1
|
Reid JM, Dickel L, Keller LF, Nietlisbach P, Arcese P. Multi-generation genetic contributions of immigrants reveal cryptic elevated and sex-biased effective gene flow within a natural meta-population. Ecol Lett 2024; 27:e14377. [PMID: 38361472 DOI: 10.1111/ele.14377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/17/2024]
Abstract
Impacts of immigration on micro-evolution and population dynamics fundamentally depend on net rates and forms of resulting gene flow into recipient populations. Yet, the degrees to which observed rates and sex ratios of physical immigration translate into multi-generational genetic legacies have not been explicitly quantified in natural meta-populations, precluding inference on how movements translate into effective gene flow and eco-evolutionary outcomes. Our analyses of three decades of complete song sparrow (Melospiza melodia) pedigree data show that multi-generational genetic contributions from regular natural immigrants substantially exceeded those from contemporary natives, consistent with heterosis-enhanced introgression. However, while contributions from female immigrants exceeded those from female natives by up to three-fold, male immigrants' lineages typically went locally extinct soon after arriving. Both the overall magnitude, and the degree of female bias, of effective gene flow therefore greatly exceeded those which would be inferred from observed physical arrivals, altering multiple eco-evolutionary implications of immigration.
Collapse
Affiliation(s)
- Jane M Reid
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Lisa Dickel
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Lukas F Keller
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Natural History Museum, University of Zurich, Zurich, Switzerland
| | - Pirmin Nietlisbach
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Peter Arcese
- Department of Forest & Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Archambeau J, Benito Garzón M, de Miguel M, Brachi B, Barraquand F, González-Martínez SC. Reduced within-population quantitative genetic variation is associated with climate harshness in maritime pine. Heredity (Edinb) 2023; 131:68-78. [PMID: 37221230 PMCID: PMC10313832 DOI: 10.1038/s41437-023-00622-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/25/2023] Open
Abstract
How evolutionary forces interact to maintain genetic variation within populations has been a matter of extensive theoretical debates. While mutation and exogenous gene flow increase genetic variation, stabilizing selection and genetic drift are expected to deplete it. To date, levels of genetic variation observed in natural populations are hard to predict without accounting for other processes, such as balancing selection in heterogeneous environments. We aimed to empirically test three hypotheses: (i) admixed populations have higher quantitative genetic variation due to introgression from other gene pools, (ii) quantitative genetic variation is lower in populations from harsher environments (i.e., experiencing stronger selection), and (iii) quantitative genetic variation is higher in populations from heterogeneous environments. Using growth, phenological and functional trait data from three clonal common gardens and 33 populations (522 clones) of maritime pine (Pinus pinaster Aiton), we estimated the association between the population-specific total genetic variances (i.e., among-clone variances) for these traits and ten population-specific indices related to admixture levels (estimated based on 5165 SNPs), environmental temporal and spatial heterogeneity and climate harshness. Populations experiencing colder winters showed consistently lower genetic variation for early height growth (a fitness-related trait in forest trees) in the three common gardens. Within-population quantitative genetic variation was not associated with environmental heterogeneity or population admixture for any trait. Our results provide empirical support for the potential role of natural selection in reducing genetic variation for early height growth within populations, which indirectly gives insight into the adaptive potential of populations to changing environments.
Collapse
Affiliation(s)
- Juliette Archambeau
- INRAE, Univ. Bordeaux, BIOGECO, F-33610, Cestas, France.
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, UK.
| | | | - Marina de Miguel
- INRAE, Univ. Bordeaux, BIOGECO, F-33610, Cestas, France
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d'Ornon, France
| | | | | | | |
Collapse
|
3
|
Carbeck K, Wang T, Reid JM, Arcese P. Adaptation to climate change through seasonal migration revealed by climatic versus demographic niche models. GLOBAL CHANGE BIOLOGY 2022; 28:4260-4275. [PMID: 35366358 DOI: 10.1111/gcb.16185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Predicting the geographic range of species and their response to climatic variation and change are entwined goals in conservation and evolutionary ecology. Species distribution models (SDMs) are foundational in this effort and used to visualize the geographic range of species as the spatial representation of its realized niche. SDMs are also used to forecast range shifts under climate change, but often in the absence of empirical evidence that climate limits population growth. We explored the influence of climate on demography, seasonal migration, and the extent of the geographic range in song sparrows (Melospiza melodia), a species thought to display marked local adaptation to regional climate. To do so, we developed SDMs to predict the demographic and climate niches of migratory and resident song sparrows across our study area in western North America from California to Alaska, using 48 years of demographic data from a focal population in British Columbia and 1.2 million continental-scale citizen science observations. Spatial agreement of our demographic and climate niche models in the region of our focal population was strong (76%), supporting the hypothesis that demographic performance and the occurrence of seasonal migration varied predictably with climatic conditions. In contrast, agreement at the northern (58%) and southern (40%) extents of our study area was lower, as expected if the factors limiting population growth vary regionally. Our results support the hypothesis that local climate drives spatial variation in the occurrence of seasonal migration in song sparrows by limiting the fitness of year-round residents, and suggest that climate warming has favored range expansions and facilitated an upward shift in elevational range song sparrows that forgo seasonal migration. Our work highlights the potential role of seasonal migration in climate adaptation and limits on the reliability of climate niche models not validated with demographic data.
