1
|
Prediger C, Ferreira EA, Zorzato SV, Hua-Van A, Klasson L, Miller WJ, Yassin A, Madi-Ravazzi L. Saltational Episodes of Reticulate Evolution in the Drosophila saltans Species Group. Mol Biol Evol 2024; 41:msae250. [PMID: 39661651 DOI: 10.1093/molbev/msae250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024] Open
Abstract
Phylogenomics reveals reticulate evolution to be widespread across taxa, but whether reticulation is due to low statistical power or it is a true evolutionary pattern remains a field of study. Here, we investigate the phylogeny and quantify reticulation in the Drosophila saltans species group, a Neotropical clade of the subgenus Sophophora comprising 23 species whose relationships have long been problematic. Phylogenetic analyses revealed conflicting topologies between the X chromosome, autosomes and the mitochondria. We extended the ABBA-BABA test of asymmetry in phylogenetic discordance to cases where no "true" species tree could be inferred, and applied our new test (called 2A2B) to whole genome data and to individual loci. We used four strategies, two based on our new assemblies using either conserved genes or ≥50 kb-long syntenic blocks with conserved collinearity across Neotropical Sophophora, and two consisted of windows from pseudo-reference genomes aligned to either an ingroup or outgroup species. Evidence for reticulation varied among the strategies, being lowest in the synteny-based approach, where it did not exceed ∼7% of the blocks in the most conflicting species quartets. High incidences of reticulation were restricted to three nodes on the tree that coincided with major paleogeographical events in South America. Our results identify possible technical biases in quantifying reticulate evolution and indicate that episodic rapid radiations have played a major role in the evolution of a largely understudied Neotropical clade.
Collapse
Affiliation(s)
- Carolina Prediger
- Department of Biology, UNESP-São Paulo State University, São José do Rio Preto, São Paulo, Brazil
- Laboratoire Évolution, Génomes, Comportement et Écologie, CNRS, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Erina A Ferreira
- Laboratoire Évolution, Génomes, Comportement et Écologie, CNRS, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Samara Videira Zorzato
- Department of Biology, UNESP-São Paulo State University, São José do Rio Preto, São Paulo, Brazil
- Institut de Systématique, Évolution, Biodiversité (ISYEB), CNRS, MNHN, EPHE, Sorbonne Université, Univ. des Antilles, Paris, France
| | - Aurélie Hua-Van
- Laboratoire Évolution, Génomes, Comportement et Écologie, CNRS, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Lisa Klasson
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Wolfgang J Miller
- Lab Genome Dynamics, Department Cell & Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Amir Yassin
- Laboratoire Évolution, Génomes, Comportement et Écologie, CNRS, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
- Institut de Systématique, Évolution, Biodiversité (ISYEB), CNRS, MNHN, EPHE, Sorbonne Université, Univ. des Antilles, Paris, France
| | - Lilian Madi-Ravazzi
- Department of Biology, UNESP-São Paulo State University, São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|
2
|
Sharakhov IV, Sharakhova MV. Chromosomal inversions and their impact on insect evolution. CURRENT OPINION IN INSECT SCIENCE 2024; 66:101280. [PMID: 39374869 PMCID: PMC11611660 DOI: 10.1016/j.cois.2024.101280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/20/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
Insects can adapt quickly and effectively to rapid environmental change and maintain long-term adaptations, but the genetic mechanisms underlying this response are not fully understood. In this review, we summarize studies on the potential impact of chromosomal inversion polymorphisms on insect evolution at different spatial and temporal scales, ranging from long-term evolutionary stability to rapid emergence in response to emerging biotic and abiotic factors. The study of inversions has recently been advanced by comparative, population, and 3D genomics methods. The impact of inversions on insect genome evolution can be profound, including increased gene order rearrangements on sex chromosomes, accumulation of transposable elements, and facilitation of genome divergence. Understanding these processes provides critical insights into the evolutionary mechanisms shaping insect diversity.
Collapse
Affiliation(s)
- Igor V Sharakhov
- Department of Entomology and Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; The Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; The Center for Mathematics of Biosystems, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; Department of Genetics and Cell Biology, Tomsk State University, Tomsk 634050, Russia.
