1
|
Zhang B, Pethybridge H, Li Y. Mercury bioaccumulation and biomagnification in mesopelagic biota. MARINE POLLUTION BULLETIN 2025; 218:118209. [PMID: 40424771 DOI: 10.1016/j.marpolbul.2025.118209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 05/19/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025]
Abstract
This study investigated the distribution and biomagnification pathways of total mercury (THg) concentrations in three mesopelagic species in the Tasman Sea: two fish (Diaphus hudsoni, Metelectrona ventralis) and one predatory squid (Lycoteuthis lorigera). THg concentrations in muscle tissue ranged from 0.06 to 0.26 μg g-1 dry weight (DW) and were consistently higher in liver tissue (0.15-0.96 μg g-1 DW) across all species. Species-specific variations in THg bioaccumulation and the liver-to-muscle THg ratio suggested differences in mercury metabolism. Stable isotope ratios of carbon (δ13C) varied across tissues and species, reflecting a diverse range of bathypelagic habitat utilisation (-19.46 to -16.72 ‰). Bulk and amino acid nitrogen (δ15N) isotopes provided robust estimates of mean trophic positions of fish (ranging 3.1 to 3.5) and squid (4.3). THg concentrations correlated with isotopic trophic indicators only in L. lorigera, and increased with body size in M. ventralis and L. lorigera, but not in D. hudsoni. THg biomagnification factors between fish and squid ranged between 0.54 and 1.45, indicating limited biomagnification, as confirmed with trophic magnification factors in the liver (1.89) and muscle (0.78). Spatial differences in THg concentrations were evident with higher levels in the eastern region for all species, likely driven by local ecological and environmental conditions. These results highlight the complexity of THg dynamics in mesopelagic food webs and provide important baseline data for future bioaccumulation studies in this and other oceanic regions.
Collapse
Affiliation(s)
- Bowen Zhang
- Institute for Marine and Antarctic Studies, University of Tasmania, Battery Point, Tasmania 7004, Australia; CSIRO Environment, Battery Point, Tasmania 7004, Australia.
| | | | - Yunkai Li
- College of Marine Living Resource Sciences and management, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
2
|
Kesic R, Elliott JE, Lee SL, Elliott KH. Legacy and emergent contaminants in glaucous-winged gull eggs from Canada's Pacific coast: Spatial distribution, temporal trends, and risks for human consumers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125099. [PMID: 39393758 DOI: 10.1016/j.envpol.2024.125099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Using glaucous-winged gull (Larus glaucescens) eggs from Canada's Pacific coast, we investigated spatial and temporal trends (2008-2022) of a suite of legacy and emergent contaminants, including 16 perfluoroalkyl substances (PFAS), 15 polybrominated diphenyl ethers (PBDEs), 7 alternative halogenated flame retardants (AHFRs), total mercury (THg), as well as stable isotopes of carbon (δ13C) and nitrogen (δ15N) to control for diet. Legacy organochlorines (OCs) were also measured in eggs in 2020 for a preliminary human health risk assessment (HHRA). Between 2008 and 2022, glaucous-winged gull eggs from more urban-influenced colonies (Mandarte Island) were up to ∼2x more contaminated with PFAS, PBDEs, AHFRs, and THg than eggs from the offshore colony (Cleland Island), suggesting different source regions and dietary exposures. Concentrations of Σ15PBDEs declined linearly among colonies (p < 0.001), consistent with several North American phase-outs and regulatory restrictions dating back to the early/mid 2000s. Conversely, temporal trends for PFOS, Σ12PFCAs, Σ7AHFRs, and THg were characterized by a combination of second-order declines and non-linear increases in recent years. After correcting THg for dietary shifts using δ15N, THg concentrations followed a U-shaped trend at Mandarte and Cleland Islands, while those at Mitlenatch Island remained relatively constant over time. Increasing trends for some contaminants coincided with both an increase in δ13C and δ15N. For the HHRA, all gull eggs collected in 2020 had hazard quotients (HQs) < 0.2, indicating no foreseeable risk or harm for First Nations consumers for certain contaminants. Our findings indicate that spatio-temporal trends of persistent contaminants in Pacific glaucous-winged gull eggs are influenced by a combination of factors, including the impact of regulations on anthropogenic emissions, coupled with changes in foraging behaviour and food-web structure.
Collapse
Affiliation(s)
- Robert Kesic
- Environment and Climate Change Canada, Wildlife Research Division, Delta, British Columbia, Canada.
| | - John E Elliott
- Environment and Climate Change Canada, Wildlife Research Division, Delta, British Columbia, Canada.
| | - Sandi L Lee
- Environment and Climate Change Canada, Wildlife Research Division, Delta, British Columbia, Canada.
| | - Kyle H Elliott
- Department of Natural Resource Sciences, McGill University, Sainte Anne-de-Bellevue, Quebec, H3A 0G4, Canada.
| |
Collapse
|
3
|
Kim D, Won EJ, Cho HE, Lee J, Shin KH. New insight into biomagnification factor of mercury based on food web structure using stable isotopes of amino acids. WATER RESEARCH 2023; 245:120591. [PMID: 37690411 DOI: 10.1016/j.watres.2023.120591] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
Although many attempts have been carried out to elaborate trophic magnification factor (TMF) and biomagnification factor (BMF), such as normalizing the concentration of pollutants and averaging diet sources, the uncertainty of the indexes still need to be improved to assess the bioaccumulation of pollutants. This study first suggests an improved BMF (i.e., BMF') applied to mercury bioaccumulation in freshwater fish from four sites before and after rainfall. The diet source and TP of each fish were identified using nitrogen stable isotope of amino acids (δ15NAAs) combined with bulk carbon stable isotope (δ13C). The BMF' was calculated normalizing with TP and diet contributions derived from MixSIAR. The BMF' values (1.3-27.2 and 1.2-27.8), which are representative of the entire food web, were generally higher than TMF (1.5-13.9 and 1.5-14.5) for both total mercury and methyl mercury, respectively. The BMF' implying actual mercury transfer pathway is more reliable index than relatively underestimated TMF for risk assessment. The ecological approach for BMF calculations provides novel insight into the behavior and trophic transfer of pollutants like mercury.
