1
|
Lu X, Wang Z. Molecular mechanism for combined toxicity of micro(nano)plastics and carbon nanofibers to freshwater microalgae Chlorella pyrenoidosa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123403. [PMID: 38244907 DOI: 10.1016/j.envpol.2024.123403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/12/2023] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
The understanding of the environmental consequences resulting from the presence of micro(nano)plastics and carbon nanofibers (CNFs) in aquatic ecosystems is currently limited. This research endeavor sought to investigate the underlying molecular mechanisms by which engineered polystyrene-based microplastics (MPs)/nanoplastics (NPs) and CNFs, both individually and in combination, elicit toxic effects on an algal species Chlorella pyrenoidosa. The findings revealed that the combined toxicity of MPs/NPs and CNFs depended on the concentration of the mixture. As the concentration increased, the combined toxicity of MPs/NPs and CNFs was significantly greater than the toxicity of each component on its own. Furthermore, the combined toxicity of NPs and CNFs was higher than that of MPs and CNFs. The study integrated data on cell membrane integrity, oxidative stress, and antioxidant modulation to create an Integrated Biomarker Response index, which demonstrated that the co-exposure of algae to NPs and CNFs resulted in more severe cellular stress compared to exposure to NPs alone. Similarly, the combination of NPs and CNFs caused greater cellular stress than the combination of MPs and CNFs. Additionally, significant changes in the expression of stress-related genes caused by MPs/NPs alone and in combination with CNFs indicated that oxidative stress response, glucose metabolism, and energy metabolism played critical roles in particle-induced toxicity. Overall, this study provides the first insight into the toxicological mechanism of MPs/NPs and CNFs mixtures at the molecular level in freshwater microalgae.
Collapse
Affiliation(s)
- Xibo Lu
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China
| | - Zhuang Wang
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China.
| |
Collapse
|
2
|
Carneiro KDS, Franchi LP, Rocha TL. Carbon nanotubes and nanofibers seen as emerging threat to fish: Historical review and trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169483. [PMID: 38151128 DOI: 10.1016/j.scitotenv.2023.169483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 11/25/2023] [Accepted: 12/16/2023] [Indexed: 12/29/2023]
Abstract
Since the discovery of the third allotropic carbon form, carbon-based one-dimensional nanomaterials (1D-CNMs) became an attractive and new technology with different applications that range from electronics to biomedical and environmental technologies. Despite their broad application, data on environmental risks remain limited. Fish are widely used in ecotoxicological studies and biomonitoring programs. Thus, the aim of the current study was to summarize and critically analyze the literature focused on investigating the bioaccumulation and ecotoxicological impacts of 1D-CNMs (carbon nanotubes and nanofibers) on different fish species. In total, 93 articles were summarized and analyzed by taking into consideration the following aspects: bioaccumulation, trophic transfer, genotoxicity, mutagenicity, organ-specific toxicity, oxidative stress, neurotoxicity and behavioral changes. Results have evidenced that the analyzed studies were mainly carried out with multi-walled carbon nanotubes, which were followed by single-walled nanotubes and nanofibers. Zebrafish (Danio rerio) was the main fish species used as model system. CNMs' ecotoxicity in fish depends on their physicochemical features, functionalization, experimental design (e.g. exposure time, concentration, exposure type), as well as on fish species and developmental stage. CNMs' action mechanism and toxicity in fish are associated with oxidative stress, genotoxicity, hepatotoxicity and cardiotoxicity. Overall, fish are a suitable model system to assess the ecotoxicity of, and the environmental risk posed by, CNMs.
