1
|
Hoyal Cuthill JF, Guttenberg N, Huertas B. Male and female contributions to diversity among birdwing butterfly images. Commun Biol 2024; 7:774. [PMID: 38951581 PMCID: PMC11217504 DOI: 10.1038/s42003-024-06376-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/23/2024] [Indexed: 07/03/2024] Open
Abstract
Machine learning (ML) newly enables tests for higher inter-species diversity in visible phenotype (disparity) among males versus females, predictions made from Darwinian sexual selection versus Wallacean natural selection, respectively. Here, we use ML to quantify variation across a sample of > 16,000 dorsal and ventral photographs of the sexually dimorphic birdwing butterflies (Lepidoptera: Papilionidae). Validation of image embedding distances, learnt by a triplet-trained, deep convolutional neural network, shows ML can be used for automated reconstruction of phenotypic evolution achieving measures of phylogenetic congruence to genetic species trees within a range sampled among genetic trees themselves. Quantification of sexual disparity difference (male versus female embedding distance), shows sexually and phylogenetically variable inter-species disparity. Ornithoptera exemplify high embedded male image disparity, diversification of selective optima in fitted multi-peak OU models and accelerated divergence, with cases of extreme divergence in allopatry and sympatry. However, genus Troides shows inverted patterns, including comparatively static male embedded phenotype, and higher female than male disparity - though within an inferred selective regime common to these females. Birdwing shapes and colour patterns that are most phenotypically distinctive in ML similarity are generally those of males. However, either sex can contribute majoritively to observed phenotypic diversity among species.
Collapse
Affiliation(s)
| | | | - Blanca Huertas
- Department of Science, Natural History Museum, London, UK
| |
Collapse
|
2
|
van der Bijl W, Mank JE. Sexual selection: Changing the definition of the fittest. Curr Biol 2023; 33:R277-R279. [PMID: 37040712 DOI: 10.1016/j.cub.2023.02.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Sexual selection has long been known to produce rapid evolution of spectacular traits. A new study reveals how sexual selection can also rapidly reshape the genome.
Collapse
Affiliation(s)
- Wouter van der Bijl
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Judith E Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
3
|
Basu DN, Bhaumik V, Kunte K. The tempo and mode of character evolution in the assembly of mimetic communities. Proc Natl Acad Sci U S A 2023; 120:e2203724120. [PMID: 36577073 PMCID: PMC9910590 DOI: 10.1073/pnas.2203724120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/28/2022] [Indexed: 12/29/2022] Open
Abstract
Multitrait adaptive evolution is shaped by factors such as phylogenetic and functional constraints as well as the intensity and direction of selection. The tempo and mode of such multitrait evolution can differentially impact the assembly of biological communities. Batesian mimicry, in which undefended prey gain a fitness advantage by evolving a resemblance to aposematic models, involves adaptive evolution of multiple traits such as color patterns and flight morphology. To elucidate the evolutionary mechanisms of such multitrait adaptations, we evaluated the tempo and mode of adaptive convergence in flight morphology and color patterns in mimetic butterfly communities. We found that compared with Batesian mimics or nonmimetic sister species, models showed significantly faster rates of aposematic trait evolution, creating adaptive peaks for mimicry. At the community level, the degree of mimetic resemblance between mimics and models was positively correlated with the rate of character evolution, but independent of phylogenetic relatedness. Monomorphic mimics and female-limited mimics converged on the color patterns of models to a similar degree, showing that there were no constraints on mimetic trait evolution with respect to sex-specific selections. Convergence was driven by the greater lability of color patterns, which evolved at significantly faster rates than the phylogenetically conserved flight morphological traits, indicating that the two traits evolve under differential selection pressures and/or functional and genetic constraints. These community-wide patterns show that during the assembly of a community, the tempo of adaptive evolution is nonlinear, and specific to the underlying functional relationships and key traits that define the community.
