1
|
Kapila R, Maggu K, Ahlawat N, Guru Prasad N. Effects of adaptation to crowded larval environment on the evolution of sperm competitive ability in males of Drosophila melanogaster. Fly (Austin) 2025; 19:2437204. [PMID: 39696806 DOI: 10.1080/19336934.2024.2437204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
Two of the most important environmental factors that affect the sperm competitive ability in males are the availability of resources and the socio-sexual environment. Numerous studies have investigated the individual effects of these factors, but their combined effect on the evolution of sperm competitive ability remains untested. A crowded larval environment is unique because it simultaneously affects the fitness of the organism through both resource availability and the socio-sexual environment. In this study, we used a set of four laboratory populations of D. melanogaster, evolved under a crowded larval environment for more than 165 generations and their respective controls to investigate how the sperm competitive ability of the males is affected by a single generation of larval crowding versus evolution under a crowded larval environment for more than 165 generations. Our results show that larval crowding negatively affects the sperm defence ability of males evolved in a crowded larval environment, while it has no effect on the sperm defence ability of control males. Additionally, larval crowding negatively impacts the sperm offence ability in both control and evolved populations. Males from populations adapted to a crowded larval environment exhibit lower sperm offence ability at an older age compared to control populations.
Collapse
Affiliation(s)
- Rohit Kapila
- Department of Biology, Florida International University, Miami, Florida, USA
| | - Komal Maggu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse, Switzerland
| | - Neetika Ahlawat
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Nagaraj Guru Prasad
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, India
| |
Collapse
|
2
|
Peckenpaugh B, Yew JY, Moyle LC. Long-sperm precedence and other cryptic female choices in Drosophila melanogaster. Evolution 2025; 79:467-482. [PMID: 39708294 PMCID: PMC11879153 DOI: 10.1093/evolut/qpae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 11/23/2024] [Accepted: 12/20/2024] [Indexed: 12/23/2024]
Abstract
Females that mate multiply make postmating choices about which sperm fertilize their eggs (cryptic female choice); however, the male characteristics they use to make such choices remain unclear. In this study, we sought to understand female sperm use patterns by evaluating whether Drosophila melanogaster females adjust sperm use (second male paternity) in response to 4 main factors: male genotype, male courtship effort, male pheromone alteration, and male postmating reproductive morphology. Our experiment was replicated across 4 different D. melanogaster lines, in a full factorial design, including a pheromone manipulation in which second males were perfumed to resemble heterospecific (Drosophila yakuba) males. We found that females prefer longer sperm-regardless of mating order-in almost all contexts; this observed pattern of "long-sperm precedence" is consistent with female postmating choice of high-fitness male traits. Nonetheless, we also found that this general preference can be plastically altered by females in response to effects including perfuming treatment; this differential female sperm use is between otherwise identical males, and therefore solely female-mediated. Furthermore, our finding that females exercise choice using diverse criteria suggests a possible mechanism for the maintenance of variation in sexually selected male traits.
Collapse
Affiliation(s)
- Brooke Peckenpaugh
- Department of Biology, Indiana University, Bloomington, Indiana, United States
| | - Joanne Y Yew
- Pacific Biosciences Research Center, University of Hawaiʻi at Mānoa, Honolulu, Hawaiʻi, United States
| | - Leonie C Moyle
- Department of Biology, Indiana University, Bloomington, Indiana, United States
| |
Collapse
|
3
|
Peckenpaugh B, Moyle LC. Females drive postmating reproductive trait evolution across Drosophila species, but not via remating rate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618555. [PMID: 39464019 PMCID: PMC11507895 DOI: 10.1101/2024.10.15.618555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
While traits that contribute to premating sexual interactions are known to be wildly diverse, much less is known about the diversity of postmating (especially female) reproductive traits and the mechanisms shaping this diversity. To assess the rate, pattern, and potential drivers of postmating reproductive trait evolution, we analyzed male and female traits across up to 30 Drosophila species within a phylogenetic comparative framework. In addition to postmating reproductive morphology (e.g., sperm length, reproductive tract length and mass), we also quantified mating behaviors including female remating rate-a common proxy for the strength of postmating sexual selection. We found evidence for strong coevolution between male and female postmating traits (specifically sperm length and sperm storage organ size). However, remating rate was not associated with the rate of evolution or exaggeration of either male or female postmating reproductive morphology, once phylogenetic relatedness was accounted for. We infer that female-mediated and intersexual selection predominantly drive the evolution of our postmating morphological traits, including via divergent male and female interests in controlling paternity. In comparison, remating rate has a complex and likely secondary role in shaping this evolution, in part because this trait can be both a driver and a product of postmating selection.