Collapse
Affiliation(s)
- Dokyun Kim
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Eun-Ji Won
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Republic of Korea; Institute of Ocean and Atmospheric Sciences, Hanyang University, Ansan 15588, Republic of Korea
| | - Ha-Eun Cho
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Republic of Korea
| | | | - Kyung-Hoon Shin
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Republic of Korea.
| |
Collapse
|
4
|
Jiang Y, Zeng Y, Lu R, Zhang Y, Long L, Zheng X, Luo X, Mai B. Application of amino acids nitrogen stable isotopic analysis in bioaccumulation studies of pollutants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163012. [PMID: 36965734 DOI: 10.1016/j.scitotenv.2023.163012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 05/17/2023]
Abstract
Accurately quantifying trophic positions (TP) to describe food web structure is an important element in studying pollutant bioaccumulation. In recent years, compound-specific nitrogen isotopic analysis of amino acids (AAs-N-CSIA) has been progressively applied as a potentially reliable tool for quantifying TP, facilitating a better understanding of pollutant food web transfer. Therefore, this review provides an overview of the analytical procedures, applications, and limitations of AAs-N-CSIA in pollutant (halogenated organic pollutants (HOPs) and heavy metals) bioaccumulation studies. We first summarize studies on the analytical techniques of AAs-N-CSIA, including derivatization, instrumental analysis, and data processing methods. The N-pivaloyl-i-propyl-amino acid ester method is a more suitable AAs derivatization method for quantifying TP. The AAs-N-CSIA application in pollutant bioaccumulation studies (e.g., Hg, MeHg, and HOPs) is discussed, and its application in conjunction with various techniques (e.g., spatial analysis, food source analysis, and compound tracking techniques, etc.) to research the influence of pollutant levels on organisms is summarized. Finally, the limitations of AAs-N-CSIA in pollutant bioaccumulation studies are discussed, including the use of single empirical values of βglu/phe and TDFglu/phe that result in large errors in TP quantification. The weighted βglu/phe and the multi-TDFglu/phe models are still challenging to solve for accurate TP quantification of omnivores; however, factors affecting the variation of βglu/phe and TDFglu/phe are unclear, especially the effect of pollutant bioaccumulation in organisms on internal AA metabolic processes.
Collapse
Affiliation(s)
- Yiye Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanhong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China.
| | - Ruifeng Lu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanting Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Long
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaobo Zheng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| |
Collapse
|
5
|
Elliott JE, Kesic R, Lee SL, Elliott KH. Temporal trends (1968-2019) of legacy persistent organic pollutants (POPs) in seabird eggs from the northeast Pacific: Is it finally twilight for old POPs? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160084. [PMID: 36368377 DOI: 10.1016/j.scitotenv.2022.160084] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Legacy persistent organic pollutants (POPs), such as organochlorine pesticides (OCs) and polychlorinated biphenyls (PCBs), are known to persist in the marine environment; however, whether concentrations of these POPs have decreased or stabilized from Canada's Pacific coast in recent years is unclear. Here, we examined temporal trends of various legacy POPs in the eggs of five seabird species; two cormorants (Nannopterum auritum and Urile pelagicus), an auklet (Cerorhinca monocerata), a murrelet (Synthliboramphus antiquus), and a storm-petrel (Hydrobates leucorhous), sampled 1968 to 2019 from 23 colonies along the Pacific coast of British Columbia, Canada. The contaminant profile in the eggs of all species and sampling years was dominated by ΣPCBs, followed by ΣDDT (mostly p,p'-DDE), ΣHCH (β-HCH), ΣCHLOR (oxychlordane), and ΣCBz (HCB). ΣOC and ΣPCB concentrations were generally higher in double-crested cormorant eggs than in the other four species. The majority of legacy POPs are either significantly declining (e.g. p,p'-DDE, HCB, HE, oxychlordane, ΣPCBs) or showing no directional change over time (ΣMirex) in the eggs of our monitoring species. Contaminants such as α-HCH, cis- and trans-chlordane, p,p'-DDT, dieldrin, and octachlorostyrene also showed evidence of downward trends, largely influenced by non-detect values during more recent sampling periods. Increasing trends were observed for β-HCH in the eggs of some species; however, mean concentrations eventually returned to early 2000 levels by the end of the study period. Although bulk δ15N and δ13C egg values varied interannually, compound-specific amino acid analyses suggested no major changes in trophic position or baseline food web signature. Temporal trends observed here were comparable to those found in other seabird species and pelagic food webs. As most legacy POPs in our data set were at very low levels in recent years, we support the general consensus that it is indeed the twilight years for old POPs, and we attribute these declines largely to voluntary regulations and international restrictions on the production and use of these compounds, and thus their release into the marine environment.