Collapse
Affiliation(s)
- Dipendra Nath Basu
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore560065, India
- SASTRA University, Tirumalaisamudram, Thanjavur613401, India
| | - Vaishali Bhaumik
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore560065, India
| | - Krushnamegh Kunte
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore560065, India
| |
Collapse
|
4
|
Ilić M, Chen PJ, Pirih P, Meglič A, Prevc J, Yago M, Belušič G, Arikawa K. Simple and complex, sexually dimorphic retinal mosaic of fritillary butterflies. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210276. [PMID: 36058236 PMCID: PMC9441240 DOI: 10.1098/rstb.2021.0276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/30/2022] [Indexed: 01/23/2023] Open
Abstract
Butterflies have variable sets of spectral photoreceptors that underlie colour vision. The photoreceptor organization may be optimized for the detection of body coloration. Fritillaries (Argynnini) are nymphalid butterflies exhibiting varying degrees of sexual dimorphism in wing coloration. In two sister species, the females have orange (Argynnis paphia) and dark wings (Argynnis sagana), respectively, while the males of both species have orange wings with large patches of pheromone-producing androconia. In spite of the differences in female coloration, the eyes of both species exhibit an identical sexual dimorphism. The female eyeshine is uniform yellow, while the males have a complex retinal mosaic with yellow and red-reflecting ommatidia. We found the basic set of ultraviolet-, blue- and green-peaking photoreceptors in both sexes. Males additionally have three more photoreceptor classes, peaking in green, yellow and red, respectively. The latter is the basal R9, indirectly measured through hyperpolarizations in the green-peaking R1-2. In many nymphalid tribes, including the closely related Heliconiini, the retinal mosaic is complex in both sexes. We hypothesize that the simple mosaic of female Argynnini is a secondary reduction, possibly driven by the use of olfaction for intraspecific recognition, whereas vision remains the primary sense for the task in the males. This article is part of the theme issue 'Understanding colour vision: molecular, physiological, neuronal and behavioural studies in arthropods'.
Collapse
Affiliation(s)
- Marko Ilić
- Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
- Laboratory of Neuroethology, Sokendai - The Graduate University for Advanced Studies, 240-0193 Hayama, Japan
| | - Pei-Ju Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, 11529 Taipei, Taiwan
- Laboratory of Neuroethology, Sokendai - The Graduate University for Advanced Studies, 240-0193 Hayama, Japan
| | - Primož Pirih
- Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Andrej Meglič
- Eye Hospital, University Medical Centre, Grablovičeva 46, 1000 Ljubljana, Slovenia
| | - Jošt Prevc
- Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Masaya Yago
- The University Museum, The University of Tokyo, Hongo, 113-0033 Tokyo, Japan
| | - Gregor Belušič
- Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Kentaro Arikawa
- Laboratory of Neuroethology, Sokendai - The Graduate University for Advanced Studies, 240-0193 Hayama, Japan
| |
Collapse
|
5
|
Maisonneuve L, Smadi C, Llaurens V. Evolutionary origins of sexual dimorphism: Lessons from female-limited mimicry in butterflies. Evolution 2022; 76:2404-2423. [PMID: 36005294 DOI: 10.1111/evo.14599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 07/18/2022] [Indexed: 01/22/2023]
Abstract
The striking female-limited mimicry observed in some butterfly species is a text-book example of sexually dimorphic trait submitted to intense natural selection. Two main evolutionary hypotheses, based on natural and sexual selection respectively, have been proposed. Predation pressure favoring mimicry toward defended species could be higher in females because of their slower flight, and thus overcome developmental constraints favoring the ancestral trait that limits the evolution of mimicry in males but not in females. Alternatively, the evolution of mimicry in males could be limited by female preference for non-mimetic males. However, the evolutionary origin of female preference for non-mimetic males remains unclear. Here, we hypothesize that costly sexual interactions between individuals from distinct sympatric species might intensify because of mimicry, therefore promoting female preference for non-mimetic trait. Using a mathematical model, we compare the evolution of female-limited mimicry when assuming either alternative selective hypotheses. We show that the patterns of divergence of male and female trait from the ancestral traits can differ between these selection regimes. We specifically highlight that divergence in female trait is not a signature of the effect of natural selection. Our results also evidence why female-limited mimicry is more frequently observed in Batesian mimics.
Collapse
Affiliation(s)
- Ludovic Maisonneuve
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP 50, 57 rue Cuvier, Paris, 75005, France
| | - Charline Smadi
- Univ. Grenoble Alpes, INRAE, LESSEM, France, Saint-Martin-d'Hères, 38402.,Univ. Grenoble Alpes, CNRS, Institut Fourier, Gières, 38610, France
| | - Violaine Llaurens
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP 50, 57 rue Cuvier, Paris, 75005, France
| |
Collapse
|
6
|
Latitudinal gradients in avian colourfulness. Nat Ecol Evol 2022; 6:622-629. [PMID: 35379937 DOI: 10.1038/s41559-022-01714-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/25/2022] [Indexed: 12/17/2022]
Abstract
It has long been suggested that tropical species are generally more colourful than temperate species, but whether latitudinal gradients in organismal colourfulness exist remains controversial. Here we quantify global latitudinal trends in colourfulness (within-individual colour diversity) by collating and analysing a photographic dataset of whole-body plumage reflectance information for >4,500 species of passerine birds. We show that male and female birds of tropical passerine species are generally more colourful than their temperate counterparts, both on average and in the extreme. We also show that these geographic gradients can be explained in part by the effects of several latitude-related factors related to classic hypotheses for climatic and ecological determinants of organismal colourfulness. Taken together, our results reveal that species' colourfulness peaks in the tropics for passerine birds, confirming the existence of a long-suspected yet hitherto elusive trend in the distribution of global biodiversity.