Collapse
Affiliation(s)
| | - Leonie C Moyle
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
4
|
Doubovetzky N, Kohlmeier P, Bal S, Billeter JC. Cryptic female choice in response to male pheromones in Drosophila melanogaster. Curr Biol 2024; 34:4539-4546.e3. [PMID: 39260361 DOI: 10.1016/j.cub.2024.07.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/05/2024] [Accepted: 07/26/2024] [Indexed: 09/13/2024]
Abstract
Females control the paternity of their offspring by selectively mating with males they perceive to be of high quality. In species where females mate with multiple males in succession, females may bias offspring paternity by favoring the sperm of one male over another, a process known as cryptic female choice.1 While evidence of cryptic female choice exists in multiple taxa, the mechanisms underlying this process have remained difficult to unravel.2 Understanding cryptic female choice requires demonstration of a female-driven post-mating bias in sperm use and paternity and a causal link between this bias and male cues.3 In this study, we present evidence of cryptic female choice in female Drosophila melanogaster. Through experiments utilizing transgenic males expressing fluorescent sperm, we observed that exposure to attractive males between matings prompts females to expel the ejaculate of their initial mate more rapidly than in the presence of less attractive males. While doing so, females exhibit a bias in sperm storage against their first mate, thereby favoring the paternity of their subsequent mate. Our findings reveal that females adjust the timing of ejaculate expulsion in response to male pheromones in their environment, specifically heptanal and 11-cis-vaccenyl acetate, which are sensed by females through specific odorant receptors. We provide a cryptic female choice mechanism allowing a female to modulate the share of paternity of her first mate depending on the sensing of the quality of potential mates in her environment. These findings showcase that paternity can be influenced by events beyond copulation.
Collapse
Affiliation(s)
- Nicolas Doubovetzky
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9474AG, the Netherlands
| | - Philip Kohlmeier
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9474AG, the Netherlands
| | - Sanne Bal
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9474AG, the Netherlands
| | - Jean-Christophe Billeter
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9474AG, the Netherlands.
| |
Collapse
|
5
|
Manas F, Piterois H, Labrousse C, Beaugeard L, Uzbekov R, Bressac C. Gone but not forgotten: dynamics of sperm storage and potential ejaculate digestion in the black soldier fly Hermetia illucens. ROYAL SOCIETY OPEN SCIENCE 2024; 11:241205. [PMID: 39479251 PMCID: PMC11521600 DOI: 10.1098/rsos.241205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 11/02/2024]
Abstract
Understanding the dynamics of sperm storage is essential to unravel the complexity of post-copulatory sexual selection processes in internally fertilized species. This physiological process goes from sperm transfer during copulation to its use for fertilization. In this context, the spatiotemporal dynamics of sperm storage were described in the black soldier fly (BSF) with fluorescence and transmission electron microscopy (TEM). BSF females have compartmentalized spermathecae with a transfer compartment, the fishnet canals, and a storage compartment, the reservoirs. Spermatozoa were counted both during and after mating in the two compartments. In addition to seminal fluids, the male transfers a mass of sperm in the fishnet canals, then only 49% of the transferred spermatozoa reach the reservoirs over two days. TEM observations of the fishnet canals revealed potential digestive functions, explaining the decline in the number and viability of spermatozoa in this compartment but not in the reservoirs. After one mating, females laid up to three fertile clutches, showing no constraints on sperm quantity or quality. Spermatic and ultrastructural investigations strongly suggest that BSF ejaculate acts both as a sperm plug and as a nuptial gift, reinforcing the interest in studying this farming insect as a new model for sexual selection.
Collapse
Affiliation(s)
- Frédéric Manas
- Insect Research Biology Institute (IRBI), UMR CNRS 7261 University of Tours, Tours37200, France
| | - Harmony Piterois
- Insect Research Biology Institute (IRBI), UMR CNRS 7261 University of Tours, Tours37200, France
| | - Carole Labrousse
- Insect Research Biology Institute (IRBI), UMR CNRS 7261 University of Tours, Tours37200, France
| | - Laureen Beaugeard
- Insect Research Biology Institute (IRBI), UMR CNRS 7261 University of Tours, Tours37200, France
| | - Rustem Uzbekov
- Plateforme IBiSA de Microscopie Electronique, University of Tours and CHRU of Tours, Tours37200, France
| | - Christophe Bressac
- Insect Research Biology Institute (IRBI), UMR CNRS 7261 University of Tours, Tours37200, France
| |
Collapse
|
6
|
Peckenpaugh B, Yew JY, Moyle LC. Long-sperm precedence and other cryptic female choices in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591180. [PMID: 38712086 PMCID: PMC11071617 DOI: 10.1101/2024.04.25.591180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Females that mate multiply make postmating choices about which sperm fertilize their eggs (cryptic female choice); however, the male characteristics they use to make such choices remain unclear. In this study, we sought to understand female sperm use patterns by evaluating whether Drosophila melanogaster females adjust sperm use (second male paternity) in response to four main factors: male genotype, male courtship effort, male pheromone alteration, and male postmating reproductive morphology. Our experiment was replicated across four different D. melanogaster lines, in a full factorial design, including a pheromone manipulation in which second males were perfumed to resemble heterospecific (D. yakuba) males. We found that females prefer longer sperm-regardless of mating order-in almost all contexts; this observed pattern of 'long-sperm precedence' is consistent with female postmating choice of high-fitness male traits. Nonetheless, we also found that this general preference can be plastically altered by females in response to effects including perfuming treatment; this differential female sperm use is between otherwise identical males, and therefore solely female-mediated. Furthermore, our finding that females exercise choice using diverse criteria suggests a possible mechanism for the maintenance of variation in sexually selected male traits.