Collapse
Affiliation(s)
- Katherine Carbeck
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tongli Wang
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jane M Reid
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
- Centre for Biodiversity Dynamics, Institutt for Biologi, NTNU, Trondheim, Norway
| | - Peter Arcese
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Tschol M, Reid JM, Bocedi G. Strong spatial population structure shapes the temporal coevolutionary dynamics of costly female preference and male display. Evolution 2021; 76:636-648. [PMID: 34964487 PMCID: PMC9302702 DOI: 10.1111/evo.14426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/17/2021] [Accepted: 11/26/2021] [Indexed: 12/01/2022]
Abstract
Female mating preferences for exaggerated male display traits are commonplace. Yet, comprehensive understanding of the evolution and persistence of costly female preference through indirect (Fisherian) selection in finite populations requires some explanation for the persistence of additive genetic variance (Va) underlying sexual traits, given that directional preference is expected to deplete Va in display and hence halt preference evolution. However, the degree to which Va, and hence preference‐display coevolution, may be prolonged by spatially variable sexual selection arising solely from limited gene flow and genetic drift within spatially structured populations has not been examined. Our genetically and spatially explicit model shows that spatial population structure arising in an ecologically homogeneous environment can facilitate evolution and long‐term persistence of costly preference given small subpopulations and low dispersal probabilities. Here, genetic drift initially creates spatial variation in female preference, leading to persistence of Va in display through “migration‐bias” of genotypes maladapted to emerging local sexual selection, thus fueling coevolution of costly preference and display. However, costs of sexual selection increased the probability of subpopulation extinction, limiting persistence of high preference‐display genotypes. Understanding long‐term dynamics of sexual selection systems therefore requires joint consideration of coevolution of sexual traits and metapopulation dynamics.
Collapse
Affiliation(s)
- Maximilian Tschol
- School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK
| | - Jane M Reid
- School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK.,Centre for Biodiversity Dynamics, Institutt for Biologi, NTNU, Realfagbygget, Gløshaugen, Høgskoleringen 5, Trondheim, N-7491, Norway
| | - Greta Bocedi
- School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK
| |
Collapse
|
5
|
Dickel L, Arcese P, Nietlisbach P, Keller LF, Jensen H, Reid JM. Are immigrants outbred and unrelated? Testing standard assumptions in a wild metapopulation. Mol Ecol 2021; 30:5674-5686. [PMID: 34516687 DOI: 10.1111/mec.16173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 11/30/2022]
Abstract
Immigration into small recipient populations is expected to alleviate inbreeding and increase genetic variation, and hence facilitate population persistence through genetic and/or evolutionary rescue. Such expectations depend on three standard assumptions: that immigrants are outbred, unrelated to existing natives at arrival, and unrelated to each other. These assumptions are rarely explicitly verified, including in key field systems in evolutionary ecology. Yet, they could be violated due to non-random or repeated immigration from adjacent small populations. We combined molecular genetic marker data for 150-160 microsatellite loci with comprehensive pedigree data to test the three assumptions for a song sparrow (Melospiza melodia) population that is a model system for quantifying effects of inbreeding and immigration in the wild. Immigrants were less homozygous than existing natives on average, with mean homozygosity that closely resembled outbred natives. Immigrants can therefore be considered outbred on the focal population scale. Comparisons of homozygosity of real or hypothetical offspring of immigrant-native, native-native and immigrant-immigrant pairings implied that immigrants were typically unrelated to existing natives and to each other. Indeed, immigrants' offspring would be even less homozygous than outbred individuals on the focal population scale. The three standard assumptions of population genetic and evolutionary theory were consequently largely validated. Yet, our analyses revealed some deviations that should be accounted for in future analyses of heterosis and inbreeding depression, implying that the three assumptions should be verified in other systems to probe patterns of non-random or repeated dispersal and facilitate precise and unbiased estimation of key evolutionary parameters.
