1
|
Lin S, Gade AR, Wang HG, Niemeyer JE, Galante A, DiStefano I, Towers P, Nunez J, Matsui M, Schwartz TH, Rajadhyaksha A, Pitt GS. Interneuron FGF13 regulates seizure susceptibility via a sodium channel-independent mechanism. eLife 2025; 13:RP98661. [PMID: 39773461 PMCID: PMC11709433 DOI: 10.7554/elife.98661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Developmental and epileptic encephalopathies (DEEs), a class of devastating neurological disorders characterized by recurrent seizures and exacerbated by disruptions to excitatory/inhibitory balance in the brain, are commonly caused by mutations in ion channels. Disruption of, or variants in, FGF13 were implicated as causal for a set of DEEs, but the underlying mechanisms were clouded because FGF13 is expressed in both excitatory and inhibitory neurons, FGF13 undergoes extensive alternative splicing producing multiple isoforms with distinct functions, and the overall roles of FGF13 in neurons are incompletely cataloged. To overcome these challenges, we generated a set of novel cell-type-specific conditional knockout mice. Interneuron-targeted deletion of Fgf13 led to perinatal mortality associated with extensive seizures and impaired the hippocampal inhibitory/excitatory balance while excitatory neuron-targeted deletion of Fgf13 caused no detectable seizures and no survival deficits. While best studied as a voltage-gated sodium channel (Nav) regulator, we observed no effect of Fgf13 ablation in interneurons on Navs but rather a marked reduction in K+ channel currents. Re-expressing different Fgf13 splice isoforms could partially rescue deficits in interneuron excitability and restore K+ channel current amplitude. These results enhance our understanding of the molecular mechanisms that drive the pathogenesis of Fgf13-related seizures and expand our understanding of FGF13 functions in different neuron subsets.
Collapse
Affiliation(s)
- Susan Lin
- Cardiovascular Research Institute, Weill Cornell MedicineNew York CityUnited States
| | - Aravind R Gade
- Cardiovascular Research Institute, Weill Cornell MedicineNew York CityUnited States
| | - Hong-Gang Wang
- Cardiovascular Research Institute, Weill Cornell MedicineNew York CityUnited States
| | - James E Niemeyer
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian HospitalNew YorkUnited States
| | - Allison Galante
- Cardiovascular Research Institute, Weill Cornell MedicineNew York CityUnited States
| | - Isabella DiStefano
- Cardiovascular Research Institute, Weill Cornell MedicineNew York CityUnited States
| | - Patrick Towers
- Cardiovascular Research Institute, Weill Cornell MedicineNew York CityUnited States
| | - Jorge Nunez
- Cardiovascular Research Institute, Weill Cornell MedicineNew York CityUnited States
| | - Maiko Matsui
- Cardiovascular Research Institute, Weill Cornell MedicineNew York CityUnited States
| | - Theodore H Schwartz
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian HospitalNew YorkUnited States
| | - Anjali Rajadhyaksha
- Department of Pediatrics, Division of Pediatric Neurology, Weill Cornell MedicineNew York CityUnited States
- Brain and Mind Research Institute, Weill Cornell MedicineNew YorkUnited States
| | - Geoffrey S Pitt
- Cardiovascular Research Institute, Weill Cornell MedicineNew York CityUnited States
| |
Collapse
|
2
|
Shimomura H, Taniguchi N, Fujino T, Tokunaga S, Taniguchi Y, Nishioka T, Tokuda N, Okuda M, Shima M, Takeshima Y. Association between maternal usage of volatile organic compounds and West syndrome, the Japan Environment and Children's study. Sci Rep 2024; 14:30920. [PMID: 39730697 DOI: 10.1038/s41598-024-81913-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/29/2024] [Indexed: 12/29/2024] Open
Abstract
Multiple etiologies of West syndrome have been reported; however, there are cases of unknown etiologies. Exposure to volatile organic compounds (VOCs) increases the risk of epilepsy; however, their effects on children remain unknown. This study aimed to investigate the association between maternal occupational usage of VOCs and West syndrome development in children. Using data from a cohort of 88,280 children, we extracted children born to mothers who had used VOCs during pregnancy. Based on an epilepsy diagnosis by the age of 2 years, the frequency of usage of VOCs was comparatively analyzed among the following groups: never diagnosed with epilepsy, West syndrome, and other epileptic syndromes. A total of 15, 154, and 88,111 children were categorized into the West syndrome, other epileptic syndrome, and never diagnosed with epilepsy groups, respectively. The odds ratio (OR) for West syndrome development increased with the frequency of permanent marker usage (one to three times a month: OR = 2.58, 95% confidence interval [CI] 0.75-8.90; one or more times a week: OR = 4.34, 95% CI 1.23-15.26). These results suggested an association between maternal occupational frequent usage of permanent marker and West syndrome development in children.