Collapse
Affiliation(s)
- John E Elliott
- Environment and Climate Change Canada, Ecotoxicology & Wildlife Health Division, 5421 Robertson Rd, Delta, British Columbia, Canada.
| | - Robert Kesic
- Environment and Climate Change Canada, Ecotoxicology & Wildlife Health Division, 5421 Robertson Rd, Delta, British Columbia, Canada.
| | - Sandi L Lee
- Environment and Climate Change Canada, Ecotoxicology & Wildlife Health Division, 5421 Robertson Rd, Delta, British Columbia, Canada.
| | - Kyle H Elliott
- Department of Natural Resource Sciences, McGill University, Sainte Anne-de-Bellevue, Montreal, Quebec, Canada.
| |
Collapse
|
6
|
King MD, Elliott JE, Idowu I, Tomy GT, Williams TD. Polycyclic aromatic compound and trace metal element residues in Mytilus mussels at marine wildlife hotspots on the Pacific coast of Canada. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120624. [PMID: 36370969 DOI: 10.1016/j.envpol.2022.120624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/19/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
The Pacific coast of Canada has a rich marine fauna and a growing human population with increasing potential for pollution releases, but there is currently little overlap between marine wildlife hotspots and ongoing biomonitoring efforts for less bioaccumulative contaminants such as polycyclic aromatic compounds (PAC) and trace metals (metals). We surveyed PACs and metals at marine bird breeding colonies in coastal British Columbia in 2018 by analyzing chemical residues in the soft tissue of bivalve Mytilus sp. mussels collected from stations (n = 3) at seven sites. The concentration of sum PACs (∑43PAC) and high molecular weight (HMW) PACs were highest at the Second Narrows colony in Vancouver Harbour, a highly urbanized and industrialized port within the Salish Sea. For conservation areas, two Salish Sea and three Pacific Ocean coast colonies, PACs were generally lower. However, ∑43PAC, ∑HMWPAC, and several HMW congeners at the remote site of Triangle Island, a Marine National Wildlife Area, were not significantly different from Second Narrows. The dominant PAC sources at all sites are likely pyrogenic rather than petrogenic, as suggested by PAC profiles, proportion of parent PACs, and source-indicator congeners. For metals, site differences were found for seven out of eight priority metals, but principal component analysis indicated that site differences, such as high mercury and cadmium at offshore sites, are likely related to environmental and biological variables including salinity, condition index, water temperature, and shell length. Our survey across a broad coastal region shows that PAC and metal biomonitoring programs with mussels should include wildlife hotspots where the exposure of protected vertebrate species to pollutants with low bioaccumulation potential would be less obvious, and shows that collection of data on key covariates (e.g. lipid content, salinity) will be critical to tracking long-term trends and detecting pollution release events.
Collapse
Affiliation(s)
- Mason D King
- Simon Fraser University, Department of Biological Sciences, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| | - John E Elliott
- Simon Fraser University, Department of Biological Sciences, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada; Environment and Climate Change Canada, Science and Technology Division, 5421 Robertson Road, Delta, BC, V4K 3N2, Canada
| | - Ifeoluwa Idowu
- University of Manitoba, Department of Chemistry, 144 Dysart Road, Winnipeg, MB, R3T 2N2, Canada
| | - Gregg T Tomy
- University of Manitoba, Department of Chemistry, 144 Dysart Road, Winnipeg, MB, R3T 2N2, Canada
| | - Tony D Williams
- Simon Fraser University, Department of Biological Sciences, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| |
Collapse
|
7
|
Haskins DL, Brown MK, Qin C, Xu X, Pilgrim MA, Tuberville TD. Multi-decadal trends in mercury and methylmercury concentrations in the brown watersnake (Nerodia taxispilota). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116722. [PMID: 33640654 DOI: 10.1016/j.envpol.2021.116722] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/19/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Mercury (Hg) is an environmental contaminant that poses a threat to aquatic systems globally. Temporal evaluations of Hg contamination have increased in recent years, with studies focusing on how anthropogenic activities impact Hg bioavailability in a variety of aquatic systems. While it is common for these studies and ecological risk assessments to evaluate Hg bioaccumulation and effects in wildlife, there is a paucity of information regarding Hg dynamics in reptiles. The goal of this study was to investigate temporal patterns in total mercury (THg) and methylmercury (MeHg) concentrations across a 36-year period, as well as evaluate relationships among and between destructive (kidney, liver, muscle) and non-destructive (blood, tail) tissue types in a common watersnake species. To accomplish this, we measured THg and MeHg concentrations in multiple tissues from brown watersnakes (Nerodia taxispilota) collected from Steel Creek on the Savannah River Site (SRS; Aiken, SC, USA) from two time periods (1983-1986 and 2019). We found significant and positive relationships between tail tips and destructive tissues. In both time periods, THg concentrations varied significantly by tissue type, and destructive tissues exhibited higher but predictable THg values relative to tail tissue. Methylmercury concentrations did not differ among tissues from the 1980s but was significantly higher in muscle compared to other tissues from snakes collected in 2019. Percent MeHg of THg in N. taxispilota tissues mirrored patterns reported in other reptiles, although the range of % MeHg in liver and kidney differed between time periods. Both THg and MeHg concentrations in N. taxispilota declined significantly from the 1980s to 2019, with average values 1.6 to 4-fold lower in contemporary samples. Overall, our data add further evidence to the utility of watersnakes to monitor Hg pollution in aquatic environments and suggest attenuation of this contaminant in watersnakes in our study system.