| | - Maria V Sharakhova
- Department of Entomology and Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; The Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; Laboratory of Cell Differentiation Mechanisms, Institute of Cytology and Genetics, Novosibirsk 630090, Russia
| |
Collapse
|
3
|
Rader JA, Matute DR. Temperature affects conspecific and heterospecific mating rates in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620639. [PMID: 39553966 PMCID: PMC11565871 DOI: 10.1101/2024.10.28.620639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Behavioral mating choices and mating success are important factors in the development of reproductive isolation during speciation. Environmental conditions, especially temperature, can affect these key traits. Environmental conditions can vary across, and frequently delimit species' geographic ranges. Pairing suboptimal conditions with relative rarity of conspecifics at range margins may set the stage for hybridization. Despite the importance of mating behaviors as a reproductive barrier, a general understanding of the interaction between behavioral choices and the environment is lacking, in part because systematic studies are rare. With this report, we begin to bridge that gap by providing evidence that temperature has a significant - but not consistent influence on mating choices and success, and thus on reproductive isolation in Drosophila. We studied mating propensity and success at four different temperatures among 14 Drosophila species in non-choice conspecific mating trials and in heterospecific trials among two Drosophila species triads that are known to regularly hybridize in the wild. We show that mating frequency varies significantly across a 10°C range (from 18°C to 28°C), both in 1:1 mating trials and in high-density en-masse trials, but that the effect of temperature is highly species-specific. We also show that mating frequency is consistently low and that temperature has a moderate effect in some heterospecific crosses. As conspecific mating propensity decreases outside of the optimal thermal range, while heterospecific matings remain constant, the proportion of heterospecific matings at suboptimal temperatures is relatively high. This result indicates that temperature can modulate behavioral choices that impose reproductive barriers and influence the rate of hybridization. More broadly, our results demonstrate that to truly understand how mating choice and reproductive isolation occur in nature, they need to be studied in an environmental context.
Collapse
Affiliation(s)
- Jonathan A. Rader
- Dept. of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Daniel R. Matute
- Dept. of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
4
|
Tahami MS, Vargas-Chavez C, Poikela N, Coronado-Zamora M, González J, Kankare M. Transposable elements in Drosophila montana from harsh cold environments. Mob DNA 2024; 15:18. [PMID: 39354634 PMCID: PMC11445987 DOI: 10.1186/s13100-024-00328-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/17/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Substantial discoveries during the past century have revealed that transposable elements (TEs) can play a crucial role in genome evolution by affecting gene expression and inducing genetic rearrangements, among other molecular and structural effects. Yet, our knowledge on the role of TEs in adaptation to extreme climates is still at its infancy. The availability of long-read sequencing has opened up the possibility to identify and study potential functional effects of TEs with higher precision. In this work, we used Drosophila montana as a model for cold-adapted organisms to study the association between TEs and adaptation to harsh climates. RESULTS Using the PacBio long-read sequencing technique, we de novo identified and manually curated TE sequences in five Drosophila montana genomes from eco-geographically distinct populations. We identified 489 new TE consensus sequences which represented 92% of the total TE consensus in D. montana. Overall, 11-13% of the D. montana genome is occupied by TEs, which as expected are non-randomly distributed across the genome. We identified five potentially active TE families, most of them from the retrotransposon class of TEs. Additionally, we found TEs present in the five analyzed genomes that were located nearby previously identified cold tolerant genes. Some of these TEs contain promoter elements and transcription binding sites. Finally, we detected TEs nearby fixed and polymorphic inversion breakpoints. CONCLUSIONS Our research revealed a significant number of newly identified TE consensus sequences in the genome of D. montana, suggesting that non-model species should be studied to get a comprehensive view of the TE repertoire in Drosophila species and beyond. Genome annotations with the new D. montana library allowed us to identify TEs located nearby cold tolerant genes, and present at high population frequencies, that contain regulatory regions and are thus good candidates to play a role in D. montana cold stress response. Finally, our annotations also allow us to identify for the first time TEs present in the breakpoints of three D. montana inversions.
Collapse
Affiliation(s)
- Mohadeseh S Tahami
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | | | - Noora Poikela
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
- Centre for Biological Diversity, University of St Andrews, St Andrews, UK
| | - Marta Coronado-Zamora
- Institute of Evolutionary Biology, CSIC, UPF, Barcelona, Spain
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, Barcelona, 08038, Catalonia, Spain
| | - Josefa González
- Institute of Evolutionary Biology, CSIC, UPF, Barcelona, Spain.
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, Barcelona, 08038, Catalonia, Spain.
| | - Maaria Kankare
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland.