Collapse
Affiliation(s)
- Hideki Shimomura
- Department of Pediatrics, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, Japan.
| | - Naoko Taniguchi
- Department of Pediatrics, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, Japan
- Hyogo Regional Center for the Japan Environmental and Children's Study, Nishinomiya, Japan
| | - Tetsuro Fujino
- Department of Pediatrics, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, Japan
- Hyogo Regional Center for the Japan Environmental and Children's Study, Nishinomiya, Japan
| | - Sachi Tokunaga
- Department of Pediatrics, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Yohei Taniguchi
- Department of Pediatrics, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Takafumi Nishioka
- Department of Pediatrics, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Narumi Tokuda
- Hyogo Regional Center for the Japan Environmental and Children's Study, Nishinomiya, Japan
| | - Masumi Okuda
- Department of Pediatrics, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Masayuki Shima
- Hyogo Regional Center for the Japan Environmental and Children's Study, Nishinomiya, Japan
- Department of Public Health, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Yasuhiro Takeshima
- Department of Pediatrics, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| |
Collapse
|
3
|
Symonds JD, Park KL, Mignot C, Macleod S, Armstrong M, Ashrafian H, Bernard G, Brown K, Brunklaus A, Callaghan M, Classen G, Cohen JS, Cutcutache I, de Sainte Agathe JM, Dyment D, Elliot KS, Isapof A, Joss S, Keren B, Marble M, McTague A, Osmond M, Page M, Planes M, Platzer K, Redon S, Reese J, Saenz M, Smith-Hicks C, Stobo D, Stockhaus C, Vuillaume ML, Wolf NI, Wakeling EL, Yoon G, Knight JC, Zuberi SM. POLR3B is associated with a developmental and epileptic encephalopathy with myoclonic-atonic seizures and ataxia. Epilepsia 2024; 65:3303-3323. [PMID: 39348199 DOI: 10.1111/epi.18115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 10/02/2024]
Abstract
OBJECTIVE POLR3B encodes the second largest subunit of RNA polymerase III, which is essential for transcription of small non-coding RNAs. Biallelic pathogenic variants in POLR3B are associated with an inherited hypomyelinating leukodystrophy. Recently, de novo heterozygous variants in POLR3B were reported in six individuals with ataxia, spasticity, and demyelinating peripheral neuropathy. Three of these individuals had epileptic seizures. The aim of this article is to precisely define the epilepsy phenotype associated with de novo heterozygous POLR3B variants. METHODS We used online gene-matching tools to identify 13 patients with de novo POLR3B variants. We systematically collected genotype and phenotype data from clinicians using two standardized proformas. RESULTS All 13 patients had novel POLR3B variants. Twelve of 13 variants were classified as pathogenic or likely pathogenic as per American College of Medical Genetics (ACMG) criteria. Patients presented with generalized myoclonic, myoclonic-atonic, atypical absence, or tonic-clonic seizures between the ages of six months and 4 years. Epilepsy was classified as epilepsy with myoclonic-atonic seizures (EMAtS) in seven patients and "probable EMAtS" in two more. Seizures were treatment resistant in all cases. Three patients became seizure-free. All patients had some degree of developmental delay or intellectual disability. In most cases developmental delay was apparent before the onset of seizures. Three of 13 cases were reported to have developmental stagnation or regression in association with seizure onset. Treatments for epilepsy that were reported by clinicians to be effective were: sodium valproate, which was effective in five of nine patients (5/9) who tried it; rufinamide (2/3); and ketogenic diet (2/3). Additional features were ataxia/incoordination (8/13); microcephaly (7/13); peripheral neuropathy (4/13), and spasticity/hypertonia (6/13). SIGNIFICANCE POLR3B is a novel genetic developmental and epileptic encephalopathy (DEE) in which EMAtS is the predominant epilepsy phenotype. Ataxia, neuropathy, and hypertonia may be variously observed in these patients.
Collapse
Affiliation(s)
- Joseph D Symonds
- Paediatric Neurosciences Research Group, School of Health and Wellbeing, University of Glasgow, Glasgow, UK
- Royal Hospital for Children, Glasgow, UK
| | - Kristen L Park
- Children's Hospital Colorado, Anschutz Medical Campus, University of Colorado, Aurora, Colorado, USA
| | - Cyril Mignot
- Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière-Hôpital Trousseau, Sorbonne Université, Paris, France
| | | | | | - Houman Ashrafian
- Division of Cardiovascular Medicine, John Radcliffe Hospital, Oxford, UK
- Department of Experimental Therapeutics, Radcliffe Department of Medicine, John Radcliffe Hospital, Oxford, UK
| | - Geneviève Bernard
- Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University, Montreal, Quebec, Canada
- Department Specialized Medicine, Division of Medical Genetics, McGill University Health Centre, Montreal, Quebec, Canada
- Child Health and Human Development Program, Research, Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Kathleen Brown
- Department of Pediatrics, Section of Genetics and Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Andreas Brunklaus
- Paediatric Neurosciences Research Group, School of Health and Wellbeing, University of Glasgow, Glasgow, UK
- Royal Hospital for Children, Glasgow, UK
| | - Mary Callaghan
- Department of Paediatrics, University Hospital Wishaw, Wishaw, UK
| | - Georg Classen
- Children's Center Bethel, University Bielefeld, Bielefeld, Germany
| | - Julie S Cohen
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | - David Dyment
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
| | | | - Arnaud Isapof
- Service de Neuropédiatrie, Hôpital Trousseau, Sorbonne Université, Paris, France
| | - Shelagh Joss
- West of Scotland Regional Genetics Service, Queen Elizabeth University Hospitals, Glasgow, UK
| | - Boris Keren
- Department of Genetics, Pitié-Salpêtrière Hospital, APHP. Sorbonne Université, Paris, France
| | - Michael Marble
- Division of Pediatric Genetics, Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Amy McTague