Collapse
Affiliation(s)
- David L Haskins
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, 30605, USA; Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, 30605, USA; Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, 29802, USA.
| | - M Kyle Brown
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, 30605, USA; Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, 29802, USA
| | - Chongyang Qin
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, 29802, USA
| | - Xiaoyu Xu
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, 29802, USA
| | - Melissa A Pilgrim
- Division of Natural Sciences and Engineering, University of South Carolina Upstate, Spartanburg, SC, 29303, USA
| | - Tracey D Tuberville
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, 29802, USA
| |
Collapse
|
8
|
Hebert CE, Chételat J, Beck R, Dolgova S, Fordy K, Kirby P, Martin P, Rabesca M. Inter-annual variation of mercury in aquatic bird eggs and fish from a large subarctic lake under a warming climate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:144614. [PMID: 33421792 DOI: 10.1016/j.scitotenv.2020.144614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Understanding changes in environmental mercury concentrations is important for assessing the risk to human and wildlife populations from this potent toxicant. Here, we use herring gull (Larus argentatus) eggs to evaluate temporal changes in total mercury (THg) availability from two locations on Great Slave Lake (GSL), Northwest Territories, Canada. Egg THg concentrations increased through time, but this change was due to shifts in gull diets. Stable nitrogen isotopes allowed adjustment of egg THg concentrations for dietary changes. Diet-adjusted egg THg concentrations showed no long-term trend. Consistent with that result, new statistical analysis of THg concentrations in three species of GSL fish showed minor or no temporal changes. Although a long-term trend was absent, inter-year differences in adjusted egg THg concentrations persisted. Contributions of environmental variables (i.e., river flow, lake level, air temperature, precipitation, and wildfire) to these differences were investigated. Egg THg concentrations were greater following years of lower lake levels and greater wildfire extent. Lake level could have affected mercury methylation. Increased wildfire could have enhanced terrestrial Hg releases to the atmosphere where it was transported long distances to GSL. Climate change may increase wildfire extent with impacts on Hg bioaccumulation in northern ecosystems. Egg Hg levels reported here are unlikely to pose health risks to gulls, but in light of ongoing environmental change, monitoring should continue. Our study emphasizes the importance of ancillary datasets in elucidating Hg trends; such information will be critical for evaluating the effectiveness of Hg mitigation strategies implemented as part of the Minamata Convention.
Collapse
Affiliation(s)
- Craig E Hebert
- Environment and Climate Change Canada, Science and Technology Branch, Ecotoxicology and Wildlife Health Division, National Wildlife Research Centre, Ottawa, ON K1S 5B6, Canada.
| | - John Chételat
- Environment and Climate Change Canada, Science and Technology Branch, Ecotoxicology and Wildlife Health Division, National Wildlife Research Centre, Ottawa, ON K1S 5B6, Canada
| | - Roger Beck
- Fort Resolution Métis Council, Fort Resolution, NT X0E 0M0, Canada
| | - Svetlana Dolgova
- Environment and Climate Change Canada, Science and Technology Branch, Ecotoxicology and Wildlife Health Division, National Wildlife Research Centre, Ottawa, ON K1S 5B6, Canada
| | - Kathleen Fordy
- Deninu Kųę́ First Nation, Fort Resolution, NT X0E 0M0, Canada
| | - Patrick Kirby
- Environment and Climate Change Canada, Science and Technology Branch, Landscape Science and Technology Division, National Wildlife Research Centre, Ottawa, ON K1S 5B6, Canada
| | - Pamela Martin
- Environment and Climate Change Canada, Science and Technology Branch, Ecotoxicology and Wildlife Health Division, Burlington, ON L7R 4A6, Canada
| | | |
Collapse
|
9
|
Ek C, Faxneld S, Nyberg E, Rolff C, Karlson AML. The importance of adjusting contaminant concentrations using environmental data: A retrospective study of 25 years data in Baltic blue mussels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143913. [PMID: 33373754 DOI: 10.1016/j.scitotenv.2020.143913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
To improve the statistical power of detecting changes in contaminant concentrations over time, it is critical to reduce both the within- and between-year variability by adjusting the data for relevant confounding variables. In this study, we present a method for handling multiple confounding variables in contaminant monitoring. We evaluate the highly variable temporal trends of Polycyclic Aromatic Hydrocarbons (PAHs) in blue mussels from the central Baltic Sea during the period 1987-2016 (data from 25 years during this period) using various regression analyses. As potential explanatory variables related to PAH exposure, we use mussel size and retrospective analyses of mussel δ15N and δ13C (representing large scale biogeochemical changes as a result of e.g. eutrophication and terrestrial inputs). Environmental data from concurrent monitoring programmes (seasonal data on Chlorophyll-a, salinity and temperature in the water column, bioturbation of sediment dwelling fauna) were included as variables related to feeding conditions. The concentrations of high-molecular-weight and low-molecular-weight PAHs in blue mussel were statistically linked to different combinations of environmental variables. Adjustment using these predictors decreased the coefficient of variation in all 15 PAHs tested and improved the statistical power to detect changes. Moreover, the adjustment also resulted in a significant downward trend for fluoranthene that could not be detected initially. For another PAH, benzo(g,h,i)perylene, adjustment which reduced variation resulted in the loss of an apparent downward trend over time. Hence, our study highlights the importance of using auxilliary data to reduce variability caused by environmental factors with general effects on physiology when assessing contaminant time trends. Furthermore, it illustrates the importance of extensive and well designed monitoring programmes to provide relevant data.
