1
|
Han Y, Yu X, Wang G, Zha S, Shi W, Liu Z, Zhang H, Liu G. Fluoxetine impairs gamete function and fertilization success in Tegillarca granosa: environmental risks of antidepressant contamination. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 284:107364. [PMID: 40273544 DOI: 10.1016/j.aquatox.2025.107364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/10/2025] [Accepted: 04/09/2025] [Indexed: 04/26/2025]
Abstract
In recent years, the antidepressant fluoxetine (FLX) has been increasingly detected in global environments, emerging as a contaminant with significant toxic effects. However, its impact on the fertilization processes of broadcast-spawning species remains unclear. This study focuses on Tegillarca granosa, a broadcast-spawning bivalve, to evaluate the effects of fluoxetine on gametes and fertilization success. The findings revealed that FLX significantly reduced sperm motility, including curvilinear velocity, average path velocity, and straight-line velocity. Further analysis demonstrated that FLX impaired sperm motility by inhibiting ATP production and reducing cellular activity. Additionally, FLX altered Ca²⁺ homeostasis and caspase activity in both sperm and eggs, and suppressed mitochondrial energy supply in eggs. By assessing gamete collision probabilities and fusion rates, the study systematically confirms the considerable fertilization toxicity of FLX in T. granosa. These findings provide critical insights into the environmental risks posed by FLX contamination.
Collapse
Affiliation(s)
- Yu Han
- Hangzhou Normal University, Hangzhou, 311121, China; College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xingzhou Yu
- Hangzhou Normal University, Hangzhou, 311121, China
| | | | - Shanjie Zha
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhiquan Liu
- Hangzhou Normal University, Hangzhou, 311121, China
| | | | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Qian G, Wu D, Zhang L, Kortsch S. Temperature variability regulates the interactive effects of warming and pharmaceutical on aquatic ecosystem dynamics. J Theor Biol 2024; 595:111948. [PMID: 39299680 DOI: 10.1016/j.jtbi.2024.111948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 07/21/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Climate warming and pharmaceutical contaminants have profound impacts on population dynamics and ecological community structure, yet the consequences of their interactive effects remain poorly understood. Here, we explore how climate warming interacts with pharmaceutical-induced boldness change to affect aquatic ecosystems, built on an empirically well-informed food-chain model, consisting of a size-structured fish consumer, a zooplankton prey, and a fish predator. Climate warming is characterized by both daily mean temperature (DMT) and diurnal temperature range (DTR) in our model. Results show that DMT and high levels of species' boldness are the primary drivers of community instability. However, their interactive effects can lead to diverse outcomes: from predator collapse to coexistence with seasonality-driven cycles and coexistence with population interaction-driven cycles. The interactive effects are significantly modulated by daily temperature variability, where moderate DTR counteracts the destabilizing interactive effects by increasing consumer reproduction, while large temperature variability considerably reduces consumer biomass, destabilizing the community at high mean temperatures. Our analyses disentangle the respective roles of DMT, DTR and boldness in mediating the response of aquatic ecosystems to the impacts from pharmaceutical contaminants in the context of climate warming. The interactive effects of the environmental stressors reported here underscore the pressing need for studies aimed at quantifying the cumulative impacts of multiple environmental stressors on aquatic ecosystems.
Collapse
Affiliation(s)
- Guangjing Qian
- School of Mathematical Science, Yangzhou University, Yangzhou 225002, China
| | - Dan Wu
- School of Mathematical Science, Yangzhou University, Yangzhou 225002, China
| | - Lai Zhang
- School of Mathematical Science, Yangzhou University, Yangzhou 225002, China.