- Developmental Neurosciences. Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Matthew Osmond
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
| | | | - Marc Planes
- Service de Génétique Médicale et Biologie de la Reproduction, CHU de Brest, Brest, France
- Laboratoire de Biologie Médicale Multi-Sites SeqOIA, Paris, France
- Université Brest, Brest, France
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Sylvia Redon
- Service de Génétique Médicale et Biologie de la Reproduction, CHU de Brest, Brest, France
- Laboratoire de Biologie Médicale Multi-Sites SeqOIA, Paris, France
- Université Brest, Brest, France
| | - James Reese
- Presbyterian Healthcare System, Albuquerque, New Mexico, USA
| | - Margarita Saenz
- Department of Pediatrics, Section of Genetics and Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Constance Smith-Hicks
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel Stobo
- West of Scotland Regional Genetics Service, Queen Elizabeth University Hospitals, Glasgow, UK
| | - Christian Stockhaus
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Marie-Laure Vuillaume
- Laboratoire de Biologie Médicale Multi-Sites SeqOIA, Paris, France
- UMR 1253, iBrain, University of Tours, Tours, France
- Genetics Department, University of Tours, Tours, France
| | - Nicole I Wolf
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma's Children's Hospital, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Emma L Wakeling
- North East Thames Regional Genetic Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Grace Yoon
- Departments of Paediatrics and Molecular Genetics, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Julian C Knight
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Sameer M Zuberi
- Paediatric Neurosciences Research Group, School of Health and Wellbeing, University of Glasgow, Glasgow, UK
- Royal Hospital for Children, Glasgow, UK
| |
Collapse
|
4
|
Muffels IJJ, Sadek M, Kozicz T, Morava E. Assessing age of onset and clinical symptoms over time in patients with heterozygous pathogenic DHDDS variants. J Inherit Metab Dis 2024; 47:935-944. [PMID: 39540616 DOI: 10.1002/jimd.12769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/06/2024] [Accepted: 06/03/2024] [Indexed: 11/16/2024]
Abstract
Mono-allelic DHDDS variants are associated with seizures, intellectual disability, and movement disorders. The age of onset and progression rates of symptoms vary greatly among patients, spanning from infancy to late adulthood. Yet, the reasons behind this clinical variability and the underlying pathophysiological mechanisms of the disease have remained elusive. We investigated the age of onset and the progression of symptoms over time in 59 patients with heterozygous DHDDS variants, drawing from medical literature and incorporating five previously unreported cases from the FCDGC Natural History Study. Clinical symptoms typically emerged early in life. Ataxia, tremor, dystonia, and dyskinesia manifested slightly later in childhood. Global developmental delay usually presented as the initial symptom. We observed diverse rates of symptom accumulation over time: some patients exhibited the full spectrum of symptoms in early childhood, while others developed novel symptoms well into adulthood. Interestingly, neither the sex nor the underlying DHDDS variants correlated with the age of symptom onset or specific clinical symptoms. Additionally, we found that 19% of patients presented with autism spectrum disorder. This study offers insight into the age of symptom onset and the rate of symptom accumulation in patients with DHDDS variants. We found no correlation between the age of onset and progression of clinical symptoms with specific DHDDS variants or patient sex. Autism spectrum disorder is common in patients and warrants attention in clinical management.
Collapse
Affiliation(s)
- I J J Muffels
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - M Sadek
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | - T Kozicz
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Anatomy, University of Pecs Medical School, Pecs, Hungary
| | - E Morava
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Biophysics, University of Pecs Medical School, Pecs, Hungary
| |
Collapse
|
5
|
Lin S, Gade AR, Wang HG, Niemeyer JE, Galante A, DiStefano I, Towers P, Nunez J, Matsui M, Schwartz TH, Rajadhyaksha AM, Pitt GS. Interneuron FGF13 regulates seizure susceptibility via a sodium channel-independent mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590019. [PMID: 38659789 PMCID: PMC11042350 DOI: 10.1101/2024.04.18.590019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Developmental and Epileptic Encephalopathies (DEEs), a class of devastating neurological disorders characterized by recurrent seizures and exacerbated by disruptions to excitatory/inhibitory balance in the brain, are commonly caused by mutations in ion channels. Disruption of, or variants in, FGF13 were implicated as causal for a set of DEEs, but the underlying mechanisms were clouded because FGF13 is expressed in both excitatory and inhibitory neurons, FGF13 undergoes extensive alternative splicing producing multiple isoforms with distinct functions, and the overall roles of FGF13 in neurons are incompletely cataloged. To overcome these challenges, we generated a set of novel cell type-specific conditional knockout mice. Interneuron-targeted deletion of Fgf13 led to perinatal mortality associated with extensive seizures and impaired the hippocampal inhibitory/excitatory balance while excitatory neuron-targeted deletion of Fgf13 caused no detectable seizures and no survival deficits. While best studied as a voltage-gated sodium channel (Nav) regulator, we observed no effect of Fgf13 ablation in interneurons on Navs but rather a marked reduction in K+ channel currents. Re-expressing different Fgf13 splice isoforms could partially rescue deficits in interneuron excitability and restore K+ channel current amplitude. These results enhance our understanding of the molecular mechanisms that drive the pathogenesis of Fgf13-related seizures and expand our understanding of FGF13 functions in different neuron subsets.