Collapse
|
7
|
Moraes SDS, Murillo-Ramos L, Duarte M. Evolution of sexual dimorphism and polychromatism in a lineage of tiger moths (Lepidoptera: Erebidae): advancing knowledge of a taxonomically chaotic group. Cladistics 2021; 37:728-764. [PMID: 34841591 DOI: 10.1111/cla.12458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2021] [Indexed: 10/21/2022] Open
Abstract
Pericopina is divided into 36 genera, with the greatest diversity recorded in the Neotropics. Studies on the taxonomy and systematics of pericopines are scarce, and one of the few phylogenetic hypotheses available in the literature places some Afro-Indo-Malayan lineages among the Neotropical representatives. Through a survey of adult morphological characters, we analyzed the phylogenetic relationships in Pericopina including Nyctemera and other Afro-Indo-Malayan genera as putative members of this subtribe. Additionally, we tested the monophyly of Dysschema, a key genus to understanding the evolutionary patterns of the extreme sexual dimorphism and polychromatism in Pericopina. Our cladistic analysis, based on 162 morphological characters, suggests that Pericopina is a polyphyletic group. Xenosoma is the only genus among the Neotropical pericopines related to the Afro-Indo-Malayan species; Scearctia is closely related to Lithosiini, and Pteroodes shows morphological similarities with Phaegopterina. Additionally, Seileria is a new junior subjective synonym of Thyrgis. The monophyly of Dysschema is supported only if the monotypic genera Myserla and Are are included. These are herein designated new synonyms of Dysschema. Our findings suggest that intersexual polychromatism and intersexual polymorphism for wing characters have arisen multiple times in the evolutionary history of Pericopina. Intersexual polychromatism is also widely distributed within Dysschema, perhaps representing a derived feature with multiple origins in the genus.
Collapse
Affiliation(s)
- Simeão de Souza Moraes
- Departamento de Biologia Animal, Instituto de Biociências, Universidade Estadual de Campinas, Avenida Bertrand Russell, 13083-970, Barão Geraldo, Campinas, Brazil.,Museu de Zoologia da Universidade de São Paulo, Avenida Nazaré 481, 04263-000, Ipiranga, São Paulo, Brazil
| | - Leidys Murillo-Ramos
- Department of Biology, Universidad de Sucre, Carrera 28 No 5-267 Barrio Puerta Roja Sincelejo, Sucre, Colombia
| | - Marcelo Duarte
- Museu de Zoologia da Universidade de São Paulo, Avenida Nazaré 481, 04263-000, Ipiranga, São Paulo, Brazil
| |
Collapse
|
8
|
Kang C, Im S, Lee WY, Choi Y, Stuart-Fox D, Huertas B. Climate predicts both visible and near-infrared reflectance in butterflies. Ecol Lett 2021; 24:1869-1879. [PMID: 34174001 DOI: 10.1111/ele.13821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/22/2021] [Accepted: 05/13/2021] [Indexed: 01/09/2023]
Abstract
Climatic gradients frequently predict large-scale ecogeographical patterns in animal coloration, but the underlying causes are often difficult to disentangle. We examined ecogeographical patterns of reflectance among 343 European butterfly species and isolated the role of selection for thermal benefits by comparing animal-visible and near-infrared (NIR) wavebands. NIR light accounts for ~50% of solar energy but cannot be seen by animals so functions primarily in thermal control. We found that reflectance of both dorsal and ventral surfaces shows thermally adaptive correlations with climatic factors including temperature and precipitation. This adaptive variation was more prominent in NIR than animal-visible wavebands and for body regions (thorax-abdomen and basal wings) that are most important for thermoregulation. Thermal environments also predicted the reflectance difference between dorsal and ventral surfaces, which may be due to modulation between requirements for heating and cooling. These results highlight the importance of climatic gradients in shaping the reflectance properties of butterflies at a continent-wide scale.