| | - Susanne Kortsch
- Tväminne Zoological Station, Faculty of Biological and Environmental Sciences, University of Helsinki, J.A. Palménin tie 260, 10900 Hanko, Finland
| |
Collapse
|
3
|
Rodriguez-Barucg Q, Garcia AA, Garcia-Merino B, Akinmola T, Okotie-Eboh T, Francis T, Bringas E, Ortiz I, Wade MA, Dowle A, Joyce DA, Hardman MJ, Wilkinson HN, Beltran-Alvarez P. Environmental fluoxetine promotes skin cell proliferation and wound healing. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124952. [PMID: 39277126 DOI: 10.1016/j.envpol.2024.124952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/21/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
This study investigates the effects of environmentally-relevant concentrations of fluoxetine (FLX, commercial name: Prozac) on wound healing. Pollution of water systems with pharmaceutical and personal care products, including antidepressants such as FLX and other selective serotonin reuptake inhibitors, is a growing environmental concern. Environmentally-relevant FLX concentrations are known to impact physiological functions and behaviour of aquatic animals, however, the effects of exposure on humans are currently unknown. Using a combination of human skin biopsies and a human keratinocyte cell line, we show that exposure to environmental FLX promotes wound closure. We show dose-dependent increases in wound closure with FLX concentrations from 125 ng/l. Using several -omics and pharmaceutical approaches, we demonstrate that the mechanisms underlying enhanced wound closure are increased cell proliferation and serotonin signalling. Transcriptomic analysis revealed 350 differentially expressed genes after exposure. Downregulated genes were enriched in pathways related to mitochondrial function and metabolism, while upregulated genes were associated with cell proliferation and tissue morphogenesis. Kinase profiling showed altered phosphorylation of kinases linked to the MAPK pathway. Consistent with this, phosphoproteomic analyses identified 235 differentially phosphorylated proteins after exposure, with enriched GO terms related to cell cycle, division, and protein biosynthesis. Treatment of skin biopsies and keratinocytes with ketanserin, a serotonin receptor antagonist, reversed the increase in wound closure observed upon exposure. These findings collectively show that exposure to environmental FLX promotes wound healing through modulating serotonin signalling, gene expression and protein phosphorylation, leading to enhanced cell proliferation. Our results justify a transition from the study of behavioural effects of environmental FLX in aquatic animals to the investigation of effects of exposure on wound healing in aquatic and terrestrial animals, including direct impacts on human health.
Collapse
Affiliation(s)
- Quentin Rodriguez-Barucg
- Biomedical Institute for Multimorbidity, Centre for Biomedicine, Hull York Medical School, University of Hull, Cottingham Rd, HU6 7RX, Hull, UK
| | - Angel A Garcia
- Biomedical Institute for Multimorbidity, Centre for Biomedicine, Hull York Medical School, University of Hull, Cottingham Rd, HU6 7RX, Hull, UK
| | - Belen Garcia-Merino
- Biomedical Institute for Multimorbidity, Centre for Biomedicine, Hull York Medical School, University of Hull, Cottingham Rd, HU6 7RX, Hull, UK; Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Av Castros s/n, 39005, Santander, Spain
| | - Tomilayo Akinmola
- Biomedical Institute for Multimorbidity, Centre for Biomedicine, Hull York Medical School, University of Hull, Cottingham Rd, HU6 7RX, Hull, UK
| | - Temisanren Okotie-Eboh
- Biomedical Institute for Multimorbidity, Centre for Biomedicine, Hull York Medical School, University of Hull, Cottingham Rd, HU6 7RX, Hull, UK
| | - Thomas Francis
- Biomedical Institute for Multimorbidity, Centre for Biomedicine, Hull York Medical School, University of Hull, Cottingham Rd, HU6 7RX, Hull, UK
| | - Eugenio Bringas
- Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Av Castros s/n, 39005, Santander, Spain
| | - Inmaculada Ortiz
- Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Av Castros s/n, 39005, Santander, Spain
| | - Mark A Wade
- Biomedical Institute for Multimorbidity, Centre for Biomedicine, Hull York Medical School, University of Hull, Cottingham Rd, HU6 7RX, Hull, UK
| | - Adam Dowle
- Metabolomics & Proteomics Laboratory, Bioscience Technology Facility, Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Domino A Joyce
- Evolutionary and Ecological Genomics Group, School of Natural Sciences, University of Hull, Cottingham Rd, HU6 7RX, Hull, UK
| | - Matthew J Hardman
- Biomedical Institute for Multimorbidity, Centre for Biomedicine, Hull York Medical School, University of Hull, Cottingham Rd, HU6 7RX, Hull, UK
| | - Holly N Wilkinson
- Biomedical Institute for Multimorbidity, Centre for Biomedicine, Hull York Medical School, University of Hull, Cottingham Rd, HU6 7RX, Hull, UK
| | - Pedro Beltran-Alvarez
- Biomedical Institute for Multimorbidity, Centre for Biomedicine, Hull York Medical School, University of Hull, Cottingham Rd, HU6 7RX, Hull, UK.