Collapse
Affiliation(s)
- Caroline Ek
- Department of Ecology, Environment and Plant Science, SE-106 91, Stockholm University, Stockholm, Sweden
| | - Suzanne Faxneld
- Department of Environmental Research and Monitoring, Swedish Museum of Natural History, P.O. 50007, SE-104 05 Stockholm, Sweden
| | - Elisabeth Nyberg
- Swedish Environmental Protection Agency, Naturvårdsverket, SE-106 48 Stockholm, Stockholm, Sweden
| | - Carl Rolff
- Stockholm University Baltic Sea Centre, SE 106-91 Stockholm, Sweden
| | - Agnes M L Karlson
- Department of Ecology, Environment and Plant Science, SE-106 91, Stockholm University, Stockholm, Sweden; Stockholm University Baltic Sea Centre, SE 106-91 Stockholm, Sweden.
| |
Collapse
|
10
|
Sánchez-Fortún M, Ouled-Cheikh J, Jover C, García-Tarrasón M, Carrasco JL, Sanpera C. Following up mercury pollution in the Ebro Delta (NE Spain): Audouin's gull fledglings as model organisms to elucidate anthropogenic impacts on the environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115232. [PMID: 32712528 DOI: 10.1016/j.envpol.2020.115232] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
As top-predators in marine ecosystems, seabirds are regarded as appropriate bioindicator species for a variety of contaminants. Mercury (Hg) is a global pollutant, which can biomagnify along marine and freshwater food webs. Therefore, mercury body burden in seabirds, such as gulls, will integrate information about pollution in the environment. In the Ebro Delta (NE Spain), legacy mercury pollution from a chlor-alkali industry located ca. 100 km upstream of the Ebro river mouth has been affecting the delta environment. We have analyzed a 15-year temporal series (2004-2019) of Hg in birds from a breeding colony of Audouin's gull (Ichthyaetus audouinii) in the Ebro Delta to understand how fluctuations in Hg levels are coupled to human activities in the industrial area in the upstream region of the river. Stable isotopic signatures of C and N (δ13Cbulk and δ15Nbulk) are determined to characterize the trophic ecology of the species. Since only δ13Cbulk but not δ15Nbulk was associated with THg levels, we used compound-specific stable nitrogen isotope analysis of amino acids (AA-CSIA) to evaluate the causes of variation in δ15Nbulk to further investigate the idea of a decoupling of δ15Nbulk and THg over time. We found Audouin's gull to be sensitive to Hg variations in the environment due to anthropogenic changes and to be a good indicator species for this contaminant in the Ebro Delta.
Collapse
Affiliation(s)
- Moisès Sánchez-Fortún
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), University of Barcelona, Barcelona, Spain.
| | - Jazel Ouled-Cheikh
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
| | - Clara Jover
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
| | - Manuel García-Tarrasón
- Secretaría General de Pesca. Ministerio de Agricultura, Pesca y Alimentación (MAPA), Spain
| | - Josep Lluís Carrasco
- Biostatistics, Department of Basic Clinical Practice, University of Barcelona, Barcelona, Spain
| | - Carola Sanpera
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), University of Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Lee J, Lee SY, Chung D, Park KW, Shim K, Lee J, Park JH. Utilization of black-tailed gull (Larus crassirostris) eggs for monitoring of mercury levels in coastal areas of South Korea: Preliminary study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136578. [PMID: 31955089 DOI: 10.1016/j.scitotenv.2020.136578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/26/2019] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
Studies on the monitoring of mercury accumulation using high trophic-level predators of the marine ecosystem have been scarce in South Korea. In this study, we compared the mercury concentrations of the eggs of the black-tailed gulls, a higher-order predator, breeding in two coastal areas. Breeding sites with varying mercury concentrations in land-origin freshwater fish and freshwater and marine sediments were selected in the southeastern (Hongdo Island) and western (Baengnyeongdo Island) seas. The 5-year mean total mercury concentration in eggs collected during the breeding seasons from 2012 to 2016 was higher in those collected from Hongdo than in those collected from Baengnyeongdo. This difference in mercury concentration in eggs was observed for each year. In addition, the total mercury concentration in eggs was consistently higher on Hongdo, which also had higher mercury pollution, than on Baengnyeongdo Island. These results support the suitability of black-tailed gull eggs for monitoring of mercury pollution.
Collapse
Affiliation(s)
- Jangho Lee
- Natural Environment Research Division, National Institute of Environmental Research, 42, Hwangyeong-ro, Seo-gu, Incheon 22689, Republic of Korea.
| | - Soo Yong Lee
- Natural Environment Research Division, National Institute of Environmental Research, 42, Hwangyeong-ro, Seo-gu, Incheon 22689, Republic of Korea.
| | - David Chung
- Natural Environment Research Division, National Institute of Environmental Research, 42, Hwangyeong-ro, Seo-gu, Incheon 22689, Republic of Korea.
| | - Ki-Wan Park
- Natural Environment Research Division, National Institute of Environmental Research, 42, Hwangyeong-ro, Seo-gu, Incheon 22689, Republic of Korea.
| | - Kyuyoung Shim
- Natural Environment Research Division, National Institute of Environmental Research, 42, Hwangyeong-ro, Seo-gu, Incheon 22689, Republic of Korea.
| | - Jongchun Lee
- Indoor Environment and Noise Research Division, National Institute of Environmental Research, 42, Hwangyeong-ro, Seo-gu, Incheon 22689, Republic of Korea.
| | - Jong-Hyouk Park
- Measurement and Analysis Division, Jeonbuk Regional Environment Office, 120, Anjeon-ro, Deokjin-gu, Jeonju-si, Jeollabuk-do 54872, Republic of Korea.
