1
|
Jiang Z, Wan X, Bai X, Chen Z, Zhu L, Feng J. Cd indirectly affects the structure and function of plankton ecosystems by affecting trophic interactions at environmental concentrations. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136242. [PMID: 39442296 DOI: 10.1016/j.jhazmat.2024.136242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/08/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
The toxic effects of potentially toxic elements have been observed at low concentrations; however, many studies have focused on single-species toxicity testing. Consequently, it is imperative to quantify toxicity at the community level at environmental concentrations. A microcosm approach was employed in conjunction with the Lotka-Volterra model to ascertain the impact of environmentally relevant concentrations of cadmium (Cd) on plankton abundance, community function, and stability. The results demonstrated that Cd led to a reduction in the abundance of Daphnia magna, yet unexpectedly resulted in an increase in the abundance of Brachionus calyciflorus and Paramecium caudatum. Additionally, Cd was observed to impede primary productivity, metabolic capacity and the stability of the planktonic community. Further model analyses revealed that the environmental concentration of Cd directly reduced intrinsic growth rates and intraspecific interactions. In particular, we found that the predation effects of Daphnia magna on Brachionus calyciflorus were significantly weakened. The findings of this study offer quantitative evidence that Cd exposure exerts an indirect influence on the structure and functioning of plankton ecosystems, mediated by alterations in trophic interactions. The findings indicate that the impact of environmental concentrations of potentially toxic elements may be underestimated in single-species experiments.
Collapse
Affiliation(s)
- Zhendong Jiang
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xuhao Wan
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xue Bai
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Zhongzhi Chen
- InnoTech Alberta, Hwy 16A & 75 Street, P.O. Box 4000, Vegreville, AB T9C 1T4, Canada
| | - Lin Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jianfeng Feng
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|
2
|
Hermann M, Peeters ETHM, Van den Brink PJ. Heatwaves, elevated temperatures, and a pesticide cause interactive effects on multi-trophic levels of a freshwater ecosystem. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121498. [PMID: 36965684 DOI: 10.1016/j.envpol.2023.121498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
Climate impacts of elevated temperatures and more severe and frequent weather extremes like heatwaves are globally becoming discernible on nature. While a mechanistic understanding is pivotal for ecosystem management, stressors like pesticides may interact with warming, leading to unpredictable effects on freshwater ecosystems. These multiple stressor studies are scarce and experimental designs often lack environmental realism. To investigate the multiple stressor effects, we conducted a microcosm experiment for 48 days comprising benthic macroinvertebrates, zooplankton, phytoplankton, macrophytes, and microbes. The fungicide carbendazim (100 μg/L) was investigated combined with temperature scenarios representing elevated temperatures (+4 °C) or heatwaves (+0 to +8 °C), both applied with similar energy input on a daily fluctuating ambient temperature (18 °C ± 1.5 °C), which served as control. Measurements showed the highest carbendazim dissipation in water under heatwaves followed by elevated and ambient temperatures. Average carbendazim concentrations were about 50% in water and 16% in sediment of the nominal concentration. In both heated cosms, zooplankton community dynamics revealed an unexpected shift from Rotifera to Cladocera and Copepoda nauplii, indicating variations in their thermal sensitivity, tolerance and resilience. Notably, warming and heatwaves shaped community responses similarly, suggesting heat intensity rather than distribution patterns determined the community structure. Heatwaves led to significant early and longer-lasting adverse effects that were exacerbated over time with Cladocera and Copepoda being most sensitive likely due to significant carbendazim interactions. Finally, a structural equation model demonstrated significant relationships between zooplankton and macrophytes and significantly negative carbendazim effects on zooplankton, whereas positive on macroinvertebrate abundances. The relationship between macroinvertebrate feeding and abundance was masked by significantly temperature-affected microbial leaf litter decomposition. Despite the thermal tolerance of zooplankton communities, our study highlights an increased pesticide threat under temperature extremes. More intense heatwaves are thus likely to cause significant alterations in community assemblages which will adversely affect ecosystem's processes and functions.