| |
Collapse
|
4
|
Grzesiuk M, Grabska M, Malinowska A, Świderska B, Grzesiuk E, Garbicz D, Gorecki A. Daphnia stress response to environmental concentrations of chloramphenicol-multi-omics approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:58876-58888. [PMID: 39317899 PMCID: PMC11513740 DOI: 10.1007/s11356-024-35045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
Commonly used medicines, when discarded or improperly disposed of, are known to contaminate freshwater ecosystems. Pharmaceuticals can be toxic and mutagenic, and can modify freshwater organisms, even at environmentally relevant concentrations. Chloramphenicol (CAP) is an antibiotic banned in Europe. However, it is still found in surface waters around the world. The aim of this study was to evaluate the impact of chloramphenicol contamination in freshwater on the model organism Daphnia magna. Specific life history parameters, proteome, and host-associated microbiome of four D. magna clones were analyzed during a three-generation exposure to CAP at environmental concentrations (32 ng L-1). In the first generation, no statistically significant CAP effect at the individual level was detected. After three generations, exposed animals were smaller at first reproduction and on average produced fewer offspring. The differences in D. magna's life history after CAP treatment were in accordance with proteome changes. D. magna's response to CAP presence indicates the high stress that the tested organisms are under, e.g., male production, upregulation of ubiquitin-conjugating enzyme E2 and calcium-binding protein, and downregulation of glutathione transferase. The CAP-exposed D. magna proteome profile confirms that CAP, being reactive oxygen species (ROS)-inducing compounds, contributes to structural changes in mitochondria. Microbiome analysis showed a significant difference in the Shannon index between control and CAP-exposed animals, the latter having a more diverse microbiome. Multilevel analyses, together with long exposure in the laboratory imitating conditions in a polluted environment, allow us to obtain a more complete picture of the impact of CAP on D. magna.
Collapse
Affiliation(s)
- Malgorzata Grzesiuk
- Department of Biochemistry and Microbiology, Institute of Biology; Warsaw, University of Life Sciences (SGGW), Warsaw, Poland.
| | - Marta Grabska
- Department of Biochemistry and Microbiology, Institute of Biology; Warsaw, University of Life Sciences (SGGW), Warsaw, Poland
| | - Agata Malinowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Bianka Świderska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Elzbieta Grzesiuk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Damian Garbicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
- Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, Warsaw, Poland
| | - Adrian Gorecki
- Department of Biochemistry and Microbiology, Institute of Biology; Warsaw, University of Life Sciences (SGGW), Warsaw, Poland
| |
Collapse
|
5
|
Michelangeli M, Martin JM, Robson S, Cerveny D, Walsh R, Richmond EK, Grace MR, Brand JA, Bertram MG, Ho SSY, Brodin T, Wong BBM. Pharmaceutical Pollution Alters the Structure of Freshwater Communities and Hinders Their Recovery from a Fish Predator. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13904-13917. [PMID: 39049184 PMCID: PMC11308527 DOI: 10.1021/acs.est.4c02807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Freshwater ecosystems are under threat from rising pharmaceutical pollution. While such pollutants are known to elicit biological effects on organisms, we have limited knowledge on how these effects might cascade through food-webs, disrupt ecological processes, and shape freshwater communities. In this study, we used a mesocosm experiment to explore how the community impacts of a top-order predator, the eastern mosquitofish (Gambusia holbrooki), are mediated by exposure to environmentally relevant low (measured concentration: ∼10 ng/L) and high concentrations (∼110 ng/L) of the pervasive pharmaceutical pollutant fluoxetine. We found no evidence that exposure to fluoxetine altered the consumptive effects of mosquitofish on zooplankton. However, once mosquitofish were removed from the mesocosms, zooplankton abundance recovered to a greater extent in control mesocosms compared to both low and high fluoxetine-exposed mesocosms. By the end of the experiment, this resulted in fundamental differences in community structure between the control and fluoxetine-treated mesocosms. Specifically, the control mesocosms were characterized by higher zooplankton abundances and lower algal biomass, whereas mesocosms exposed to either low or high concentrations of fluoxetine had lower zooplankton abundances and higher algal biomass. Our results suggest that fluoxetine, even at very low concentrations, can alter aquatic communities and hinder their recovery from disturbances.