| |
Collapse
|
12
|
Chételat J, Ackerman JT, Eagles-Smith CA, Hebert CE. Methylmercury exposure in wildlife: A review of the ecological and physiological processes affecting contaminant concentrations and their interpretation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:135117. [PMID: 31831233 DOI: 10.1016/j.scitotenv.2019.135117] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/15/2019] [Accepted: 10/21/2019] [Indexed: 05/12/2023]
Abstract
Exposure to methylmercury (MeHg) can result in detrimental health effects in wildlife. With advances in ecological indicators and analytical techniques for measurement of MeHg in a variety of tissues, numerous processes have been identified that can influence MeHg concentrations in wildlife. This review presents a synthesis of theoretical principals and applied information for measuring MeHg exposure and interpreting MeHg concentrations in wildlife. Mercury concentrations in wildlife are the net result of ecological processes influencing dietary exposure combined with physiological processes that regulate assimilation, transformation, and elimination. Therefore, consideration of both physiological and ecological processes should be integrated when formulating biomonitoring strategies. Ecological indicators, particularly stable isotopes of carbon, nitrogen, and sulfur, compound-specific stable isotopes, and fatty acids, can be effective tools to evaluate dietary MeHg exposure. Animal species differ in their physiological capacity for MeHg elimination, and animal tissues can be inert or physiologically active, act as sites of storage, transformation, or excretion of MeHg, and vary in the timing of MeHg exposure they represent. Biological influences such as age, sex, maternal transfer, and growth or fasting are also relevant for interpretation of tissue MeHg concentrations. Wildlife tissues that represent current or near-term bioaccumulation and in which MeHg is the predominant mercury species (such as blood and eggs) are most effective for biomonitoring ecosystems and understanding landscape drivers of MeHg exposure. Further research is suggested to critically evaluate the use of keratinized external tissues to measure MeHg bioaccumulation, particularly for less-well studied wildlife such as reptiles and terrestrial mammals. Suggested methods are provided to effectively use wildlife for quantifying patterns and drivers of MeHg bioaccumulation over time and space, as well as for assessing the potential risk and toxicological effects of MeHg on wildlife.
Collapse
Affiliation(s)
- John Chételat
- Environment and Climate Change Canada, National Wildlife Research Centre, 1125 Colonel By Drive, Ottawa, ON K1A 0H3, Canada.
| | - Joshua T Ackerman
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, 800 Business Park Drive, Suite D, Dixon, CA 95620, United States
| | - Collin A Eagles-Smith
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, Oregon, 97331, United States
| | - Craig E Hebert
- Environment and Climate Change Canada, National Wildlife Research Centre, 1125 Colonel By Drive, Ottawa, ON K1A 0H3, Canada
| |
Collapse
|
13
|
Won EJ, Choi B, Lee CH, Hong S, Lee JH, Shin KH. Variability of trophic magnification factors as an effect of estimated trophic position: Application of compound-specific nitrogen isotope analysis of amino acids. ENVIRONMENT INTERNATIONAL 2020; 135:105361. [PMID: 31887478 DOI: 10.1016/j.envint.2019.105361] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
The trophic magnification of persistent organic pollutants (POPs), which is the relationship between POP concentration and the trophic position (TPs) of an organism, is considered an important factor for prioritizing chemicals of concern in the environment. Organismal TPs are typically based on nitrogen isotope ratios of bulk tissue (δ15Nbulk). In this study, nitrogen isotope ratios of amino acids (δ15NAAs), a more precise approach for TP estimation (TPAAs), was applied and compared with estimations of TP based on δ15Nbulk (TPbulk) in marine organisms living in Masan Bay, South Korea. Compound-specific isotope analysis of the amino acids (CSIA-AAs) in fish samples allows us to calculate robust TPs by correcting the variation in baseline isotope values with use of the δ15Nbulk technique. In a benthic food chain, this approach reveals more significant magnification trends for POPs [polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and organochlorine pesticides (OCPs)] than those revealed by analysis of the relationship between TPbulk and POPs. The trophic magnification factors (TMF) associated with TPAAs were significant for some POPs, especially pp'-DDD and chlordane. The results presented in this study suggest that TP calculations based on δ15NAAs are an effective tool for characterizing trophic magnification trends related to the fates of various pollutants.
Collapse
Affiliation(s)
- Eun-Ji Won
- Department of Marine Science & Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea; Institute of Marine & Atmospheric Sciences, Hanyang University, Ansan 15588, Republic of Korea
| | - Bohyung Choi
- Department of Marine Science & Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea; Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Chang Hwa Lee
- Department of Marine Science & Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Seongjin Hong
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jong-Hyeon Lee
- Environmental Human Research & Consulting (EH R&C), Incheon 22689, Republic of Korea
| | - Kyung-Hoon Shin
- Department of Marine Science & Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea; Institute of Marine & Atmospheric Sciences, Hanyang University, Ansan 15588, Republic of Korea.
| |
Collapse
|
14
|
Gauthier LT, Laurich B, Hebert CE, Drake C, Letcher RJ. Tetrabromobisphenol-A-Bis(dibromopropyl ether) Flame Retardant in Eggs, Regurgitates, and Feces of Herring Gulls from Multiple North American Great Lakes Locations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:9564-9571. [PMID: 31364365 DOI: 10.1021/acs.est.9b02472] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The occurrence of tetrabromobisphenol-A-bis(2,3,-dibromopropyl ether) (TBBPA-BDBPE) flame retardant is generally unknown in wildlife. A highly sensitive, gas chromatography-mass spectrometry-based method was developed for TBBPA-BDBPE with optimized parameters for large volume injection. We report on TBBPA-BDBPE and temporal and spatial trends in herring gull egg pools and individuals from 14 colony sites across the Laurentian Great Lakes of North America. TBBPA-BDBPE identification was confirmed using liquid chromatography time-of-flight mass spectrometry and quantification with liquid chromatography tandem mass spectrometry analysis. TBBPA-BDBPE was quantifiable in 95% of egg pools from all colonies sampled in 2013-2017, and retrospective analysis of archived eggs (2001-2017) at 3 of the 14 colonies indicated that TBBPA-BDBPE concentrations were greater in pools from eggs collected in more recent years (<MLOD to 42.8 ng/g wet weight (ww)). For individual eggs, the concentration range was <MLOD to 497 ng/g ww. Individual eggs from 2 other herring gull colonies, north and south Pukaskwa National Park, Lake Superior, were analyzed for TBBPA-BDBPE, and dietary markers (fatty acids) revealed possible exposure pathways. Selected colonies with known dietary differences (i.e., terrestrial versus aquatic) indicated that TBBPA-BDBPE exposure was associated with terrestrial origin. Herring gull regurgitates and feces were collected from several colonies with TBBPA-BDBPE ranging from <MLOD to 21.7 ng/g dry weight (dw) and <MLOD to 16.3 ng/g ww, respectively. Typical of many alternate flame retardants in wildlife, TBBPA-BDBPE levels in the gull samples were low with a few high values and increasing prevalence through time.