Collapse
Affiliation(s)
- Karla da Silva Carneiro
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Leonardo Pereira Franchi
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
3
|
Connolly M, Moles G, Carniel FC, Tretiach M, Caorsi G, Flahaut E, Soula B, Pinelli E, Gauthier L, Mouchet F, Navas JM. Applicability of OECD TG 201, 202, 203 for the aquatic toxicity testing and assessment of 2D Graphene material nanoforms to meet regulatory needs. NANOIMPACT 2023; 29:100447. [PMID: 36563784 DOI: 10.1016/j.impact.2022.100447] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Tests using algae and/or cyanobacteria, invertebrates (crustaceans) and fish form the basic elements of an ecotoxicological assessment in a number of regulations, in particular for classification of a substance as hazardous or not to the aquatic environment according to the Globally Harmonised System of Classification and Labelling of Chemicals (GHS-CLP) (GHS, 2022) and the REACH regulation (Registration, Evaluation, Authorisation and Restriction of Chemicals, EC, 2006). Standardised test guidelines (TGs) of the Organisation for Economic Co-operation and Development (OECD) are available to address the regulatory relevant endpoints of growth inhibition in algae and cyanobacteria (TG 201), acute toxicity to invertebrates (TG 202), and acute toxicity in fish (TG 203). Applying these existing OECD TGs for testing two dimensional (2D) graphene nanoforms may require more attention, additional considerations and/or adaptations of the protocols, because graphene materials are often problematic to test due to their unique attributes. In this review a critical analysis of all existing studies and approaches to testing used has been performed in order to comment on the current state of the science on testing and the overall ecotoxicity of 2D graphene materials. Focusing on the specific tests and available guidance's, a complete evaluation of aquatic toxicity testing for hazard classification of 2D graphene materials, as well as the use of alternative tests in an integrated approach to testing and assessment, has been made. This information is essential to ensure future assessments generate meaningful data that will fulfil regulatory requirements for the safe use of this "wonder" material.
Collapse
Affiliation(s)
- M Connolly
- INIA-CSIC, Department of Environment and Agronomy, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas, Ctra. de La Coruña, km 7, 5, 28040 Madrid, Spain.
| | - G Moles
- INIA-CSIC, Department of Environment and Agronomy, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas, Ctra. de La Coruña, km 7, 5, 28040 Madrid, Spain
| | - F Candotto Carniel
- UNITS, Department of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, Trieste I-34127, Italy
| | - M Tretiach
- UNITS, Department of Life Sciences, University of Trieste, via L. Giorgieri 10, Trieste I-34127, Italy
| | - G Caorsi
- UNITS, Department of Life Sciences, University of Trieste, via L. Giorgieri 10, Trieste I-34127, Italy
| | - E Flahaut
- CNRS CIRIMAT/ECOLAB, Centre National de la Recherche Scientifique, Centre Inter-universitaire de Recherche et d'Ingénierie en Matériaux (CIRIMAT)/Laboratoire Ecologie Fonctionnelle et Environnement, 16 Av Edouard Belin, 31400 Toulouse, France
| | - B Soula
- CNRS CIRIMAT/ECOLAB, Centre National de la Recherche Scientifique, Centre Inter-universitaire de Recherche et d'Ingénierie en Matériaux (CIRIMAT)/Laboratoire Ecologie Fonctionnelle et Environnement, 16 Av Edouard Belin, 31400 Toulouse, France
| | - E Pinelli
- CNRS CIRIMAT/ECOLAB, Centre National de la Recherche Scientifique, Centre Inter-universitaire de Recherche et d'Ingénierie en Matériaux (CIRIMAT)/Laboratoire Ecologie Fonctionnelle et Environnement, 16 Av Edouard Belin, 31400 Toulouse, France
| | - L Gauthier
- CNRS CIRIMAT/ECOLAB, Centre National de la Recherche Scientifique, Centre Inter-universitaire de Recherche et d'Ingénierie en Matériaux (CIRIMAT)/Laboratoire Ecologie Fonctionnelle et Environnement, 16 Av Edouard Belin, 31400 Toulouse, France
| | - F Mouchet