Collapse
Affiliation(s)
- Susan Lin
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| | - Aravind R. Gade
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| | - Hong-Gang Wang
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| | - James E. Niemeyer
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian Hospital, New York, NY
| | - Allison Galante
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| | | | - Patrick Towers
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| | - Jorge Nunez
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| | - Maiko Matsui
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| | - Theodore H. Schwartz
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian Hospital, New York, NY
| | - Anjali M. Rajadhyaksha
- Department of Pediatrics, Division of Pediatric Neurology, Weill Cornell Medicine, New York, NY; Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Geoffrey S. Pitt
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| |
Collapse
|
6
|
Osman M, Khalil J, El-Bahri M, Swalah Mcdahrou J, Fahda R, Mustafa R, Ooi A, Attayee M, Catanzariti R, Pont L, Williams K, Yeung S, Dua K, De Rubis G, Loebenberg R. Decoding epilepsy treatment: A comparative evaluation contrasting cannabidiol pharmacokinetics in adult and paediatric populations. Chem Biol Interact 2024; 394:110988. [PMID: 38574834 DOI: 10.1016/j.cbi.2024.110988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/19/2024] [Accepted: 04/02/2024] [Indexed: 04/06/2024]
Abstract
Epilepsy is a neurological disorder characterized by overstimulation of neurotransmitters and uncontrolled seizures. Current medications for epilepsy result in adverse effects or insufficient seizure control, highlighting the necessity to develop alternative therapies. Cannabidiol (CBD), derived from cannabis plants, has been popularly explored as an alternative. CBD is shown to have anti-convulsivatng and muscle-relaxing properties, which have been used in patients with epilepsy with promising results. Current research explores varying dosages in either adult or paediatric patients, with little or no comparison between the two populations. In this review, we aim at consolidating this data and comparing the effect and pharmacokinetic properties of CBD across these two patient populations. When comparing the absorption, there was insufficient data to show differences between paediatric and adult patients. Similarly, limited information was available in comparing the distribution of CBD, but a higher volume of distribution was found in the paediatric population. From the metabolism perspective, the paediatric population had a greater success rate when treated with the drug compared to the adult population. In the elimination, there were no clear distinctions in the clearance rate between the two populations. The drug's half-life was highly variable in both populations, with paediatrics having a lower range than adults. In summary, the paediatric population had a more significant reduction in the severity of seizures compared to the adult population upon CBD treatment. The complexity in which CBD operates highlights the need for further studies of the compound to further understand why differences occur between these two populations.
Collapse
Affiliation(s)
- Mohamed Osman
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Jamileh Khalil
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Mostafa El-Bahri
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Jamal Swalah Mcdahrou
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Reem Fahda
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Reymin Mustafa
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Arthur Ooi
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Marwa Attayee
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Rachelle Catanzariti
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Lisa Pont
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Kylie Williams
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Stewart Yeung
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia.
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia.
| | - Raimar Loebenberg
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
| |
Collapse
|
7
|
Zou DF, Li XY, Lu XG, Wang HL, Song W, Zhang MW, Liu XR, Li BM, Liao JX, Zhong JM, Meng H, Li B. Association of FAT1 with focal epilepsy and correlation between seizure relapse and gene expression stage. Seizure 2024; 116:37-44. [PMID: 36941137 DOI: 10.1016/j.seizure.2023.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/13/2023] Open
Abstract
PURPOSE The FAT1 gene encodes FAT atypical cadherin 1, which is essential for foetal development, including brain development. This study aimed to investigate the relationship between FAT1 variants and epilepsy. METHODS Trio-based whole-exome sequencing was performed on a cohort of 313 patients with epilepsy. Additional cases with FAT1 variants were collected from the China Epilepsy Gene V.1.0 Matching Platform. RESULTS Four pairs of compound heterozygous missense FAT1 variants were identified in four unrelated patients with partial (focal) epilepsy and/or febrile seizures, but without intellectual disability/developmental abnormalities. These variants presented no/very low frequencies in the gnomAD database, and the aggregate frequencies in this cohort were significantly higher than those in controls. Two additional compound heterozygous missense variants were identified in two unrelated cases using the gene-matching platform. All patients experienced infrequent (yearly/monthly) complex partial seizures or secondary generalised tonic-clonic seizures. They responded well toantiseizure medication, but seizures relapsed in three cases when antiseizure medication were decreased or withdrawn after being seizure-free for three to six years, which correlated with the expression stage of FAT1. Genotype-phenotype analysis showed that epilepsy-associated FAT1 variants were missense, whereas non-epilepsy-associated variants were mainly truncated. The relationship between FAT1 and epilepsy was evaluated to be "Strong" by the Clinical Validity Framework of ClinGen. CONCLUSIONS FAT1 is a potential causative gene of partial epilepsy and febrile seizures. Gene expression stage was suggested to be one of the considerations in determining the duration ofantiseizure medication. Genotype-phenotype correlation helps to explain the mechanisms underlying phenotypic variation.
Collapse
Affiliation(s)
- Dong-Fang Zou
- Institute of Neuroscience of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China; Epilepsy Center and Department of Neurology, Shenzhen Children's Hospital, Shantou University Medical College, Shenzhen, China
| | - Xiao-Yan Li
- Institute of Neuroscience of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China; Department of Neurology, Jiangxi Provincial Children's Hospital, Nanchang, China
| | - Xin-Guo Lu
- Epilepsy Center and Department of Neurology, Shenzhen Children's Hospital, Shantou University Medical College, Shenzhen, China
| | - Huai-Li Wang
- Department of Pediatric Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wang Song
- Institute of Neuroscience of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China
| | - Meng-Wen Zhang
- Institute of Neuroscience of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China
| | - Xiao-Rong Liu
- Institute of Neuroscience of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China
| | - Bing-Mei Li
- Institute of Neuroscience of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China
| | - Jian-Xiang Liao
- Epilepsy Center and Department of Neurology, Shenzhen Children's Hospital, Shantou University Medical College, Shenzhen, China
| | - Jian-Min Zhong
- Department of Neurology, Jiangxi Provincial Children's Hospital, Nanchang, China
| | - Heng Meng
- Department of Neurology, The First Affiliated Hospital, & Clinical Neuroscience Institute of Jinan University, 613 West Huangpu Ave, Guangzhou, China..