Collapse
Affiliation(s)
- Lewis T Gauthier
- Wildlife and Landscape Science Directorate, Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Centre , Carleton University , Ottawa , ON K1A 0H3 , Canada
| | - Bruce Laurich
- Department of Biology , Carleton University , Ottawa , ON K1S 5B6 , Canada
| | - Craig E Hebert
- Wildlife and Landscape Science Directorate, Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Centre , Carleton University , Ottawa , ON K1A 0H3 , Canada
- Department of Biology , Carleton University , Ottawa , ON K1S 5B6 , Canada
| | - Christine Drake
- Parks Canada Agency , Pukaskwa National Park , Heron Bay , ON P0T 1R0 , Canada
| | - Robert J Letcher
- Wildlife and Landscape Science Directorate, Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Centre , Carleton University , Ottawa , ON K1A 0H3 , Canada
- Department of Biology , Carleton University , Ottawa , ON K1S 5B6 , Canada
| |
Collapse
|
15
|
Hebert CE. The river runs through it: The Athabasca River delivers mercury to aquatic birds breeding far downstream. PLoS One 2019; 14:e0206192. [PMID: 30964870 PMCID: PMC6456287 DOI: 10.1371/journal.pone.0206192] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/25/2019] [Indexed: 11/18/2022] Open
Abstract
This study examined factors contributing to temporal variability (2009–2017) in total mercury (THg) concentrations in aquatic bird eggs collected in the Peace-Athabasca Delta and Lake Athabasca in northern Alberta. Factors examined included year of egg collection, site of collection, bird species, bird diets, annual surface-mineable oil sands production, forest fires, and flow of the Athabasca River. Surface mining activities associated with Alberta’s Athabasca oil sands are situated north of Fort McMurray, Alberta, adjacent to the northward-flowing Athabasca River. Previous studies have found that oil sands industrial operations release mercury into the local (within ~50 km) environment. An information-theoretic approach revealed that the best model for explaining egg THg levels included Athabasca River flow, bird food source, and bird species. Variability in egg THg levels was partly a reflection of differences in food sources, e.g. proportions of aquatic versus terrestrial food in bird diets. Annual fluctuations in maximal flow of the Athabasca River were also important with eggs collected following years of high maximal flow exhibiting higher THg concentrations. Furthermore, eggs collected in years of high versus low flow differed in their stable Hg isotope composition with less mass-independent fraction of 199Hg and 201Hg in years of high flow. Riverine processes associated with suspended sediment were likely critical in regulating Hg availability to nesting birds. This study highlights the importance of the Athabasca River as a conduit for Hg transport to ecologically-sensitive downstream ecosystems such as the Peace-Athabasca Delta and Wood Buffalo National Park (a UNESCO World Heritage Site). Human activities that increase atmospheric Hg deposition to the Athabasca River watershed, or that enhance Hg releases to the river through erosion of Hg-bearing soils, will likely increase the availability of Hg to organisms inhabiting downstream areas.
Collapse
Affiliation(s)
- Craig E. Hebert
- Environment and Climate Change Canada, Science and Technology Branch, National Wildlife Research Centre, Ottawa, ON, Canada
- * E-mail:
| |
Collapse
|
16
|
Rigét F, Bignert A, Braune B, Dam M, Dietz R, Evans M, Green N, Gunnlaugsdóttir H, Hoydal KS, Kucklick J, Letcher R, Muir D, Schuur S, Sonne C, Stern G, Tomy G, Vorkamp K, Wilson S. Temporal trends of persistent organic pollutants in Arctic marine and freshwater biota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:99-110. [PMID: 30172138 DOI: 10.1016/j.scitotenv.2018.08.268] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/20/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
More than 1000 time-series of persistent organic pollutants (POPs) in Arctic biota from marine and freshwater ecosystems some extending back to the beginning of 1980s were analyzed using a robust statistical method. The Arctic area encompassed extended from Alaska, USA in the west to northern Scandinavian in the east, with data gaps for Arctic Russia and Arctic Finland. The aim was to investigate whether temporal trends for different animal groups and matrices were consistent across a larger geographical area. In general, legacy POPs showed decreasing concentrations over the last two to three decades, which were most pronounced for α-HCH and least pronounced for HCB and β-HCH. Few time-series of legacy POPs showed increasing trends and only at sites suspected to be influenced by local source. The brominated flame retardant congener BDE-47 showed a typical trend of increasing concentration up to approximately the mid-2000s followed by a decreasing concentration. A similar trend was found for perfluorooctane sulfonic acid (PFOS). These trends are likely related to the relatively recent introduction of national and international controls of hexa- and hepta-BDE congeners and the voluntary phase-out of PFOS production in the USA in 2000. Hexabromocyclododecane (HBCDD) was the only compound in this study showing a consistent increasing trend. Only 12% of the long-term time-series were able to detect a 5% annual change with a statistical power of 80% at α < 0.05. The remaining 88% of time-series need additional years of data collection before fulfilling these statistical requirements. In the case of the organochlorine long-term time-series, 45% of these would require >20 years monitoring before this requirement would be fulfilled.