Collapse
Affiliation(s)
- Markus Hermann
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700, AA Wageningen, the Netherlands.
| | - Edwin T H M Peeters
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700, AA Wageningen, the Netherlands
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700, AA Wageningen, the Netherlands; Wageningen Environmental Research, P.O. Box 47, 6700, AA Wageningen, the Netherlands
| |
Collapse
|
3
|
Martins I, Guerra A, Azevedo A, Harasse O, Colaço A, Xavier J, Caetano M, Carreiro-Silva M, Martins I, Neuparth T, Raimundo J, Soares J, Santos MM. A modelling framework to assess multiple metals impacts on marine food webs: Relevance for assessing the ecological implications of deep-sea mining based on a systematic review. MARINE POLLUTION BULLETIN 2023; 191:114902. [PMID: 37058834 DOI: 10.1016/j.marpolbul.2023.114902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 05/13/2023]
Abstract
Industrial deep-sea mining will release plumes containing metals that may disperse over long distances; however, there is no general understanding of metal effects on marine ecosystems. Thus, we conducted a systematic review in search of models of metal effects on aquatic biota with the future perspective to support Environmental Risk Assessment (ERA) of deep-sea mining. According to results, the use of models to study metal effects is strongly biased towards freshwater species (83% freshwater versus 14% marine); Cu, Hg, Al, Ni, Pb, Cd and Zn are the best-studied metals, and most studies target few species rather than entire food webs. We argue that these limitations restrain ERA on marine ecosystems. To overcome this gap of knowledge, we suggest future research directions and propose a modelling framework to predict the effects of metals on marine food webs, which in our view is relevant for ERA of deep-sea mining.
Collapse
Affiliation(s)
- Irene Martins
- CIMAR/CIIMAR-LA, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal.
| | - Alexandra Guerra
- CIMAR/CIIMAR-LA, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal
| | - Ana Azevedo
- CIMAR/CIIMAR-LA, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal
| | - Ombéline Harasse
- SeaTech Engineering School, University of Toulon, Avenue de l'Université, 83130 La Garde, France
| | - Ana Colaço
- Institute of Marine Sciences, Okeanos, University of the Azores, Rua Prof Frederico Machado, 9901-862 Horta, Portugal
| | - Joana Xavier
- CIMAR/CIIMAR-LA, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal; Department of Biological Sciences, University of Bergen, Thormøhlens gate 53 A/B, 5006 Bergen, Norway
| | - Miguel Caetano
- CIMAR/CIIMAR-LA, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal; IPMA, Portuguese Institute of Sea and Atmosphere, Rua Alfredo Magalhães, 6, 1495-165 Lisbon, Portugal
| | - Marina Carreiro-Silva
- Institute of Marine Sciences, Okeanos, University of the Azores, Rua Prof Frederico Machado, 9901-862 Horta, Portugal
| | - Inês Martins
- Institute of Marine Sciences, Okeanos, University of the Azores, Rua Prof Frederico Machado, 9901-862 Horta, Portugal
| | - Teresa Neuparth
- CIMAR/CIIMAR-LA, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal
| | - Joana Raimundo
- CIMAR/CIIMAR-LA, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal; IPMA, Portuguese Institute of Sea and Atmosphere, Rua Alfredo Magalhães, 6, 1495-165 Lisbon, Portugal
| | - Joana Soares
- AIR Centre, TERINOV-Parque de Ciência e Tecnologia da Ilha Terceira, Canada de Belém S/N, Terra Chã, 9700-702 Angra do Heroísmo, Portugal
| | - Miguel M Santos
- CIMAR/CIIMAR-LA, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal; FCUP, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007 Porto, Portugal
| |
Collapse
|
4
|
Bai X, Jiang Y, Jiang Z, Zhu L, Feng J. Nutrient potentiate the responses of plankton community structure and metabolites to cadmium: A microcosm study. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128506. [PMID: 35739684 DOI: 10.1016/j.jhazmat.2022.128506] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/04/2022] [Accepted: 02/14/2022] [Indexed: 06/15/2023]