| | - Bin Li
- Institute of Neuroscience of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China.
| |
Collapse
|
8
|
Williams LJ, Waller S, Qiu J, Innes E, Elserafy N, Procopis P, Sampaio H, Mahant N, Tchan MC, Mohammad SS, Morales‐Briceño H, Fung VS. DHDDS and NUS1: A Converging Pathway and Common Phenotype. Mov Disord Clin Pract 2024; 11:76-85. [PMID: 38291835 PMCID: PMC10828623 DOI: 10.1002/mdc3.13920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/11/2023] [Accepted: 10/23/2023] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Variants in dehydrodolichol diphosphate synthetase (DHDDS) and nuclear undecaprenyl pyrophosphate synthase 1 (NUS1) cause a neurodevelopmental disorder, classically with prominent epilepsy. Recent reports suggest a complex movement disorder and an overlapping phenotype has been postulated due to their combined role in dolichol synthesis. CASES We describe three patients with heterozygous variants in DHDDS and five with variants affecting NUS1. They bear a remarkably similar phenotype of a movement disorder dominated by multifocal myoclonus. Diagnostic clues include myoclonus exacerbated by action and facial involvement, and slowly progressive or stable, gait ataxia with disproportionately impaired tandem gait. Myoclonus is confirmed with neurophysiology, including EMG of facial muscles. LITERATURE REVIEW Ninety-eight reports of heterozygous variants in DHDDS, NUS1 and chromosome 6q22.1 structural alterations spanning NUS1, confirm the convergent phenotype of hypotonia at birth, developmental delay, multifocal myoclonus, ataxia, dystonia and later parkinsonism with or without generalized epilepsy. Other features include periodic exacerbations, stereotypies, anxiety, and dysmorphisms. Although their gene products contribute to dolichol biosynthesis, a key step in N-glycosylation, transferrin isoform profiles are typically normal. Imaging is normal or non-specific. CONCLUSIONS Recognition of their shared phenotype may expedite diagnosis through chromosomal microarray and by including DHDDS/NUS1 in movement disorder gene panels.
Collapse
Affiliation(s)
- Laura J. Williams
- Movement Disorder Unit, Department of NeurologyWestmead HospitalWestmeadNew South WalesAustralia
| | - Sophie Waller
- Movement Disorder Unit, Department of NeurologyWestmead HospitalWestmeadNew South WalesAustralia
| | - Jessica Qiu
- Movement Disorder Unit, Department of NeurologyWestmead HospitalWestmeadNew South WalesAustralia
| | - Emily Innes
- TY Nelson Department of Neurology and NeurosurgeryThe Children's Hospital at WestmeadWestmeadNew South WalesAustralia
- School of Medicine SydneyThe University of Notre DameSydneyNew South WalesAustralia
| | - Noha Elserafy
- Department of Genomic MedicineWestmead HospitalWestmeadNew South WalesAustralia
| | - Peter Procopis
- TY Nelson Department of Neurology and NeurosurgeryThe Children's Hospital at WestmeadWestmeadNew South WalesAustralia
- The Children's Hospital at Westmead Clinical School, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| | - Hugo Sampaio
- Department of NeurologySydney Children's HospitalRandwickNew South WalesAustralia
- School of Women's and Children's HealthUniversity of New South WalesSydneyNew South WalesAustralia
| | - Neil Mahant
- Movement Disorder Unit, Department of NeurologyWestmead HospitalWestmeadNew South WalesAustralia
| | - Michel C. Tchan
- Department of Genomic MedicineWestmead HospitalWestmeadNew South WalesAustralia
- Specialty of Genomic Medicine, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Shekeeb S. Mohammad
- TY Nelson Department of Neurology and NeurosurgeryThe Children's Hospital at WestmeadWestmeadNew South WalesAustralia
- Kids Neuroscience CentreThe Children's Hospital at WestmeadWestmeadNew South WalesAustralia
- Sydney Medical School, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| | - Hugo Morales‐Briceño
- Movement Disorder Unit, Department of NeurologyWestmead HospitalWestmeadNew South WalesAustralia
| | - Victor S.C. Fung
- Movement Disorder Unit, Department of NeurologyWestmead HospitalWestmeadNew South WalesAustralia
- Sydney Medical School, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| |
Collapse
|
9
|
Agarwala P, Narang B, Geetha TS, Kurwale N, Samson PL, Golani T, Mahadevia U, Vedam R, Murugan S, Chatterjee S, Goyal P, Jain V. Early-infantile developmental and epileptic encephalopathy: the aetiologies, phenotypic differences and outcomes-a prospective observational study. Brain Commun 2023; 5:fcad243. [PMID: 38074073 PMCID: PMC10702464 DOI: 10.1093/braincomms/fcad243] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/26/2023] [Accepted: 09/08/2023] [Indexed: 01/05/2025] Open
Abstract