- CNRS CIRIMAT/ECOLAB, Centre National de la Recherche Scientifique, Centre Inter-universitaire de Recherche et d'Ingénierie en Matériaux (CIRIMAT)/Laboratoire Ecologie Fonctionnelle et Environnement, 16 Av Edouard Belin, 31400 Toulouse, France
| | - J M Navas
- INIA-CSIC, Department of Environment and Agronomy, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas, Ctra. de La Coruña, km 7, 5, 28040 Madrid, Spain
| |
Collapse
|
4
|
Pikula K, Zakharenko A, Chaika V, Em I, Nikitina A, Avtomonov E, Tregubenko A, Agoshkov A, Mishakov I, Kuznetsov V, Gusev A, Park S, Golokhvast K. Toxicity of Carbon, Silicon, and Metal-Based Nanoparticles to Sea Urchin Strongylocentrotus Intermedius. NANOMATERIALS 2020; 10:nano10091825. [PMID: 32933127 PMCID: PMC7557930 DOI: 10.3390/nano10091825] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/27/2020] [Accepted: 09/09/2020] [Indexed: 12/31/2022]
Abstract
With the increasing annual production of nanoparticles (NPs), the risks of their harmful influence on the environment and human health are rising. However, our knowledge about the mechanisms of interaction between NPs and living organisms is limited. Prior studies have shown that echinoderms, and especially sea urchins, represent one of the most suitable models for risk assessment in environmental nanotoxicology. To the best of the authors’ knowledge, the sea urchin Strongylocentrotus intermedius has not been used for testing the toxicity of NPs. The present study was designed to determine the effect of 10 types of common NPs on spermatozoa activity, egg fertilization, and early stage of embryo development of the sea urchin S. intermedius. In this research, we used two types of multiwalled carbon nanotubes (CNT-1 and CNT-2), two types of carbon nanofibers (CNF-1 and CNF-2), two types of silicon nanotubes (SNT-1 and SNT-2), nanocrystals of cadmium and zinc sulfides (CdS and ZnS), gold NPs (Au), and titanium dioxide NPs (TiO2). The results of the embryotoxicity test showed the following trend in the toxicity level of used NPs: Au > SNT-2 > SNT-1 > CdS > ZnS > CNF-2 > CNF-1 > TiO2 > CNT-1 > CNT-2. This research confirmed that the sea urchin S. intermedius can be considered as a sensitive and stable test model in marine nanotoxicology.
Collapse
Affiliation(s)
- Konstantin Pikula
- Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.Z.); (V.C.); (I.E.); (A.N.); (E.A.); (A.T.); (A.A.); (K.G.)
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B.Morskaya 42-44, 190000 Saint-Petersburg, Russia
- Correspondence:
| | - Alexander Zakharenko
- Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.Z.); (V.C.); (I.E.); (A.N.); (E.A.); (A.T.); (A.A.); (K.G.)
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B.Morskaya 42-44, 190000 Saint-Petersburg, Russia
| | - Vladimir Chaika
- Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.Z.); (V.C.); (I.E.); (A.N.); (E.A.); (A.T.); (A.A.); (K.G.)
| | - Iurii Em
- Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.Z.); (V.C.); (I.E.); (A.N.); (E.A.); (A.T.); (A.A.); (K.G.)
| | - Anna Nikitina
- Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.Z.); (V.C.); (I.E.); (A.N.); (E.A.); (A.T.); (A.A.); (K.G.)
| | - Evgenii Avtomonov
- Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.Z.); (V.C.); (I.E.); (A.N.); (E.A.); (A.T.); (A.A.); (K.G.)
| | - Anna Tregubenko
- Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.Z.); (V.C.); (I.E.); (A.N.); (E.A.); (A.T.); (A.A.); (K.G.)
| | - Alexander Agoshkov
- Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.Z.); (V.C.); (I.E.); (A.N.); (E.A.); (A.T.); (A.A.); (K.G.)
| | - Ilya Mishakov
- Boreskov Institute of Catalysis SB RAS, Lavrentiev Ave. 5, 630090 Novosibirsk, Russia; (I.M.); (V.K.)
| | - Vladimir Kuznetsov
- Boreskov Institute of Catalysis SB RAS, Lavrentiev Ave. 5, 630090 Novosibirsk, Russia; (I.M.); (V.K.)
| | - Alexander Gusev
- Tambov State University Named after G.R. Derzhavin, Internatsionalnaya 33, 392000 Tambov, Russia;
- National University of Science and Technology «MISIS», Leninskiy prospekt 4, 119049 Moscow, Russia
| | - Soojin Park
- Inha University, 100 Inharo, Nam-gu, Incheon 22212, Korea;
| | - Kirill Golokhvast
- Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.Z.); (V.C.); (I.E.); (A.N.); (E.A.); (A.T.); (A.A.); (K.G.)