Collapse
Affiliation(s)
| | - Joanne Y. Yew
- Pacific Biosciences Research Center, University of Hawai i at Mānoa, Honolulu, Hawai i 96822
| | - Leonie C. Moyle
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
7
|
Croft L, Matheson P, Butterworth NJ, McGaughran A. Fitness consequences of population bottlenecks in an invasive blowfly. Mol Ecol 2024; 33:e17492. [PMID: 39136044 DOI: 10.1111/mec.17492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/14/2024] [Accepted: 08/02/2024] [Indexed: 08/28/2024]
Abstract
Invasive species often undergo demographic bottlenecks that cause a decrease in genetic diversity and associated reductions in population fitness. Despite this, they manage to thrive in novel environments. Investigating the effects of inbreeding and genetic bottlenecks on population fitness for invasive species is, therefore, key to understanding how they may survive in new environments. We used the blowfly Calliphora vicina (Sciences, Mathématiques et Physique, 1830, 2, 1), which is native to Europe and was introduced to Australia and New Zealand, to examine the effects of genetic diversity on population fitness. We first collected 59 samples from 15 populations across New Zealand and one in Australia, and used 20,501 biallelic SNPs to investigate population genomic diversity, structure and admixture. We then explored the impacts of repeated experimental bottlenecks on population fitness by creating inbred and outbred lines of C. vicina and measuring a variety of fitness traits. In wild-caught samples, we found low overall genetic diversity, signals of genetic admixture and limited (<3%) genetic differentiation between North and South Island populations, with genetic links between the South Island and Australia. Following experimental bottlenecks, we found significant reductions in fitness for inbred lines. However, fitness effects were not felt equally across all phenotypic traits. Moreover, they were not enough to cause population collapse in any experimental line, suggesting that C. vicina (when under relaxed selection, as in laboratory settings) may be able to compensate for population bottlenecks even when highly inbred. Our results demonstrate the value of a tractable experimental system for investigating processes that may facilitate or hamper biological invasion.
Collapse
Affiliation(s)
- Lilly Croft
- Te Aka Mātuatua - School of Science, University of Waikato, Hamilton, New Zealand
| | - Paige Matheson
- Te Aka Mātuatua - School of Science, University of Waikato, Hamilton, New Zealand
| | | | - Angela McGaughran
- Te Aka Mātuatua - School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
8
|
Wang Q, Wang B, Li J, Sun C, Yang N, Wen C. Paternity bias and cryptic female choice in chickens. Poult Sci 2024; 103:103744. [PMID: 38652945 PMCID: PMC11063506 DOI: 10.1016/j.psj.2024.103744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
Sperm competition and cryptic female choice (CFC) are 2 significant mechanisms of postcopulatory sexual selection that greatly impact fertilization success in various species. Despite extensive research has conducted on sperm competition and the evolution of sperm traits in internal fertilization, our understanding of the female preferences in selecting sperm is still limited. Here, we aimed to investigate the characteristics of CFC in chickens by utilizing artificial insemination with mixed semen to control for variations in male fertilization success caused by female perception of male quality and mating order. Our results revealed that the offspring from multiple-mated females exhibited mixed paternity. Although the males had an equal number of viable sperm, 1 male consistently exhibited a 15% higher success rate on average, regardless of whether the insemination was performed with fresh or diluted semen. This result suggested that this male demonstrates superior performance in sperm competition, and exhibited a potential advantage in fertilization success. While the dominant male generally made a greater genetic contribution to most offspring, the degree of this advantage varied greatly, ranging from 11.11 to 75%. Furthermore, our study provided evidence of female preferences influenced the precedence of sperm from certain males over others. Interestingly, this bias is not consistently observed among all individuals, as offspring derived from some females were predominantly sired by an overall disadvantaged male while others were predominantly by a different disadvantaged male. Overall, these results underscored the complex processes involved in sperm selection and emphasized the importance of females in sexual selection theory.