In this study, we have evaluated the underlying aetiologies, yield of genetic testing and long-term outcomes in patients with early-infantile developmental and epileptic encephalopathies. We have prospectively studied patients with seizure onset before 3 months of age. Based on the clinical details, neuroimaging, metabolic testing and comprehensive genetic evaluation, patients were classified into different aetiological groups. The phenotypic differences between genetic/unknown groups and remaining aetiologies were compared. Factors that could affect seizure control were also assessed. A total of 80 children (M:F ratio-1.5:1) were recruited. The median seizure onset age was 28 days (range, 1-90 days). The aetiologies were confirmed in 66 patients (83%). The patients were further classified into four aetiological groups: genetic (50%), structural (19%), metabolic (14%; all were vitamin responsive) and unknown (17%). On comparing for the phenotypic differences between the groups, children in the 'genetic/unknown' groups were more frequently observed to have severe developmental delay (Odds Ratio = 57; P < 0.0001), autistic behaviours (Odds Ratio = 37; P < 0.0001), tone abnormalities (Odds Ratio = 9; P = 0.0006) and movement disorder (Odds Ratio = 19; P < 0.0001). Clonic seizures were more common in the vitamin responsive/structural groups (Risk Ratio = 1.36; P = 0.05) as compared to patients with 'genetic/unknown' aetiologies. On the contrary, vitamin responsive/structural aetiology patients were less likely to have tonic seizures (Risk Ratio = 0.66; P = 0.04). Metabolic testing was diagnostic in three out of 41 patients tested (all three had biotinidase deficiency). MRI was abnormal in 35/80 patients (malformation observed in 16/35; 19/35 had non-specific changes that did not contribute to underlying aetiology). A molecular diagnosis was achieved in 53 out of 77 patients tested (69%). Next-generation sequencing had a yield of 51%, while microarray had a yield of 14%. STXBP1 was the most common (five patients) single-gene defect identified. There were 24 novel variants. The mean follow-up period was 30 months (range, 4-72 months). On multivariate logistic regression for the important factors that could affect seizure control (seizure onset age, time lag of first visit to paediatric neurologist and aetiologies), only vitamin responsive aetiology had a statistically significant positive effect on seizure control (P = 0.02). Genetic aetiologies are the most common cause of early-infantile developmental and epileptic encephalopathies. Patients in the genetic/unknown groups had a more severe phenotype. Patients with vitamin responsive epilepsies had the best probability of seizure control.
Collapse
Affiliation(s)
- Pooja Agarwala
- Department of Pediatrics, Santokba Durlabhji Hospital, Jaipur 302015, India
| | | | | | - Nilesh Kurwale
- Bajaj Allianz Comprehensive Epilepsy Centre, Deenanath Mangeshkar Hospital, Pune 411004, India
| | | | | | | | | | | | - Sagnik Chatterjee
- Statistician, Department of Economics, Banaras Hindu University, Varanasi 221005, India
| | - Pradeep Goyal
- Vardhman MRI Centre, Santokba Durlabhji Hospital, Jaipur 302015, India
| | - Vivek Jain
- Department of Pediatric Neurology, Neo Clinic Children’s Hospital, Jaipur 302019, India
| |
Collapse
|
10
|
Sills GJ. Pharmacological diversity amongst approved and emerging antiseizure medications for the treatment of developmental and epileptic encephalopathies. Ther Adv Neurol Disord 2023; 16:17562864231191000. [PMID: 37655228 PMCID: PMC10467199 DOI: 10.1177/17562864231191000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/13/2023] [Indexed: 09/02/2023] Open
Abstract
Developmental and epileptic encephalopathies (DEEs) are rare neurodevelopmental disorders characterised by early-onset and often intractable seizures and developmental delay/regression, and include Dravet syndrome and Lennox-Gastaut syndrome (LGS). Rufinamide, fenfluramine, stiripentol, cannabidiol and ganaxolone are antiseizure medications (ASMs) with diverse mechanisms of action that have been approved for treating specific DEEs. Rufinamide is thought to suppress neuronal hyperexcitability by preventing the functional recycling of voltage-gated sodium channels from the inactivated to resting state. It is licensed for adjunctive treatment of seizures associated with LGS. Fenfluramine increases extracellular serotonin levels and may reduce seizures via activation of specific serotonin receptors and positive modulation of the sigma-1 receptor. Fenfluramine is licensed for adjunctive treatment of seizures associated with Dravet syndrome and LGS. Stiripentol is a positive allosteric modulator of type-A gamma-aminobutyric acid (GABAA) receptors. As a broad-spectrum inhibitor of cytochrome P450 enzymes, its antiseizure effects may additionally arise through pharmacokinetic interactions with co-administered ASMs. Stiripentol is licensed for treating seizures associated with Dravet syndrome in patients taking clobazam and/or valproate. The mechanism(s) of action of cannabidiol remains largely unclear although multiple targets have been proposed, including transient receptor potential vanilloid 1, G protein-coupled receptor 55 and equilibrative nucleoside transporter 1. Cannabidiol is licensed as adjunctive treatment in conjunction with clobazam for seizures associated with Dravet syndrome and LGS, and as adjunctive treatment of seizures associated with tuberous sclerosis complex. Like stiripentol, ganaxolone is a positive allosteric modulator at GABAA receptors. It has recently been licensed in the USA for the treatment of seizures associated with cyclin-dependent kinase-like 5 deficiency disorder. Greater understanding of the causes of DEEs has driven research into the potential use of other novel and repurposed agents. Putative ASMs currently in clinical development for use in DEEs include soticlestat, carisbamate, verapamil, radiprodil, clemizole and lorcaserin.