| |
Collapse
|
5
|
Brand CL, Oliver GT, Farkas IZ, Buszczak M, Levine MT. Recurrent Duplication and Diversification of a Vital DNA Repair Gene Family Across Drosophila. Mol Biol Evol 2024; 41:msae113. [PMID: 38865490 PMCID: PMC11210505 DOI: 10.1093/molbev/msae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024] Open
Abstract
Maintaining genome integrity is vital for organismal survival and reproduction. Essential, broadly conserved DNA repair pathways actively preserve genome integrity. However, many DNA repair proteins evolve adaptively. Ecological forces like UV exposure are classically cited drivers of DNA repair evolution. Intrinsic forces like repetitive DNA, which also imperil genome integrity, have received less attention. We recently reported that a Drosophila melanogaster-specific DNA satellite array triggered species-specific, adaptive evolution of a DNA repair protein called Spartan/MH. The Spartan family of proteases cleave hazardous, covalent crosslinks that form between DNA and proteins ("DNA-protein crosslink repair"). Appreciating that DNA satellites are both ubiquitous and universally fast-evolving, we hypothesized that satellite DNA turnover spurs adaptive evolution of DNA-protein crosslink repair beyond a single gene and beyond the D. melanogaster lineage. This hypothesis predicts pervasive Spartan gene family diversification across Drosophila species. To study the evolutionary history of the Drosophila Spartan gene family, we conducted population genetic, molecular evolution, phylogenomic, and tissue-specific expression analyses. We uncovered widespread signals of positive selection across multiple Spartan family genes and across multiple evolutionary timescales. We also detected recurrent Spartan family gene duplication, divergence, and gene loss. Finally, we found that ovary-enriched parent genes consistently birthed functionally diverged, testis-enriched daughter genes. To account for Spartan family diversification, we introduce a novel mechanistic model of antagonistic coevolution that links DNA satellite evolution and adaptive regulation of Spartan protease activity. This framework promises to accelerate our understanding of how DNA repeats drive recurrent evolutionary innovation to preserve genome integrity.
Collapse
Affiliation(s)
- Cara L Brand
- Department of Biology and Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Genevieve T Oliver
- Department of Biology and Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Isabella Z Farkas
- Department of Biology and Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael Buszczak
- Department of Molecular Biology and Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mia T Levine
- Department of Biology and Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Poikela N, Laetsch DR, Hoikkala V, Lohse K, Kankare M. Chromosomal Inversions and the Demography of Speciation in Drosophila montana and Drosophila flavomontana. Genome Biol Evol 2024; 16:evae024. [PMID: 38482698 PMCID: PMC10972691 DOI: 10.1093/gbe/evae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 04/01/2024] Open
Abstract
Chromosomal inversions may play a central role in speciation given their ability to locally reduce recombination and therefore genetic exchange between diverging populations. We analyzed long- and short-read whole-genome data from sympatric and allopatric populations of 2 Drosophila virilis group species, Drosophila montana and Drosophila flavomontana, to understand if inversions have contributed to their divergence. We identified 3 large alternatively fixed inversions on the X chromosome and one on each of the autosomes 4 and 5. A comparison of demographic models estimated for inverted and noninverted (colinear) chromosomal regions suggests that these inversions arose before the time of the species split. We detected a low rate of interspecific gene flow (introgression) from D. montana to D. flavomontana, which was further reduced inside inversions and was lower in allopatric than in sympatric populations. Together, these results suggest that the inversions were already present in the common ancestral population and that gene exchange between the sister taxa was reduced within inversions both before and after the onset of species divergence. Such ancestrally polymorphic inversions may foster speciation by allowing the accumulation of genetic divergence in loci involved in adaptation and reproductive isolation inside inversions early in the speciation process, while gene exchange at colinear regions continues until the evolving reproductive barriers complete speciation. The overlapping X inversions are particularly good candidates for driving the speciation process of D. montana and D. flavomontana, since they harbor strong genetic incompatibilities that were detected in a recent study of experimental introgression.
Collapse
Affiliation(s)
- Noora Poikela
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014, Jyväskylä, Finland
| | - Dominik R Laetsch
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Ville Hoikkala
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014, Jyväskylä, Finland
| | - Konrad Lohse
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Maaria Kankare
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014, Jyväskylä, Finland
| |
Collapse
|
7
|
Flynn JM, Ahmed-Braimah YH, Long M, Wing RA, Clark AG. High-Quality Genome Assemblies Reveal Evolutionary Dynamics of Repetitive DNA and Structural Rearrangements in the Drosophila virilis Subgroup. Genome Biol Evol 2024; 16:evad238. [PMID: 38159044 PMCID: PMC10783647 DOI: 10.1093/gbe/evad238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/18/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024] Open
Abstract
High-quality genome assemblies across a range of nontraditional model organisms can accelerate the discovery of novel aspects of genome evolution. The Drosophila virilis group has several attributes that distinguish it from more highly studied species in the Drosophila genus, such as an unusual abundance of repetitive elements and extensive karyotype evolution, in addition to being an attractive model for speciation genetics. Here, we used long-read sequencing to assemble five genomes of three virilis group species and characterized sequence and structural divergence and repetitive DNA evolution. We find that our contiguous genome assemblies allow characterization of chromosomal arrangements with ease and can facilitate analysis of inversion breakpoints. We also leverage a small panel of resequenced strains to explore the genomic pattern of divergence and polymorphism in this species and show that known demographic histories largely predicts the extent of genome-wide segregating polymorphism. We further find that a neo-X chromosome in Drosophila americana displays X-like levels of nucleotide diversity. We also found that unusual repetitive elements were responsible for much of the divergence in genome composition among species. Helitron-derived tandem repeats tripled in abundance on the Y chromosome in D. americana compared to Drosophila novamexicana, accounting for most of the difference in repeat content between these sister species. Repeats with characteristics of both transposable elements and satellite DNAs expanded by 3-fold, mostly in euchromatin, in both D. americana and D. novamexicana compared to D. virilis. Our results represent a major advance in our understanding of genome biology in this emerging model clade.