Collapse
Affiliation(s)
- Qunpu Wang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China; Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Bin Wang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China; Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Junying Li
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China; Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China; Sanya Institute of China Agricultural University, Hainan, 572025, China
| | - Congjiao Sun
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China; Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China; Sanya Institute of China Agricultural University, Hainan, 572025, China
| | - Ning Yang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China; Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China; Sanya Institute of China Agricultural University, Hainan, 572025, China
| | - Chaoliang Wen
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China; Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China; Sanya Institute of China Agricultural University, Hainan, 572025, China.
| |
Collapse
|
9
|
Ferveur JF, Cortot J, Moussian B, Cobb M, Everaerts C. Replenishment of Drosophila Male Pheromone After Mating. J Chem Ecol 2024; 50:100-109. [PMID: 38270733 DOI: 10.1007/s10886-023-01468-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/07/2023] [Accepted: 12/31/2023] [Indexed: 01/26/2024]
Abstract
Insect exocrine gland products can be involved in sexual communication, defense, territory labelling, aggregation and alarm. In the vinegar fly Drosophila melanogaster the ejaculatory bulb synthesizes and releases 11-cis-Vaccenyl acetate (cVa). This pheromone, transferred to the female during copulation, affects aggregation, courtship and male-male aggressive behaviors. To determine the ability of male flies to replenish their cVa levels, males of a control laboratory strain and from the desat1 pheromone-defective mutant strain were allowed to mate successively with several females. We measured mating frequency, duration and latency, the amount of cVa transferred to mated females and the residual cVa in tested males. Mating duration remained constant with multiple matings, but we found that the amount of cVa transferred to females declined with multiple matings, indicating that, over short, biologically-relevant periods, replenishment of the pheromone does not keep up with mating frequency, resulting in the transfer of varying quantities of cVa. Adult responses to cVa are affected by early developmental exposure to this pheromone; our revelation of quantitative variation in the amount of cVa transferred to females in the event of multiple matings by a male suggests variable responses to cVa shown by adults produced by such matings. This implies that the natural role of this compound may be richer than suggested by laboratory experiments that study only one mating event and its immediate behavioral or neurobiological consequences.
Collapse
Affiliation(s)
- Jean-François Ferveur
- Centre Des Sciences du Goût Et de L'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, 6, Bd Gabriel, 21000, Dijon, France.
| | - Jérôme Cortot
- Centre Des Sciences du Goût Et de L'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, 6, Bd Gabriel, 21000, Dijon, France
| | - Bernard Moussian
- Interfaculty Institute for Cell Biology, Animal Genetics, University of Tübingen, Auf Der Morgenstelle 15, 72076, Tübingen, Germany
| | - Matthew Cobb
- School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Claude Everaerts
- Centre Des Sciences du Goût Et de L'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, 6, Bd Gabriel, 21000, Dijon, France
| |
Collapse
|
10
|
Puppato S, Fiorenza G, Carraretto D, Gomulski LM, Gasperi G, Caceres C, Grassi A, Mancini MV, De Cristofaro A, Ioriatti C, Guilhot R, Malacrida AR. High promiscuity among females of the invasive pest species Drosophila suzukii. Mol Ecol 2023; 32:6018-6026. [PMID: 37804145 DOI: 10.1111/mec.17161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/09/2023]
Abstract
Drosophila suzukii (Matsumura, 1931), the spotted-wing drosophila, is a highly invasive fruit fly that spread from Southern Asia across most regions of Asia and, in the last 15 years, has invaded Europe and the Americas. It is an economically important pest of small fruits such as berries and stone fruits. Drosophila suzukii speciated by adapting to cooler, mountainous, and forest environments. In temperate regions, it evolved seasonal polyphenism traits which enhanced its survival during stressful winter population bottlenecks. Consequently, in these temperate regions, the populations undergo seasonal reproductive dynamics. Despite its economic importance, no data are available on the behavioural reproductive strategies of this fly. The presence of polyandry, for example, has not been determined despite the important role it might play in the reproductive dynamics of populations. We explored the presence of polyandry in an established population in Trentino, a region in northern Italy. In this area, D. suzukii overcomes the winter bottleneck and undergoes a seasonal reproductive fluctuation. We observed a high remating frequency in females during the late spring demographic explosion that led to the abundant summer population. The presence of a high degree of polyandry and shared paternity associated with the post-winter population increase raises the question of the possible evolutionary adaptive role of this reproductive behaviour in D. suzukii.