Collapse
Affiliation(s)
- Frank Rigét
- University of Aarhus, Department of Bioscience, Arctic Research Centre, PO Box 358, DK-4000 Roskilde, Denmark; Greenland Institute of Natural Resources, Kivioq 2, PO Box 570, Nuuk 3900, Greenland.
| | - Anders Bignert
- Dep. of Environmental Research and Monitoring, Swedish Museum of Natural History, PO Box 50 007, S-104 05 Stockholm, Sweden
| | - Birgit Braune
- Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Raven Road, Ottawa K1A 0H3, Canada
| | - Maria Dam
- Environment Agency, Traðagøta 38, P.O. Box 2048, FO-165 Argir, Faroe Islands
| | - Rune Dietz
- University of Aarhus, Department of Bioscience, Arctic Research Centre, PO Box 358, DK-4000 Roskilde, Denmark
| | - Marlene Evans
- Aquatic Ecosystem Protection Research Division, Environment Canada, 11 Innovation Blvd, Saskatoon, SK S7N 3H5, Canada
| | - Norman Green
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway
| | | | - Katrin S Hoydal
- Environment Agency, Traðagøta 38, P.O. Box 2048, FO-165 Argir, Faroe Islands
| | - John Kucklick
- National Institute of Standards and Technology, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, USA
| | - Robert Letcher
- Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Raven Road, Ottawa K1A 0H3, Canada
| | - Derek Muir
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 867 Lakeshore Road, Burlington L7S 1A1, Ontario, Canada
| | - Stacy Schuur
- National Institute of Standards and Technology, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, USA
| | - Christian Sonne
- University of Aarhus, Department of Bioscience, Arctic Research Centre, PO Box 358, DK-4000 Roskilde, Denmark
| | - Gary Stern
- Centre for Earth Observation Sciences (CEOS), Clayton H. Riddell Faculty of Environment, Earth and Resources, University of Manitoba,586 Wallace Bld, 125 Dysart Rd., Winnipeg R3T 2N2, Manitoba, Canada
| | - Gregg Tomy
- Centre for Oil and Gas Research and Development, University of Manitoba, Department of Chemistry, Winnipeg R3T 2N2, Manitoba, Canada
| | - Katrin Vorkamp
- University of Aarhus, Department of Environmental Science, Arctic Research Centre, PO Box 358, DK-4000 Roskilde, Denmark
| | - Simon Wilson
- Arctic Monitoring and Assessment Programme (AMAP) Secretariat, PO Box 8100 Dep., N-0032 Oslo, Norway
| |
Collapse
|
17
|
Dolgova S, Popp BN, Courtoreille K, Espie RHM, Maclean B, McMaster M, Straka JR, Tetreault GR, Wilkie S, Hebert CE. Spatial trends in a biomagnifying contaminant: Application of amino acid compound-specific stable nitrogen isotope analysis to the interpretation of bird mercury levels. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:1466-1475. [PMID: 29446488 DOI: 10.1002/etc.4113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/07/2018] [Accepted: 02/13/2018] [Indexed: 05/05/2023]
Abstract
Levels of biomagnifying contaminants are greatest in high-trophic level biota (e.g., predatory birds such as gulls). Gull eggs have been used to assess contaminant spatial patterns and sources, but such assessments must consider how organism trophic position may influence spatial inferences. Stable nitrogen isotopes (δ15 N) in bulk tissue are routinely used in this context. However, bulk δ15 N values are only useful if spatial differences in baseline δ15 N values are considered. Amino acid compound-specific stable nitrogen isotope analysis can generate estimates of baseline δ15 N values and trophic position from the same sample. In the present study, eggs (n = 428) of California (Larus californicus), herring (Larus argentatus smithsonianus), and ring-billed (Larus delawarensis) gulls were used to assess spatial patterns in mercury (Hg) availability in 12 western Canadian lakes located over 14 degrees of latitude, with amino acid compound-specific stable isotope analysis adjustment of egg Hg levels for trophic position. Mean trophic position-adjusted egg Hg levels (micrograms per gram, dry wt) were greatest at sites in receiving waters of the Athabasca River (X¯ = 0.70) compared to southern (X¯ = 0.39) and northern (X¯ = 0.50) regions. Research is required to investigate factors (e.g., local Hg released as a result of human activities, processes influencing Hg methylation) which may be responsible for greater Hg availability in the lower Athabasca River basin. However, it is clear that amino acid compound-specific stable isotope analysis is a valuable tool for assessing contaminant spatial patterns. Environ Toxicol Chem 2018;37:1466-1475. © 2018 SETAC.
Collapse
Affiliation(s)
- Svetlana Dolgova
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
- Science and Technology Branch, National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Brian N Popp
- Department of Geology and Geophysics, University of Hawaii, Honolulu, Hawaii, USA
| | - Kevin Courtoreille
- Mikisew Cree First Nation Community-Based Monitoring Program, Fort Chipewyan, Alberta, Canada
| | | | - Bruce Maclean
- Mikisew Cree First Nation Community-Based Monitoring Program, Fort Chipewyan, Alberta, Canada
| | - Mark McMaster
- Science and Technology Branch, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Jason R Straka
- Parks Canada Agency, Wood Buffalo National Park, Fort Chipewyan, Alberta, Canada
| | - Gerald R Tetreault
- Science and Technology Branch, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Steve Wilkie
- Saskatchewan Environment, Regina, Saskatchewan, Canada
| | - Craig E Hebert
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
- Science and Technology Branch, National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| |
Collapse
|