RAD52 at such sites is strictly governed by active transcription and requires both wild-type Cockayne syndrome protein B (CSB) function and the presence of RNA in the G0/G1 phase. We show that the ATPase activity of CSB is indispensable for loading and binding of the recombination factors. CSB counters radiation-induced DNA damage in both cells and zebrafish models. Taken together, our results have uncovered a novel, RNA-based recombination mechanism by which CSB protects genome stability from strand breaks at transcriptionally active sites and may provide insight into the clinical manifestations of Cockayne syndrome.
Collapse
|
37
|
Tsabar M, Eapen VV, Mason JM, Memisoglu G, Waterman DP, Long MJ, Bishop DK, Haber JE. Caffeine impairs resection during DNA break repair by reducing the levels of nucleases Sae2 and Dna2. Nucleic Acids Res 2015; 43:6889-901. [PMID: 26019182 PMCID: PMC4538808 DOI: 10.1093/nar/gkv520] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 05/07/2015] [Indexed: 11/13/2022] Open
Abstract
In response to chromosomal double-strand breaks (DSBs), eukaryotic cells activate the DNA damage checkpoint, which is orchestrated by the PI3 kinase-like protein kinases ATR and ATM (Mec1 and Tel1 in budding yeast). Following DSB formation, Mec1 and Tel1 phosphorylate histone H2A on serine 129 (known as γ-H2AX). We used caffeine to inhibit the checkpoint kinases after DSB induction. We show that prolonged phosphorylation of H2A-S129 does not require continuous Mec1 and Tel1 activity. Unexpectedly, caffeine treatment impaired homologous recombination by inhibiting 5' to 3' end resection, independent of Mec1 and Tel1 inhibition. Caffeine treatment led to the rapid loss, by proteasomal degradation, of both Sae2, a nuclease that plays a role in early steps of resection, and Dna2, a nuclease that facilitates one of two extensive resection pathways. Sae2's instability is evident in the absence of DNA damage. A similar loss is seen when protein synthesis is inhibited by cycloheximide. Caffeine treatment had similar effects on irradiated HeLa cells, blocking the formation of RPA and Rad51 foci that depend on 5' to 3' resection of broken chromosome ends. Our findings provide insight toward the use of caffeine as a DNA damage-sensitizing agent in cancer cells.
Collapse
Affiliation(s)
- Michael Tsabar
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Vinay V Eapen
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Jennifer M Mason
- Department of Radiation and Cellular Oncology and Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Gonen Memisoglu
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA
| | - David P Waterman
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Marcus J Long
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Douglas K Bishop
- Department of Radiation and Cellular Oncology and Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA
| |
Collapse
|
38
|
Ngo GHP, Lydall D. The 9-1-1 checkpoint clamp coordinates resection at DNA double strand breaks. Nucleic Acids Res 2015; 43:5017-32. [PMID: 25925573 PMCID: PMC4446447 DOI: 10.1093/nar/gkv409] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 04/16/2015] [Indexed: 11/13/2022] Open
Abstract
DNA-end resection, the generation of single-stranded DNA at DNA double strand break (DSB) ends, is critical for controlling the many cellular responses to breaks. Here we show that the conserved DNA damage checkpoint sliding clamp (the 9-1-1 complex) plays two opposing roles coordinating DSB resection in budding yeast. We show that the major effect of 9-1-1 is to inhibit resection by promoting the recruitment of Rad9(53BP1) near DSBs. However, 9-1-1 also stimulates resection by Exo1- and Dna2-Sgs1-dependent nuclease/helicase activities, and this can be observed in the absence of Rad9(53BP1). Our new data resolve the controversy in the literature about the effect of the 9-1-1 complex on DSB resection. Interestingly, the inhibitory role of 9-1-1 on resection is not observed near uncapped telomeres because less Rad9(53BP1) is recruited near uncapped telomeres. Thus, 9-1-1 both stimulates and inhibits resection and the effects of 9-1-1 are modulated by different regions of the genome. Our experiments illustrate the central role of the 9-1-1 checkpoint sliding clamp in the DNA damage response network that coordinates the response to broken DNA ends. Our results have implications in all eukaryotic cells.
Collapse
Affiliation(s)
- Greg H P Ngo
- Institute for Cell and Molecular Biosciences (ICaMB), Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - David Lydall
- Institute for Cell and Molecular Biosciences (ICaMB), Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
39
|
Bonetti D, Villa M, Gobbini E, Cassani C, Tedeschi G, Longhese MP. Escape of Sgs1 from Rad9 inhibition reduces the requirement for Sae2 and functional MRX in DNA end resection. EMBO Rep 2015; 16:351-61. [PMID: 25637499 DOI: 10.15252/embr.201439764] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Homologous recombination requires nucleolytic degradation (resection) of DNA double-strand break (DSB) ends. In Saccharomyces cerevisiae, the MRX complex and Sae2 are involved in the onset of DSB resection, whereas extensive resection requires Exo1 and the concerted action of Dna2 and Sgs1. Here, we show that the checkpoint protein Rad9 limits the action of Sgs1/Dna2 in DSB resection by inhibiting Sgs1 binding/persistence at the DSB ends. When inhibition by Rad9 is abolished by the Sgs1-ss mutant variant or by deletion of RAD9, the requirement for Sae2 and functional MRX in DSB resection is reduced. These results provide new insights into how early and long-range resection is coordinated.