Collapse
Affiliation(s)
- Marcus Michelangeli
- School
of Environment and Science, Griffith University, Nathan 4111, Australia
- Department
of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå 901 83, Sweden
- School
of Biological Sciences, Monash University, Melbourne 3800, Australia
| | - Jake M. Martin
- Department
of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå 901 83, Sweden
- School
of Biological Sciences, Monash University, Melbourne 3800, Australia
- Department
of Zoology, Stockholm University, Stockholm 114 18, Sweden
| | - Stephanie Robson
- Water
Studies Centre, School of Chemistry, Monash
University, Melbourne 3800, Australia
| | - Daniel Cerveny
- Department
of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå 901 83, Sweden
- University
of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection
of Waters, South Bohemian Research Center
of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, Vodnany 389 25, Czech Republic
| | - Robert Walsh
- Australian
Waterlife, 55 Vaughan
Chase, Wyndham Vale, Victoria 3024, Australia
| | - Erinn K. Richmond
- Environmental
Protection Authority Victoria, EPA Science, Macleod, Victoria 3085, Australia
| | - Michael R. Grace
- Water
Studies Centre, School of Chemistry, Monash
University, Melbourne 3800, Australia
| | - Jack A. Brand
- Department
of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå 901 83, Sweden
- Institute
of Zoology, Zoological Society of London, London NW1 4RY, U.K.
| | - Michael G. Bertram
- Department
of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå 901 83, Sweden
- School
of Biological Sciences, Monash University, Melbourne 3800, Australia
- Department
of Zoology, Stockholm University, Stockholm 114 18, Sweden
| | - Susie S. Y. Ho
- School
of Biological Sciences, Monash University, Melbourne 3800, Australia
| | - Tomas Brodin
- Department
of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå 901 83, Sweden
| | - Bob B. M. Wong
- School
of Biological Sciences, Monash University, Melbourne 3800, Australia
| |
Collapse
|
6
|
López-Valcárcel ME, Del Arco A, Parra G. Zooplankton vulnerability to glyphosate exacerbated by global change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169806. [PMID: 38181966 DOI: 10.1016/j.scitotenv.2023.169806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/11/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
Anthropogenic activities generate a severe footprint at a global scale. Intensive agriculture is a global change driver that affects aquatic systems due to the discharge of pollutants. This situation can be modified or aggravated by other aspects, such as the disturbance history and other global change factors. Following our study line, it is necessary to evaluate how the disturbance history combined with temperature changes can affect the functioning of aquatic systems. The objectives of this study were divided into two phases. The objectives of phase 1 were to induce vulnerability in Daphnia magna populations through a disturbance history based on sublethal glyphosate concentration exposure under different temperature conditions (20 °C and 25 °C). In phase 2, vulnerability was assessed through the exposure to subsequent stressors (starvation, increased salinity and paracetamol) combined with changes in temperature. During the glyphosate exposure period in phase 1, differences were observed in the D. magna populations with respect to temperature, with lower abundance at 25 °C than at 20 °C. However, no differences were observed in abundance regarding glyphosate treatment. The results obtained in phase 2 with the new stressors combined with temperature changes in both directions, revealed stronger effects in vulnerable populations than in control populations. In addition, the temperature changes modulated the effects in the starvation and increased salinity tests. Agrochemical sublethal concentrations induce vulnerability in D. magna populations and inflicted temperature changes can act as a modulating factor for this vulnerability, showing the complexity in assessing the responses under the multiple scenarios associated with global change.