Collapse
Affiliation(s)
- Simone Puppato
- Technology Transfer Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
- University of Molise, Campobasso, Italy
| | - Giulia Fiorenza
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Davide Carraretto
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- University School of Advanced Studies (IUSS), Pavia, Italy
| | | | - Giuliano Gasperi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- Institute of Molecular Genetics IGM-CNR, Pavia, Italy
| | - Carlos Caceres
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Seibersdorf, Austria
| | - Alberto Grassi
- Technology Transfer Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | | | | | - Claudio Ioriatti
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Robin Guilhot
- Institute of Molecular Genetics IGM-CNR, Pavia, Italy
| | | |
Collapse
|
11
|
Morimoto J, McDonald GC, Wigby S. Social group composition modulates the role of last male sperm precedence in post-copulatory sexual selection. J Evol Biol 2023; 36:1102-1115. [PMID: 37341163 PMCID: PMC10946607 DOI: 10.1111/jeb.14191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 05/05/2023] [Accepted: 05/24/2023] [Indexed: 06/22/2023]
Abstract
In many species, the order in which males mate with a female explains much of the variation in paternity arising from post-copulatory sexual selection. Research in Drosophila suggests that mating order may account for the majority of the variance in male reproductive success. However, the effects of mating order on paternity bias might not be static but could potentially vary with social or environmental factors. To test this idea, we used an existing dataset, collated from an experiment we previously published (Morimoto et al., PLoS One, 11, 2016, e0154468), with the addition of unpublished data from the same experiment. These previous experiments manipulated larval density in Drosophila melanogaster which generated variation in male and female body size, assembled groups of individuals of different sizes, and measured the mating success and paternity share of focal males. The data presented here provides information on each focal male's mating order and the frequency in which focal males remated with same females ('repetitive matings'). We combined this information with our previously reported focal male reproductive success to partition variance in paternity into male mating order and repetitive matings across groups that differed in the body size composition of males and females. We found, as expected, that male mating order explained a considerable portion of the variance in male paternity. However, we also found that the impact of male mating order on male paternity was influenced by the body size composition of groups. Specifically, males that tended to mate last had a greater paternity advantage, and displayed lower variance, in groups containing a heterogenous mixture male body sizes than in groups with a single male body size. Repetitive mating only had a minor contribution to the variance in male paternity share across all experiments. Overall, our findings contribute to the growing body of research showing that post-copulatory sexual selection is subject to socio-ecological influences.
Collapse
Affiliation(s)
- Juliano Morimoto
- School of Biological SciencesUniversity of AberdeenAberdeenUK
- Programa de Pós‐graduação em Ecologia e ConservaçãoUniversidade Federal do ParanáCuritibaBrazil
- Institute of MathematicsUniversity of Aberdeen, King's CollegeAberdeenUK
| | - Grant C. McDonald
- Department of EcologyUniversity of Veterinary Medicine BudapestBudapestHungary
| | - Stuart Wigby
- Department of Evolution, Ecology, and Behaviour, Institute of Infection, Veterinary & Ecological SciencesUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
12
|
Angmo N, Sengupta M, Vimal N, Seth RK. Receptivity and Remating Propensity in Female Spodoptera litura (Fabricius) after Mating with an Irradiated Male or Its F 1 Male Progeny. INSECTS 2023; 14:651. [PMID: 37504657 PMCID: PMC10380408 DOI: 10.3390/insects14070651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023]
Abstract
The 'Inherited or F1 sterility technique' (IS), using sub-sterilized male moths, is a widely proposed pest management tool for Lepidoptera pests in general, and the tobacco cutworm Spodoptera litura (Fabr.) in particular. However, the multiple mating tendency of female moths and the ejaculate quality of male moths might influence the efficiency of this technique. Reduced ejaculate quality was observed in irradiated males, as evidenced by radiation's impact on certain bio-parameters, such as the weight of the spermatophores and their protein content, sperm count, the molecular expression of the sex peptide receptor (SPR) and egg fertility, with a greater impact in F1 male progeny. During the remating of females with untreated males, irrespective of the irradiation status of the first male, there was an increase in calling behavior, remating propensity and fertility in females, with a larger time gap between consecutive matings. The ability of F1 male progeny to check remating propensity in females 24 h after the initial mating was lower than that of unirradiated males. Partially sterile (130 Gy) males were as successful as unirradiated males in inducing the level of mating refractoriness in females. Decreased ejaculate quality in F1 male progeny could be associated with increased female receptivity during remating. Understanding the influence of male moth irradiation, insemination quality and post (initial)-mating intervals on the remating behavior of normal female moths and induced sterility might help in simulation modeling and optimizing IS insect programs.
Collapse
Affiliation(s)
- Nilza Angmo
- Applied Entomology and Radiation Biology Lab, Department of Zoology, University of Delhi, Delhi 110007, India
| | - Madhumita Sengupta
- Applied Entomology and Radiation Biology Lab, Department of Zoology, University of Delhi, Delhi 110007, India
| | - Neha Vimal
- Applied Entomology and Radiation Biology Lab, Department of Zoology, University of Delhi, Delhi 110007, India
| | - Rakesh Kumar Seth
- Applied Entomology and Radiation Biology Lab, Department of Zoology, University of Delhi, Delhi 110007, India
| |
Collapse
|
13
|
Rundell TB, Brunelli M, Alvi A, Safian G, Capobianco C, Tu W, Subedi S, Fiumera A, Musselman LP. Polygenic adaptation to overnutrition reveals a role for cholinergic signaling in longevity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.544888. [PMID: 37398379 PMCID: PMC10312690 DOI: 10.1101/2023.06.14.544888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Overnutrition by high-sugar (HS) feeding reduces both the lifespan and healthspan across taxa. Pressuring organisms to adapt to overnutrition can highlight genes and pathways important for the healthspan in stressful environments. We used an experimental evolution approach to adapt four replicate, outbred population pairs of Drosophila melanogaster to a HS or control diet. Sexes were separated and aged on either diet until mid-life, then mated to produce the next generation, allowing enrichment for protective alleles over time. All HS-selected populations increased their lifespan and were therefore used as a platform to compare allele frequencies and gene expression. Pathways functioning in the nervous system were overrepresented in the genomic data and showed evidence for parallel evolution, although very few genes were the same across replicates. Acetylcholine-related genes, including the muscarinic receptor mAChR-A, showed significant changes in allele frequency in multiple selected populations and differential expression on a HS diet. Using genetic and pharmacological approaches, we show that cholinergic signaling affects Drosophila feeding in a sugar-specific fashion. Together, these results suggest that adaptation produces changes in allele frequencies that benefit animals under conditions of overnutrition and that it is repeatable at the pathway level.