Collapse
Affiliation(s)
- Lisa Dickel
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Peter Arcese
- Department of Forest & Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pirmin Nietlisbach
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Lukas F Keller
- Department of Evolutionary Biology & Environmental Studies, University of Zurich, Zurich, Switzerland.,Zoological Museum, University of Zurich, Zurich, Switzerland
| | - Henrik Jensen
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jane M Reid
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway.,School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
6
|
Ranke PS, Araya-Ajoy YG, Ringsby TH, Pärn H, Rønning B, Jensen H, Wright J, Saether BE. Spatial structure and dispersal dynamics in a house sparrow metapopulation. J Anim Ecol 2021; 90:2767-2781. [PMID: 34455579 DOI: 10.1111/1365-2656.13580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 08/13/2021] [Indexed: 11/29/2022]
Abstract
The effects of spatial structure on metapopulation dynamics depend upon the interaction between local population dynamics and dispersal, and how this relationship is affected by the geographical isolation and spatial heterogeneity in habitat characteristics. Our aim is to examine how emigration and immigration of house sparrows Passer domesticus in a Norwegian archipelagic metapopulation are affected by key factors predicted by classic metapopulation models to affect dispersal-spatial and temporal variation in population size, inter-island distance, local demography and habitat characteristics. This metapopulation can be divided into two major habitat types: (a) islands closer to the mainland where sparrows breed in colonies on farms, and (b) islands without farms, situated farther away from the mainland where sparrows are exposed to harsher environmental conditions. Dispersal was spatially structured within the metapopulation; there was proportionally and numerically less emigration and immigration involving farm islands, as compared to non-farm islands. Furthermore, emigration and immigration occurred mostly between nearby islands. Moreover, emigration in response to spatial differences in mean population size differed between the habitat types, but populations with large mean received more immigrants in both habitat types. The number of emigrants and immigrants was negatively related to long-term recruit production, which was not the case in non-farm islands. The proportion and number of emigrants was positively related to temporal increases in recruit production on farm islands, however not on non-farm islands. Our results demonstrate that spatial heterogeneity in environmental conditions influences how spatial variation in long-term mean population size, and temporal and spatial variation in recruit production, affects dispersal dynamics. The spatial structure of this metapopulation is therefore best described by a spatially explicit model in which the exchange of individuals within each habitat type is strongly affected by the degree of geographical isolation, population size and recruit production. However, these relationships differed between the two habitat types; non-farm islands showing similarities to a mainland-island model type of structure, whereas farm islands showed features more associated with source-sink or balanced dispersal models. Such differential dispersal dynamics between habitat types are expected to have important consequences for the ecological and evolutionary dynamics within this metapopulation.
Collapse
Affiliation(s)
- Peter S Ranke
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Yimen G Araya-Ajoy
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Thor Harald Ringsby
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Henrik Pärn
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bernt Rønning
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Henrik Jensen
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jonathan Wright
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bernt-Erik Saether
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
7
|
Reid JM, Arcese P, Nietlisbach P, Wolak ME, Muff S, Dickel L, Keller LF. Immigration counter-acts local micro-evolution of a major fitness component: Migration-selection balance in free-living song sparrows. Evol Lett 2021; 5:48-60. [PMID: 33552535 PMCID: PMC7857281 DOI: 10.1002/evl3.214] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/28/2020] [Accepted: 12/18/2020] [Indexed: 01/11/2023] Open
Abstract
Ongoing adaptive evolution, and resulting “evolutionary rescue” of declining populations, requires additive genetic variation in fitness. Such variation can be increased by gene flow resulting from immigration, potentially facilitating evolution. But, gene flow could in fact constrain rather than facilitate local adaptive evolution if immigrants have low additive genetic values for local fitness. Local migration‐selection balance and micro‐evolutionary stasis could then result. However, key quantitative genetic effects of natural immigration, comprising the degrees to which gene flow increases the total local additive genetic variance yet counteracts local adaptive evolutionary change, have not been explicitly quantified in wild populations. Key implications of gene flow for population and evolutionary dynamics consequently remain unclear. Our quantitative genetic analyses of long‐term data from free‐living song sparrows (Melospiza melodia) show that mean breeding value for local juvenile survival to adulthood, a major component of fitness, increased across cohorts more than expected solely due to drift. Such micro‐evolutionary change should be expected given nonzero additive genetic variance and consistent directional selection. However, this evolutionary increase was counteracted by negative additive genetic effects of recent immigrants, which increased total additive genetic variance but prevented a net directional evolutionary increase in total additive genetic value. These analyses imply an approximate quantitative genetic migration‐selection balance in a major fitness component, and hence demonstrate a key mechanism by which substantial additive genetic variation can be maintained yet decoupled from local adaptive evolutionary change.
Collapse
Affiliation(s)
- Jane M Reid
- Centre for Biodiversity Dynamics NTNU Trondheim Norway.,School of Biological Sciences University of Aberdeen Aberdeen UK
| | - Peter Arcese
- Forest & Conservation Sciences University of British Columbia Vancouver British Columbia Canada
| | - Pirmin Nietlisbach
- School of Biological Sciences Illinois State University Normal Illinois USA
| | - Matthew E Wolak
- Department of Biological Sciences Auburn University Auburn Alaska USA
| | - Stefanie Muff
- Centre for Biodiversity Dynamics NTNU Trondheim Norway.,Department of Mathematical Sciences NTNU Trondheim Norway
| | - Lisa Dickel
- Centre for Biodiversity Dynamics NTNU Trondheim Norway
| | - Lukas F Keller
- Department of Evolutionary Biology & Environmental Studies University of Zurich Zurich Switzerland.,Zoological Museum University of Zurich Zurich Switzerland
| |
Collapse
|