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B.Morskaya 42-44, 190000 Saint-Petersburg, Russia
- Pacific Geographical Institute, Far Eastern Branch of the Russian Academy of Sciences, Radio 7, 690041 Vladivostok, Russia
| |
Collapse
|
5
|
Chaika V, Pikula K, Vshivkova T, Zakharenko A, Reva G, Drozdov K, Vardavas AI, Stivaktakis PD, Nikolouzakis TK, Stratidakis AK, Kokkinakis MN, Kalogeraki A, Burykina T, Sarigiannis DA, Kholodov A, Golokhvast K. The toxic influence and biodegradation of carbon nanofibers in freshwater invertebrates of the families Gammaridae, Ephemerellidae, and Chironomidae. Toxicol Rep 2020; 7:947-954. [PMID: 32793424 PMCID: PMC7415770 DOI: 10.1016/j.toxrep.2020.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Carbon nanofibers had no pronounced pathomorphic effect on freshwater insects. Carbon nanofibers were absorbed in the intestine of freshwater insects. Biodegradation of carbon nanofibers was detected in the digestive tract of insects.
Carbon nanofibers (CNFs) are widely used in consumer products today. In this study, we assessed the effects of CNFs on the digestive system of three freshwater invertebrate species (Gammaridae, Ephemerellidae, and Chironomidae). The aquatic insects Diamesa sp., Drunella cryptomeria, and Gammarus suifunensis were incubated with the CNFs at the concentration of 100 mg/L during the 7-days period. Histological examination of the whole specimens and the longitudinal sections revealed no toxic effects of CNFs. However, a noticeable change in the structure of the CNFs accumulated in the intestines of the aquatic insects was found by Raman spectroscopy. The registered decrease in the relative proportion of amorphous carbon included in the CNF sample was found in the intestines of Diamesa sp. and D. cryptomeria. The registered effect can indicate a biodegradation of amorphous carbon in the digestive tract of these two insect species. In contrast, the decrease of highly structured carbons and the decrease of G-bonds intensity were registered in the digestive tract of G. suifunensis. This observation demonstrates the partial biodegradation of CNFs in the digestive tract of G. suifunensis.
Collapse
Affiliation(s)
- Vladimir Chaika
- School of Engineering, Far Eastern Federal University Vladivostok, 690950, Russia
| | - Konstantin Pikula
- School of Engineering, Far Eastern Federal University Vladivostok, 690950, Russia.,N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Saint-Petersburg, 190000, Russia
| | - Tatyana Vshivkova
- Federal Scientific Center of the East Asia Terrestrial Biodiversity FEB RAS, Vladivostok, 6900022, Russia
| | - Alexander Zakharenko
- School of Engineering, Far Eastern Federal University Vladivostok, 690950, Russia.,N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Saint-Petersburg, 190000, Russia
| | - Galina Reva
- School of Engineering, Far Eastern Federal University Vladivostok, 690950, Russia
| | - Konstantin Drozdov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, Vladivostok, 690022, Russia
| | - Alexander I Vardavas
- Laboratory of Toxicology, School of Medicine, University of Crete, Heraklion, Crete, 71003, Greece
| | | | - Taxiarchis K Nikolouzakis
- Laboratory of Anatomy-Histology Embryology, School of Medicine, University of Crete, Heraklion, Crete, 71110, Greece
| | - Antonios K Stratidakis
- Environmental Health Engineering, University School of Advanced Studies IUSS, Pavia, 27100, Italy
| | - Manolis N Kokkinakis
- Hellenic Mediterranean University, Department of Nutrition and Dietetics, Heraklion, 71004, Greece
| | - Alexandra Kalogeraki
- Department of Pathology-Cytopathology, School of Medicine, University of Crete, Heraklion, 71003, Greece
| | - Tatyana Burykina
- Department of Analytical and Forensic Medical Toxicology, M.I. Sechenov University, Moscow, 119048, Russia
| | - Dimosthenis A Sarigiannis
- Environmental Health Engineering, University School of Advanced Studies IUSS, Pavia, 27100, Italy.,Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Aleksei Kholodov
- Far East Geological Institute, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - Kirill Golokhvast
- School of Engineering, Far Eastern Federal University Vladivostok, 690950, Russia.,N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Saint-Petersburg, 190000, Russia.,Pacific Geographical Institute FEB RAS, Vladivostok, 690014, Russia
| |
Collapse
|