Collapse
|
14
|
Reid JM. Intrinsic emergence and modulation of sex-specific dominance reversals in threshold traits. Evolution 2022; 76:1924-1941. [PMID: 35803581 PMCID: PMC9541474 DOI: 10.1111/evo.14563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 01/22/2023]
Abstract
Sex-specific dominance reversals (SSDRs) in fitness-related traits, where heterozygotes' phenotypes resemble those of alternative homozygotes in females versus males, can simultaneously maintain genetic variation in fitness and resolve sexual conflict and thereby shape key evolutionary outcomes. However, the full implications of SSDRs will depend on how they arise and the resulting potential for evolutionary, ecological and environmental modulation. Recent field and laboratory studies have demonstrated SSDRs in threshold(-like) traits with dichotomous or competitive phenotypic outcomes, implying that such traits could promote the emergence of SSDRs. However, such possibilities have not been explicitly examined. I show how phenotypic SSDRs can readily emerge in threshold traits given genetic architectures involving large-effect loci alongside sexual dimorphism in the mean and variance in polygenic liability. I also show how multilocus SSDRs can arise in line-cross experiments, especially given competitive reproductive systems that generate nonlinear fitness outcomes. SSDRs can consequently emerge in threshold(-like) traits as functions of sexual antagonism, sexual dimorphism and reproductive systems, even with purely additive underlying genetic effects. Accordingly, I identify theoretical and empirical advances that are now required to discern the basis and occurrence of SSDRs in nature, probe forms of (co-)evolutionary, ecological and environmental modulation, and evaluate net impacts on sexual conflict.
Collapse
Affiliation(s)
- Jane M. Reid
- Centre for Biodiversity DynamicsNTNUTrondheimNorway,School of Biological SciencesUniversity of AberdeenAberdeenUK
| |
Collapse
|
15
|
Hopkins BR, Perry JC. The evolution of sex peptide: sexual conflict, cooperation, and coevolution. Biol Rev Camb Philos Soc 2022; 97:1426-1448. [PMID: 35249265 PMCID: PMC9256762 DOI: 10.1111/brv.12849] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/17/2022]
Abstract
A central paradigm in evolutionary biology is that the fundamental divergence in the fitness interests of the sexes (‘sexual conflict’) can lead to both the evolution of sex‐specific traits that reduce fitness for individuals of the opposite sex, and sexually antagonistic coevolution between the sexes. However, clear examples of traits that evolved in this way – where a single trait in one sex demonstrably depresses the fitness of members of the opposite sex, resulting in antagonistic coevolution – are rare. The Drosophila seminal protein ‘sex peptide’ (SP) is perhaps the most widely cited example of a trait that appears to harm females while benefitting males. Transferred in the ejaculate by males during mating, SP triggers profound and wide‐ranging changes in female behaviour and physiology. Early studies reported that the transfer of SP enhances male fitness while depressing female fitness, providing the foundations for the widespread view that SP has evolved to manipulate females for male benefit. Here, we argue that this view is (i) a simplification of a wider body of contradictory empirical research, (ii) narrow with respect to theory describing the origin and maintenance of sexually selected traits, and (iii) hard to reconcile with what we know of the evolutionary history of SP's effects on females. We begin by charting the history of thought regarding SP, both at proximate (its production, function, and mechanism of action) and ultimate (its fitness consequences and evolutionary history) levels, reviewing how studies of SP were central to the development of the field of sexual conflict. We describe a prevailing paradigm for SP's evolution: that SP originated and continues to evolve to manipulate females for male benefit. In contrast to this view, we argue on three grounds that the weight of evidence does not support the view that receipt of SP decreases female fitness: (i) results from studies of SP's impact on female fitness are mixed and more often neutral or positive, with fitness costs emerging only under nutritional extremes; (ii) whether costs from SP are appreciable in wild‐living populations remains untested; and (iii) recently described confounds in genetic manipulations of SP raise the possibility that measures of the costs and benefits of SP have been distorted. Beyond SP's fitness effects, comparative and genetic data are also difficult to square with the idea that females suffer fitness costs from SP. Instead, these data – from functional and evolutionary genetics and the neural circuitry of female responses to SP – suggest an evolutionary history involving the evolution of a dedicated SP‐sensing apparatus in the female reproductive tract that is likely to have evolved because it benefits females, rather than harms them. We end by exploring theory and evidence that SP benefits females by functioning as a signal of male quality or of sperm receipt and storage (or both). The expanded view of the evolution of SP that we outline recognises the context‐dependent and fluctuating roles played by both cooperative and antagonistic selection in the origin and maintenance of reproductive traits.