Collapse
Affiliation(s)
- Graeme J. Sills
- School of Life Sciences, University of Glasgow, Room 341, Sir James Black Building, Glasgow G12 8QQ, UK
| |
Collapse
|
11
|
Poke G, Stanley J, Scheffer IE, Sadleir LG. Epidemiology of Developmental and Epileptic Encephalopathy and of Intellectual Disability and Epilepsy in Children. Neurology 2023; 100:e1363-e1375. [PMID: 36581463 PMCID: PMC10065214 DOI: 10.1212/wnl.0000000000206758] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/16/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND OBJECTIVES We aimed to determine the population-based cumulative incidence and prevalence of developmental and epileptic encephalopathies (DEEs) and intellectual disability and epilepsy (ID+E) in children. We analyzed the cumulative incidence of specific epilepsy syndromes. METHODS Children younger than 16 years with a DEE or ID+E were ascertained using EEG records from 2000 to 2016 in the Wellington region of New Zealand. Epilepsy syndromes were diagnosed on medical record and EEG review. Point prevalence and cumulative incidence for children with epilepsy and developmental impairment, DEE and ID+E were calculated. Cumulative incidence for each epilepsy syndrome was calculated. RESULTS The cohort comprised 235 children (58% male) with developmental impairment and epilepsy, including 152 (65%) with DEE and 83 (35%) with ID+E. The median age of seizure onset was 15.4 months (range day 1-15 years). The median follow-up from seizure onset was 7.9 years (range 0-18.2 years). Point prevalence for the broad group of children with epilepsy and developmental impairment was 175/100,000 children (95% CI 149-203; DEE 112 and ID+E 63/100,000 children). Cumulative incidence for DEE was 169/100,000 children (95% CI 144-199) and that for ID+E was 125/100,000 children (95% CI 95.4-165). Cumulative incidence per 100,000 children was as follows: infantile epileptic spasms syndrome 58.2 (95% CI 45.0-75.3), epilepsy with myoclonic-atonic seizures 16.4 (95% CI 9.69-27.7), Lennox-Gastaut syndrome 13.2 (95% CI 4.1-41.9), and Dravet syndrome 5.1 (95% CI 2.1-12.2). Fifty/152 (33%) of children with DEE and 70/83 (84%) with ID+E could not be diagnosed with a known epilepsy syndrome. DISCUSSION Epilepsy and developmental impairment before the age of 16 years occurs in 1 in 340 children, with 1 in 590 having a DEE and 1 in 800 having ID+E. These individuals require significant health and community resources; therefore, these data will inform complex health service and education planning. Epidemiologic studies have focused on early childhood-onset DEEs. These do not fully reflect the burden of these disorders because 27% of DEEs and 70% of ID+E begin later, with seizure onset after the age of 3 years. Understanding the cumulative incidence of specific syndromes together with the broad group of DEEs is essential for the planning of therapeutic trials. Given trials focus on specific syndromes, there is a risk that effective therapies will not be developed for one-third of children with DEE.
Collapse
Affiliation(s)
- Gemma Poke
- From the Departments of Paediatrics and Child Health (G.P., L.G.S.), and Public Health (J.S.), University of Otago Wellington, New Zealand; Department of Medicine (I.E.S.), Austin Health, Epilepsy Research Centre, University of Melbourne
| | - James Stanley
- From the Departments of Paediatrics and Child Health (G.P., L.G.S.), and Public Health (J.S.), University of Otago Wellington, New Zealand; Department of Medicine (I.E.S.), Austin Health, Epilepsy Research Centre, University of Melbourne
| | - Ingrid E Scheffer
- From the Departments of Paediatrics and Child Health (G.P., L.G.S.), and Public Health (J.S.), University of Otago Wellington, New Zealand; Department of Medicine (I.E.S.), Austin Health, Epilepsy Research Centre, University of Melbourne.
| | - Lynette G Sadleir
- From the Departments of Paediatrics and Child Health (G.P., L.G.S.), and Public Health (J.S.), University of Otago Wellington, New Zealand; Department of Medicine (I.E.S.), Austin Health, Epilepsy Research Centre, University of Melbourne
| |
Collapse
|
12
|
Kim S, Kim MJ, Son H, Hwang S, Kang MK, Chu K, Lee SK, Moon J. Adult-onset rapidly worsening progressive myoclonic epilepsy caused by a novel variant in DHDDS. Ann Clin Transl Neurol 2021; 8:2319-2326. [PMID: 34837344 PMCID: PMC8670320 DOI: 10.1002/acn3.51483] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 12/04/2022] Open
Abstract
Progressive myoclonic epilepsy (PME) is a heterogeneous neurogenetic disorder manifesting as progressive myoclonus, seizure, and ataxia. We report a case of PME caused by a novel DHDDS variant. Additionally, by reviewing the literature on DHDDS mutations, we compared the phenotype of our patient with previously reported phenotypes. We identified DHDDS (c.638G>A, p. Ser213Asn) as a likely pathogenic variant. The literature review revealed 15 PME patients with DHDDS mutations from 13 unrelated families. According to previous studies, late‐onset patients tend to have a slow‐progressive disease course. Although his myoclonus and ataxia were adult onset, our patient experienced rapid disease aggravation.