Abstract
Metal pollution is a worldwide concern and may pose risks to aquatic organisms, communities, and ecosystems. The toxic effects of metals at the organism level are relatively clear. However, their impacts at the community level are still poorly understood, especially with concurred eutrophication in surface water. In the present study, the effects of Cd on the plankton community structure and function under varying nutrient conditions were evaluated using a microcosm study. The employed concentrations of Cd and nutrient were based on the values currently measured in the freshwater ecosystem. For the plankton structure, our results showed that the Chl a concentration, the abundances of total phytoplankton, Cyanophyta, and Chlorophyta, and the abundance of Copepoda decreased by Cd consistently. The Cyanophyta Oscillatoria tenuis and Copepoda nauplius were the most sensitive species to Cd in the phytoplankton and zooplankton community, respectively. For the community effects, we found the inhibitory effects of Cd on the photosystem II (PSII) activity of phytoplankton community because of the consistent decrease in the chlorophyll fluorescence parameters (Fv/Fm, Y(Ⅱ), and ETR). Furthermore, the reductions of DOC and pH by Cd were only found in the high nutrient condition, which indicated that the toxic effects of Cd on the community structure and community metabolites were aggravated by the increased nutrient. This study emphasizes the importance of considering nutrient conditions when assessing the metal ecotoxicological effects at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Xue Bai
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Yueming Jiang
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Zhendong Jiang
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Lin Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Jianfeng Feng
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
5
|
Hermann M, Jansen R, van de Glind J, Peeters ET, Van den Brink PJ. A transportable temperature and heatwave control device (TENTACLE) for laboratory and field simulations of different climate change scenarios in aquatic micro- and mesocosms. HARDWAREX 2022; 11:e00307. [PMID: 35518280 PMCID: PMC9062584 DOI: 10.1016/j.ohx.2022.e00307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/04/2022] [Accepted: 04/16/2022] [Indexed: 05/11/2023]
Abstract
Future global climate change with higher mean temperatures and increased intensity and frequency of heatwaves as extreme weather events will affect aquatic ecosystems with, yet, unpredictable severity and consequences. Although models suggest increased risk of species extinction up to the year 2050 for series of different climate change scenarios, environmental complexity may result in unconsidered effects of future temperature alterations on ecosystems. Apart from these environmental changes, additional anthropogenic stressors, e.g. chemical release, may cause unprecedented interaction effects on ecosystems. Ongoing efforts to better understand such temperature-chemical interaction effects comprise almost exclusively experimental designs using constant temperature regimes instead of environmentally realistic daily temperature variations. In this paper we describe an Arduino-based temperature and heatwave control device (TENTACLE) that is transportable, inexpensive, multifunctional, and easily reproducible. TENTACLE offers water temperature monitoring and manipulation of up to 3 different climate change-related scenarios: i) natural (ambient) sinusoidal fluctuations (laboratory applications), ii) elevated fluctuations, and iii) heatwaves as extreme events. The use of replaceable heating elements and low-cost materials suitable for field studies creates a high flexibility for researchers who may conduct in- or out-door, small- or large-scale, fresh- or salt-water experiments at different geographical locations.
Collapse
Affiliation(s)
- Markus Hermann
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA, the Netherlands
- Corresponding author.