Collapse
Affiliation(s)
- Ben R. Hopkins
- Department of Evolution and Ecology University of California – Davis One Shields Avenue Davis CA 95616 U.S.A
| | - Jennifer C. Perry
- School of Biological Sciences University of East Anglia Norwich NR4 7TJ U.K
| |
Collapse
|
16
|
Buchert SN, Murakami P, Kalavadia AH, Reyes MT, Sitaraman D. Sleep correlates with behavioral decision making critical for reproductive output in Drosophila melanogaster. Comp Biochem Physiol A Mol Integr Physiol 2022; 264:111114. [PMID: 34785379 PMCID: PMC9299756 DOI: 10.1016/j.cbpa.2021.111114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 02/03/2023]
Abstract
Balance between sleep, wakefulness and arousal is important for survival of organisms and species as a whole. While, the benefits of sleep both in terms of quantity and quality is widely recognized across species, sleep has a cost for organismal survival and reproduction. Here we focus on how sleep duration, sleep depth and sleep pressure affect the ability of animals to engage in courtship and egg-laying behaviors critical for reproductive success. Using isogenic lines from the Drosophila Genetic Reference Panel with variable sleep phenotypes we investigated the relationship between sleep and reproductive behaviors, courtship and oviposition. We found that three out of five lines with decreased sleep and increased arousal phenotypes, showed increased courtship and decreased latency to court as compared to normal and long sleeping lines. However, the male courtship phenotype is dependent on context and genotype as some but not all long sleeping-low courting lines elevate their courtship in the presence of short sleeping-high courting flies. We also find that unlike courtship, sleep phenotypes were less variable and minimally susceptible to social experience. In addition to male courtship, we also investigated egg-laying phenotype, a readout of female reproductive output and find oviposition to be less sensitive to sleep length and parameters that are indicative of switch between sleep and wake states. Taken together our extensive behavioral analysis here shows complex bidirectional interactions between genotype and environment and add to the growing evidence linking sleep duration and sleep-wake switch parameters to behavioral decision making critical to reproductive output.
Collapse
Affiliation(s)
- Steven N. Buchert
- Department of Psychology, College of Science, 25800 Carlos Bee Blvd, California State University, Hayward, CA 94542, United States of America
| | - Pomai Murakami
- Department of Psychological Sciences, College of Arts and Sciences, 5998 Alcala Park, University of San Diego, San Diego, CA 92110, United States of America
| | - Aashaka H. Kalavadia
- Department of Psychology, College of Science, 25800 Carlos Bee Blvd, California State University, Hayward, CA 94542, United States of America
| | - Martin T. Reyes
- Department of Psychology, College of Science, 25800 Carlos Bee Blvd, California State University, Hayward, CA 94542, United States of America
| | - Divya Sitaraman
- Department of Psychology, College of Science, 25800 Carlos Bee Blvd, California State University, Hayward, CA 94542, United States of America,Department of Psychological Sciences, College of Arts and Sciences, 5998 Alcala Park, University of San Diego, San Diego, CA 92110, United States of America,Corresponding author at: Department of Psychology, College of Science, 25800 Carlos Bee Blvd, California State University, Hayward, CA 94542, United States of America. (D. Sitaraman)
| |
Collapse
|
17
|
Peckenpaugh B, Castillo DM, Moyle LC. Testing potential mechanisms of conspecific sperm precedence in Drosophila pseudoobscura. J Evol Biol 2021; 34:1970-1980. [PMID: 34653290 PMCID: PMC10889848 DOI: 10.1111/jeb.13946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 10/03/2021] [Indexed: 11/26/2022]
Abstract
Drosophila pseudoobscura females that co-occur with sister species D. persimilis show elevated fertilization by conspecific sperm when they mate with both a heterospecific and a conspecific male. This phenomenon, known as conspecific sperm precedence (CSP), has evolved as a mechanism to avoid maladaptive hybridization with D. persimilis. In this study, we assessed pericopulatory (during mating) and postcopulatory (after mating) traits in crosses with sympatric or allopatric D. pseudoobscura females and conspecific or heterospecific males to evaluate potential mechanisms of CSP in this system. We observed shorter copulation duration in crosses with sympatric females, but found no difference in quantity of sperm transferred or female reproductive tract toxicity between sympatry and allopatry. Our data show some support for the hypothesis that parasperm, a short, sterile sperm morph, can protect fertile eusperm from the D. pseudoobscura female reproductive tract, though it is unclear how this might affect patterns of sperm use in sympatry vs. allopatry. Overall, these results suggest that copulation duration could potentially contribute to the elevated CSP observed in sympatry.