Collapse
Affiliation(s)
- Seondeuk Kim
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea.,Laboratory for Neurotherapeutics, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Man Jin Kim
- Rare Disease Center, Department of Genomic Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Hyoshin Son
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea.,Laboratory for Neurotherapeutics, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Sungeun Hwang
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea.,Laboratory for Neurotherapeutics, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Mi-Kyoung Kang
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea.,Laboratory for Neurotherapeutics, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Kon Chu
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea.,Laboratory for Neurotherapeutics, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Sang Kun Lee
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea.,Laboratory for Neurotherapeutics, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Jangsup Moon
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea.,Laboratory for Neurotherapeutics, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea.,Rare Disease Center, Department of Genomic Medicine, Seoul National University Hospital, Seoul, South Korea
| |
Collapse
|
13
|
Wood K, Montgomery T, Devlin AM. DHDDS related epilepsy--Report of familial cases and review of the literature. Seizure 2021; 91:189-191. [PMID: 34182312 DOI: 10.1016/j.seizure.2021.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 11/26/2022] Open
Affiliation(s)
- Katy Wood
- Paediatric Neurology, Great North Children's Hospital, Newcastle upon Tyne, NE1 4LP, United Kingdom.
| | - Tara Montgomery
- Clinical Genetics, Institute of Human Genetics, International Centre for Life, Newcastle upon Tyne, NE1 4LP, United Kingdom.
| | - Anita M Devlin
- Paediatric Neurology, Great North Children's Hospital, Newcastle upon Tyne, NE1 4LP, United Kingdom; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom.
| |
Collapse
|
14
|
KUTLUK G, RANDA NC. A Significant and Treatable Cause of Epileptic Encephalopathy: GRIN2D Mutation. ACTA MEDICA ALANYA 2021. [DOI: 10.30565/medalanya.891938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
15
|
Fusco L, Serino D, Santarone ME. Three different scenarios for epileptic spasms. Epilepsy Behav 2020; 113:107531. [PMID: 33248400 DOI: 10.1016/j.yebeh.2020.107531] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 10/22/2022]
Abstract
Epileptic Spasms (ES) is a type of seizure usually occurring in the context of a severe childhood epileptic syndrome associated to significant Electroencephalogram (EEG) abnormalities. There are three scenarios in which ES may occur. The first one is represented by West Syndrome (WS): ES occur in a previously non encephalopathic infant in association with the development of a hypsarrhythmic EEG pattern. In most cases, standard treatment with Adrenocorticotropic Hormone (ACTH), steroids or vigabatrin leads to a reversal of the electroclinical picture. The second scenario is represented by Developmental and Epileptic Encephalopathies (DEEs): ES are documented, often along other seizures types, in an infant who often shows developmental delay since birth; the EEG pattern is pathological both in wakefulness and in sleep, without typical features of hypsarrhythmia; therapies (with the exception of few potentially treatable syndromes) are poorly effective. The last scenario is represented by ES in the context of Focal Epilepsies (FEs): ES, sometimes showing focal signs or closely related to focal seizures, are associated with focal brain lesions. Treatment with ACTH, steroids or vigabatrin may not be effective as well as antiepileptic drugs for focal epilepsies. In drug-resistant patients, surgery should be considered. Although there are some gaps in our current scientific knowledge concerning the peculiar electroclinical and physiopathological features of ES, we nowadays possess the necessary tools to correctly frame this unique seizure type into one of these scenarios and therefore properly manage the diagnostic and therapeutic workup.
Collapse
Affiliation(s)
- Lucia Fusco
- Intensive Neurological Diagnostic Unit, Neuroscience Department, Bambino Gesù Children's Hospital, Rome, Italy.
| | - Domenico Serino
- Paediatric Neurology Department, Royal Aberdeen Children's Hospital, Aberdeen, UK
| | - Marta Elena Santarone
- Intensive Neurological Diagnostic Unit, Neuroscience Department, Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
16
|
Novel Missense CACNA1G Mutations Associated with Infantile-Onset Developmental and Epileptic Encephalopathy. Int J Mol Sci 2020; 21:ijms21176333. [PMID: 32878331 PMCID: PMC7503748 DOI: 10.3390/ijms21176333] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/29/2020] [Accepted: 08/29/2020] [Indexed: 11/17/2022] Open
Abstract
The CACNA1G gene encodes the low-voltage-activated Cav3.1 channel, which is expressed in various areas of the CNS, including the cerebellum. We studied two missense CACNA1G variants, p.L208P and p.L909F, and evaluated the relationships between the severity of Cav3.1 dysfunction and the clinical phenotype. The presentation was of a developmental and epileptic encephalopathy without evident cerebellar atrophy. Both patients exhibited axial hypotonia, developmental delay, and severe to profound cognitive impairment. The patient with the L909F mutation had initially refractory seizures and cerebellar ataxia, whereas the L208P patient had seizures only transiently but was overall more severely affected. In transfected mammalian cells, we determined the biophysical characteristics of L208P and L909F variants, relative to the wild-type channel and a previously reported gain-of-function Cav3.1 variant. The L208P mutation shifted the activation and inactivation curves to the hyperpolarized direction, slowed the kinetics of inactivation and deactivation, and reduced the availability of Ca2+ current during repetitive stimuli. The L909F mutation impacted channel function less severely, resulting in a hyperpolarizing shift of the activation curve and slower deactivation. These data suggest that L909F results in gain-of-function, whereas L208P exhibits mixed gain-of-function and loss-of-function effects due to opposing changes in the biophysical properties. Our study expands the clinical spectrum associated with CACNA1G mutations, corroborating further the causal association with distinct complex phenotypes.
Collapse
|