| | - Richard Jansen
- Tupola, Wageningen University & Research, Bornsesteeg 52, 6708 PE Wageningen, the Netherlands
| | - Johan van de Glind
- Tupola, Wageningen University & Research, Bornsesteeg 52, 6708 PE Wageningen, the Netherlands
| | - Edwin T.H.M. Peeters
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA, the Netherlands
| | - Paul J. Van den Brink
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA, the Netherlands
- Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
6
|
Polazzo F, Roth SK, Hermann M, Mangold‐Döring A, Rico A, Sobek A, Van den Brink PJ, Jackson M. Combined effects of heatwaves and micropollutants on freshwater ecosystems: Towards an integrated assessment of extreme events in multiple stressors research. GLOBAL CHANGE BIOLOGY 2022; 28:1248-1267. [PMID: 34735747 PMCID: PMC9298819 DOI: 10.1111/gcb.15971] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/14/2021] [Accepted: 10/29/2021] [Indexed: 05/11/2023]
Abstract
Freshwater ecosystems are strongly influenced by weather extremes such as heatwaves (HWs), which are predicted to increase in frequency and magnitude in the future. In addition to these climate extremes, the freshwater realm is impacted by the exposure to various classes of chemicals emitted by anthropogenic activities. Currently, there is limited knowledge on how the combined exposure to HWs and chemicals affects the structure and functioning of freshwater ecosystems. Here, we review the available literature describing the single and combined effects of HWs and chemicals on different levels of biological organization, to obtain a holistic view of their potential interactive effects. We only found a few studies (13 out of the 61 studies included in this review) that investigated the biological effects of HWs in combination with chemical pollution. The reported interactive effects of HWs and chemicals varied largely not only within the different trophic levels but also depending on the studied endpoints for populations or individuals. Hence, owing also to the little number of studies available, no consistent interactive effects could be highlighted at any level of biological organization. Moreover, we found an imbalance towards single species and population experiments, with only five studies using a multitrophic approach. This results in a knowledge gap for relevant community and ecosystem level endpoints, which prevents the exploration of important indirect effects that can compromise food web stability. Moreover, this knowledge gap impairs the validity of chemical risk assessments and our ability to protect ecosystems. Finally, we highlight the urgency of integrating extreme events into multiple stressors studies and provide specific recommendations to guide further experimental research in this regard.
Collapse
Affiliation(s)
- Francesco Polazzo
- IMDEA Water Institute, Science and Technology Campus of the University of AlcaláAlcalá de HenaresSpain
| | - Sabrina K. Roth
- Department of Environmental ScienceStockholm UniversityStockholmSweden
| | - Markus Hermann
- Aquatic Ecology and Water Quality Management GroupWageningen UniversityWageningenThe Netherlands
| | - Annika Mangold‐Döring
- Aquatic Ecology and Water Quality Management GroupWageningen UniversityWageningenThe Netherlands
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of AlcaláAlcalá de HenaresSpain
- Cavanilles Institute of Biodiversity and Evolutionary BiologyUniversity of ValenciaValenciaSpain
| | - Anna Sobek
- Department of Environmental ScienceStockholm UniversityStockholmSweden
| | - Paul J. Van den Brink
- Aquatic Ecology and Water Quality Management GroupWageningen UniversityWageningenThe Netherlands
- Wageningen Environmental ResearchWageningenThe Netherlands
| | | |
Collapse
|
7
|
Lu T, Zhang Q, Zhang Z, Hu B, Chen J, Chen J, Qian H. Pollutant toxicology with respect to microalgae and cyanobacteria. J Environ Sci (China) 2021; 99:175-186. [PMID: 33183695 DOI: 10.1016/j.jes.2020.06.033] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/24/2020] [Accepted: 06/28/2020] [Indexed: 05/11/2023]
Abstract
Microalgae and cyanobacteria are fundamental components of aquatic ecosystems. Pollution in aquatic environment is a worldwide problem. Toxicological research on microalgae and cyanobacteria can help to establish a solid foundation for aquatic ecotoxicological assessments. Algae and cyanobacteria occupy a large proportion of the biomass in aquatic environments; thus, their toxicological responses have been investigated extensively. However, the depth of toxic mechanisms and breadth of toxicological investigations need to be improved. While existing pollutants are being discharged into the environment daily, new ones are also being produced continuously. As a result, the phenomenon of water pollution has become unprecedentedly complex. In this review, we summarize the latest findings on five kinds of aquatic pollutants, namely, metals, nanomaterials, pesticides, pharmaceutical and personal care products (PPCPs), and persistent organic pollutants (POPs). Further, we present information on emerging pollutants such as graphene, microplastics, and ionic liquids. Efforts in studying the toxicological effects of pollutants on microalgae and cyanobacteria must be increased in order to better predict the potential risks posed by these materials to aquatic ecosystems as well as human health.
Collapse
Affiliation(s)
- Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jianmeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jun Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
8
|
Peijnenburg WJGM. ET&C Best Paper of 2018. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:1377-1379. [PMID: 31251845 DOI: 10.1002/etc.4468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
|