Collapse
Affiliation(s)
- Jullien M Flynn
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | | | - Manyuan Long
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Rod A Wing
- School of Plant Sciences, Arizona Genomics Institute, University of Arizona, Tucson, AZ, USA
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
8
|
Manoli G, Zandawala M, Yoshii T, Helfrich-Förster C. Characterization of clock-related proteins and neuropeptides in Drosophila littoralis and their putative role in diapause. J Comp Neurol 2023; 531:1525-1549. [PMID: 37493077 DOI: 10.1002/cne.25522] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/25/2023] [Accepted: 06/26/2023] [Indexed: 07/27/2023]
Abstract
Insects from high latitudes spend the winter in a state of overwintering diapause, which is characterized by arrested reproduction, reduced food intake and metabolism, and increased life span. The main trigger to enter diapause is the decreasing day length in summer-autumn. It is thus assumed that the circadian clock acts as an internal sensor for measuring photoperiod and orchestrates appropriate seasonal changes in physiology and metabolism through various neurohormones. However, little is known about the neuronal organization of the circadian clock network and the neurosecretory system that controls diapause in high-latitude insects. We addressed this here by mapping the expression of clock proteins and neuropeptides/neurohormones in the high-latitude fly Drosophila littoralis. We found that the principal organization of both systems is similar to that in Drosophila melanogaster, but with some striking differences in neuropeptide expression levels and patterns. The small ventrolateral clock neurons that express pigment-dispersing factor (PDF) and short neuropeptide F (sNPF) and are most important for robust circadian rhythmicity in D. melanogaster virtually lack PDF and sNPF expression in D. littoralis. In contrast, dorsolateral clock neurons that express ion transport peptide in D. melanogaster additionally express allatostatin-C and appear suited to transfer day-length information to the neurosecretory system of D. littoralis. The lateral neurosecretory cells of D. littoralis contain more neuropeptides than D. melanogaster. Among them, the cells that coexpress corazonin, PDF, and diuretic hormone 44 appear most suited to control diapause. Our work sets the stage to investigate the roles of these diverse neuropeptides in regulating insect diapause.
Collapse
Affiliation(s)
- Giulia Manoli
- Neurobiology and Genetics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Meet Zandawala
- Neurobiology and Genetics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | | |
Collapse
|
9
|
Flynn JM, Ahmed-Braimah YH, Long M, Wing RA, Clark AG. High quality genome assemblies reveal evolutionary dynamics of repetitive DNA and structural rearrangements in the Drosophila virilis sub-group. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.13.553086. [PMID: 37645834 PMCID: PMC10462019 DOI: 10.1101/2023.08.13.553086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
High-quality genome assemblies across a range of non-traditional model organisms can accelerate the discovery of novel aspects of genome evolution. The Drosophila virilis group has several attributes that distinguish it from more highly studied species in the Drosophila genus, such as an unusual abundance of repetitive elements and extensive karyotype evolution, in addition to being an attractive model for speciation genetics. Here we used long-read sequencing to assemble five genomes of three virilis group species and characterized sequence and structural divergence and repetitive DNA evolution. We find that our contiguous genome assemblies allow characterization of chromosomal arrangements with ease and can facilitate analysis of inversion breakpoints. We also leverage a small panel of resequenced strains to explore the genomic pattern of divergence and polymorphism in this species and show that known demographic histories largely predicts the extent of genome-wide segregating polymorphism. We further find that a neo-X chromosome in D. americana displays X-like levels of nucleotide diversity. We also found that unusual repetitive elements were responsible for much of the divergence in genome composition among species. Helitron-derived tandem repeats tripled in abundance on the Y chromosome in D. americana compared to D. novamexicana, accounting for most of the difference in repeat content between these sister species. Repeats with characteristics of both transposable elements and satellite DNAs expanded by three-fold, mostly in euchromatin, in both D. americana and D. novamexicana compared to D. virilis. Our results represent a major advance in our understanding of genome biology in this emerging model clade.
Collapse
Affiliation(s)
- Jullien M. Flynn
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | | | - Manyuan Long
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Rod A. Wing
- School of Plant Sciences, Arizona Genomics Institute, University of Arizona, Tucson, AZ
| | - Andrew G. Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|