Collapse
Affiliation(s)
- Changku Kang
- Department of Biosciences, Mopko National University, Muan, South Korea
| | - Sehyeok Im
- Division of Life Sciences, Korea Polar Research Institute, Incheon, South Korea.,University of Science and Technology, Daejeon, South Korea
| | - Won Young Lee
- Division of Life Sciences, Korea Polar Research Institute, Incheon, South Korea
| | - Yunji Choi
- Department of Life Sciences, Imperial College London, London, UK
| | - Devi Stuart-Fox
- School of BioSciences, The University of Melbourne, Parkville, Vic, Australia
| | - Blanca Huertas
- Department of Life Sciences, Natural History Museum London, London, UK
| |
Collapse
|
9
|
Skeels A, Dinnage R, Medina I, Cardillo M. Ecological interactions shape the evolution of flower color in communities across a temperate biodiversity hotspot. Evol Lett 2021; 5:277-289. [PMID: 34136275 PMCID: PMC8190448 DOI: 10.1002/evl3.225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/17/2021] [Accepted: 03/09/2021] [Indexed: 01/11/2023] Open
Abstract
Processes driving the divergence of floral traits may be integral to the extraordinary richness of flowering plants and the assembly of diverse plant communities. Several models of pollinator-mediated floral evolution have been proposed; floral divergence may (i) be directly involved in driving speciation or may occur after speciation driven by (ii) drift or local adaptation in allopatry or (iii) negative interactions between species in sympatry. Here, we generate predictions for patterns of trait divergence and community assembly expected under these three models, and test these predictions in Hakea (Proteaceae), a diverse genus in the Southwest Australian biodiversity hotspot. We quantified functional richness for two key floral traits (pistil length and flower color), as well as phylogenetic distances between species, across ecological communities, and compared these to patterns generated from null models of community assembly. We also estimated the statistical relationship between rates of trait evolution and lineage diversification across the phylogeny. Patterns of community assembly suggest that flower color, but not floral phenology or morphology, or phylogenetic relatedness, is more divergent in communities than expected. Rates of lineage diversification and flower color evolution were negatively correlated across the phylogeny and rates of flower colour evolution were positively related to branching times. These results support a role for diversity-dependent species interactions driving floral divergence during the Hakea radiation, contributing to the development of the extraordinary species richness of southwest Australia.
Collapse
Affiliation(s)
- Alexander Skeels
- Division of Ecology and Evolution, Research School of BiologyAustralian National UniversityCanberraACT 0200Australia
- Landscape Ecology, Institute of Terrestrial Ecosystems, Department of Environmental Systems ScienceETH ZürichZürichCH‐8092Switzerland
- Unit of Land Change Science, Swiss Federal Research Institute for ForestSnow and Landscape WSLBirmensdorfCH‐8903Switzerland
| | - Russell Dinnage
- Institute for Applied EcologyUniversity of CanberraCanberraACT 2617Australia
| | - Iliana Medina
- Division of Ecology and Evolution, Research School of BiologyAustralian National UniversityCanberraACT 0200Australia
- School of BioSciencesUniversity of MelbourneMelbourneVIC 3010Australia
| | - Marcel Cardillo
- Division of Ecology and Evolution, Research School of BiologyAustralian National UniversityCanberraACT 0200Australia
| |
Collapse
|
10
|
Reuland C, Simmons LW, Lüpold S, Fitzpatrick JL. Weapons Evolve Faster Than Sperm in Bovids and Cervids. Cells 2021; 10:cells10051062. [PMID: 33947050 PMCID: PMC8145498 DOI: 10.3390/cells10051062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
In polyandrous species, males face reproductive competition both before and after mating. Sexual selection thus shapes the evolution of both pre- and postcopulatory traits, creating competing demands on resource allocation to different reproductive episodes. Traits subject to strong selection exhibit accelerated rates of phenotypic divergence, and examining evolutionary rates may inform us about the relative importance and potential fitness consequences of investing in traits under either pre- or postcopulatory sexual selection. Here, we used a comparative approach to assess evolutionary rates of key competitive traits in two artiodactyl families, bovids (family Bovidae) and cervids (family Cervidae), where male–male competition can occur before and after mating. We quantified and compared evolutionary rates of male weaponry (horns and antlers), body size/mass, testes mass, and sperm morphometrics. We found that weapons evolve faster than sperm dimensions. In contrast, testes and body mass evolve at similar rates. These results suggest strong, but differential, selection on both pre- and postcopulatory traits in bovids and cervids. Furthermore, we documented distinct evolutionary rates among different sperm components, with sperm head and midpiece evolving faster than the flagellum. Finally, we demonstrate that, despite considerable differences in weapon development between bovids and cervids, the overall evolutionary patterns between these families were broadly consistent.
Collapse
Affiliation(s)
- Charel Reuland
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18b, 106 91 Stockholm, Sweden;
| | - Leigh W. Simmons
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia;
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland;
| | - John L. Fitzpatrick
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18b, 106 91 Stockholm, Sweden;
- Correspondence:
| |
Collapse
|