Collapse
Affiliation(s)
- María Eugenia López-Valcárcel
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Campus de Las Lagunillas S/n, E-23071 Jaén, Spain.
| | - Ana Del Arco
- Limnological Institute, University of Konstanz, Mainaustraße 252, 78464 Konstanz, Germany.
| | - Gema Parra
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Campus de Las Lagunillas S/n, E-23071 Jaén, Spain.
| |
Collapse
|
7
|
Grzesiuk M, Grabska M, Pawelec A. Fluoxetine may interfere with learning in fish. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 105:104358. [PMID: 38154759 DOI: 10.1016/j.etap.2023.104358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/25/2023] [Indexed: 12/30/2023]
Abstract
Our study aimed to test whether fluoxetine impairs learning in fish and whether this potential impairment is reversible. Learning efficiency, with no aversive stimuli, of the Carassius carassius was analysed under different pharmaceutical conditions: (i) fish cultured without antidepressant (control), (ii) fish exposed to fluoxetine for 21 days (fluoxetine), and (iii) fish exposed to fluoxetine for 21 days and then cultured without fluoxetine for another 21 days (recovery). We exposed animals to environmental concentrations (360 ng L-1) of antidepressant. The learning rate was measured by timing how long it took the individual fish to find food and start feeding, six days in a row. The control and recovery fish took significantly less time to start eating over the six days. Control fish start eating 14 times faster than the fluoxetine fish. Fluoxetine can significantly affect learning and 21-day recovery period is not enough to fully restore the original learning abilities.
Collapse
Affiliation(s)
- Malgorzata Grzesiuk
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Warsaw, Poland.
| | - Marta Grabska
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Warsaw, Poland
| | - Alicja Pawelec
- Department of Hydrobiology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| |
Collapse
|
8
|
Papaioannou C, Geladakis G, Kommata V, Batargias C, Lagoumintzis G. Insights in Pharmaceutical Pollution: The Prospective Role of eDNA Metabarcoding. TOXICS 2023; 11:903. [PMID: 37999555 PMCID: PMC10675236 DOI: 10.3390/toxics11110903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023]
Abstract
Environmental pollution is a growing threat to natural ecosystems and one of the world's most pressing concerns. The increasing worldwide use of pharmaceuticals has elevated their status as significant emerging contaminants. Pharmaceuticals enter aquatic environments through multiple pathways related to anthropogenic activity. Their high consumption, insufficient waste treatment, and the incapacity of organisms to completely metabolize them contribute to their accumulation in aquatic environments, posing a threat to all life forms. Various analytical methods have been used to quantify pharmaceuticals. Biotechnology advancements based on next-generation sequencing (NGS) techniques, like eDNA metabarcoding, have enabled the development of new methods for assessing and monitoring the ecotoxicological effects of pharmaceuticals. eDNA metabarcoding is a valuable biomonitoring tool for pharmaceutical pollution because it (a) provides an efficient method to assess and predict pollution status, (b) identifies pollution sources, (c) tracks changes in pharmaceutical pollution levels over time, (d) assesses the ecological impact of pharmaceutical pollution, (e) helps prioritize cleanup and mitigation efforts, and (f) offers insights into the diversity and composition of microbial and other bioindicator communities. This review highlights the issue of aquatic pharmaceutical pollution while emphasizing the importance of using modern NGS-based biomonitoring actions to assess its environmental effects more consistently and effectively.
Collapse
Affiliation(s)
- Charikleia Papaioannou
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | - George Geladakis
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | - Vasiliki Kommata
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | - Costas Batargias
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | | |
Collapse
|