Collapse
Affiliation(s)
- Diego Bonetti
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Matteo Villa
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Elisa Gobbini
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Corinne Cassani
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Giulia Tedeschi
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| |
Collapse
|
40
|
Subramanian VV, Hochwagen A. The meiotic checkpoint network: step-by-step through meiotic prophase. Cold Spring Harb Perspect Biol 2014; 6:a016675. [PMID: 25274702 DOI: 10.1101/cshperspect.a016675] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The generation of haploid gametes by meiosis is a highly conserved process for sexually reproducing organisms that, in almost all cases, involves the extensive breakage of chromosomes. These chromosome breaks occur during meiotic prophase and are essential for meiotic recombination as well as the subsequent segregation of homologous chromosomes. However, their formation and repair must be carefully monitored and choreographed with nuclear dynamics and the cell division program to avoid the creation of aberrant chromosomes and defective gametes. It is becoming increasingly clear that an intricate checkpoint-signaling network related to the canonical DNA damage response is deeply interwoven with the meiotic program and preserves order during meiotic prophase. This meiotic checkpoint network (MCN) creates a wide range of dependent relationships controlling chromosome movement, chromosome pairing, chromatin structure, and double-strand break (DSB) repair. In this review, we summarize our current understanding of the MCN. We discuss commonalities and differences in different experimental systems, with a particular emphasis on the emerging design principles that control and limit cross talk between signals to ultimately ensure the faithful inheritance of chromosomes by the next generation.
Collapse
Affiliation(s)
| | - Andreas Hochwagen
- Department of Biology, New York University, New York, New York 10003
| |
Collapse
|
41
|
Abstract
Telomerase action is temporally linked to DNA replication. Although yeast telomeres are normally late replicating, telomere shortening leads to early firing of subtelomeric DNA replication origins. We show that double-strand breaks flanked by short telomeric arrays cause origin firing early in S phase at late-replicating loci and that this effect on origin firing time is dependent on the Tel1ATM checkpoint kinase. The effect of Tel1ATM on telomere replication timing extends to endogenous telomeres and is stronger than that elicited by Rif1 loss. These results establish that Tel1ATM specifies not only the extent but also the timing of telomerase recruitment.
Collapse
Affiliation(s)
- Carol Cooley
- Genome Damage and Stability Centre, School of Life Sciences University of Sussex, Brighton, UK
| | - Anoushka Davé
- Genome Damage and Stability Centre, School of Life Sciences University of Sussex, Brighton, UK
| | - Mansi Garg
- Genome Damage and Stability Centre, School of Life Sciences University of Sussex, Brighton, UK
| | - Alessandro Bianchi
- Genome Damage and Stability Centre, School of Life Sciences University of Sussex, Brighton, UK
| |
Collapse
|
42
|
Gobbini E, Trovesi C, Cassani C, Longhese MP. Telomere uncapping at the crossroad between cell cycle arrest and carcinogenesis. Mol Cell Oncol 2014; 1:e29901. [PMID: 27308311 PMCID: PMC4905175 DOI: 10.4161/mco.29901] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/24/2014] [Accepted: 06/30/2014] [Indexed: 01/24/2023]
Abstract
Telomeres are nucleoprotein complexes that protect the natural ends of chromosomes from fusion and degradation and prevent them eliciting a checkpoint response. This protective function, which is called telomere capping, is largely mediated by telomere-binding proteins that suppress checkpoint activation and DNA repair activities. Telomere dysfunction through progressive shortening or removal of capping proteins leads to a checkpoint-mediated block of cell proliferation, which acts as a cancer-suppressor mechanism. However, genetic alterations that inactivate the checkpoint can lead to further telomere erosion and increased genomic instability that, coupled with the activation of mechanisms to restabilize telomeres, can drive the oncogenic process.
Collapse
Affiliation(s)
- Elisa Gobbini
- Dipartimento di Biotecnologie e Bioscienze; Università degli Studi di Milano-Bicocca; Milano, Italia
| | - Camilla Trovesi
- Dipartimento di Biotecnologie e Bioscienze; Università degli Studi di Milano-Bicocca; Milano, Italia
| | - Corinne Cassani
- Dipartimento di Biotecnologie e Bioscienze; Università degli Studi di Milano-Bicocca; Milano, Italia
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze; Università degli Studi di Milano-Bicocca; Milano, Italia
| |
Collapse
|
43
|
Affiliation(s)
- Tracey Beyer
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | | |
Collapse
|