Collapse
Affiliation(s)
| | - Dean M Castillo
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Leonie C Moyle
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
18
|
Agudelo J, Alfonso-Parra C, Avila FW. Male Age Influences Re-mating Incidence and Sperm Use in Females of the Dengue Vector Aedes aegypti. Front Physiol 2021; 12:691221. [PMID: 34354600 PMCID: PMC8329734 DOI: 10.3389/fphys.2021.691221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/04/2021] [Indexed: 11/13/2022] Open
Abstract
Diseases transmitted by female Aedes aegypti mosquitoes are public health issues in countries in the tropics and sub-tropics. As in other insects, A. aegypti females undergo behavioral and physiological changes upon mating that principally act to facilitate the production of progeny. The primary effectors of A. aegypti female post-mating responses are male-derived seminal proteins that are transferred to females during mating. Increased male age reduces ejaculate function in numerous taxa and alters seminal protein composition in Drosophila melanogaster, but the impacts of male age on female A. aegypti post-mating responses are unknown. Here, we used "old" (21-22 days old) and "young" (4-5 days old) A. aegypti males to assess the influence of male age on oviposition, fertility, and re-mating incidence in their mates. We also examined how age influenced paternity share in females initially mated to young or old males that subsequently re-mated with a transgenic male that transferred RFP-labeled sperm and whose progeny inherited a larval-expressed GFP marker. We found that increased male age had no effect on female fecundity or fertility but significantly impacted their ability to prevent re-mating in their mates-more than half (54.5%) of the females mated to an old male re-mated, compared to 24% of females initially mated to a young male. Polyandrous A. aegypti females displayed first male precedence regardless of the age of their initial mate. However, young males were better able to compete with rival male sperm, siring significantly more progeny (77%) compared to old males (64%). Young males had significantly more sperm in their seminal vesicles than old males at the time of mating, although males of both age groups transferred similar numbers of sperm to their mates. Our results suggest that male senescence differentially impacts the induction of some post-mating changes in A. aegypti females. As the effect of age may be further exacerbated in the field, age-related declines in male ability to induce sexual refractoriness have implications for A. aegypti population control programs that release adults into the environment.
Collapse
Affiliation(s)
- Juliana Agudelo
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, Colombia
| | - Catalina Alfonso-Parra
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, Colombia.,Instituto Colombiano de Medicina Tropical, Universidad CES, Sabaneta, Colombia
| | - Frank W Avila
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
19
|
Matsuzaki M, Hirohashi N, Tsudzuki M, Haqani MI, Maeda T, Mizushima S, Sasanami T. Longer and faster sperm exhibit better fertilization success in Japanese quail. Poult Sci 2021; 100:100980. [PMID: 33610899 PMCID: PMC7905478 DOI: 10.1016/j.psj.2021.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/18/2020] [Accepted: 01/01/2021] [Indexed: 11/06/2022] Open
Abstract
In birds, sperm storage tubules (SST) located in the utero-vaginal junction are thought to be a site of sperm selection; however, the exact mechanism of sperm selection is poorly understood. Here, we investigated sperm entry into the SST and subsequent fertilization success under a competitive situation created by artificial insemination of a sperm mixture obtained from 2 males. We employed 2 quail strains, a wild-type and a dominant black (DB) type, as this allows easy assessment of paternity by feather coloration. We found paternity of embryos was biased toward DB males when a sperm mix with similar sperm numbers from the 2 males strains was artificially inseminated into females. Our novel sperm staining method with 2 different fluorescent dyes showed that the DB-biased fertilization was because of the better ability of DB sperm to enter the SST. Moreover, we found that DB sperm had a longer flagellum and midpiece. These characteristics probably allow sperm to swim faster in a high viscosity medium, which may be a similar environment to the lumen of the female reproductive tract. Our results indicated that sperm competition occurs to win a place in the SST and that filling the SST with their own spermatozoa is a critical step to achieve better fertilization success for the male Japanese quail.
Collapse
Affiliation(s)
- Mei Matsuzaki
- Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima City, Hiroshima 739-8528, Japan
| | - Noritaka Hirohashi
- Oki Marine Biological Station, Education and Research Center for Biological Resources, Faculty of Life and Environmental Science, Shimane University, Oki, Shimane 685-0024, Japan
| | - Masaoki Tsudzuki
- Laboratory of Animal Breeding and Genetics, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima City, Hiroshima 739-8528, Japan; Japanese Avian Bioresource Project Research Center, Hiroshima University, Higashi-Hiroshima City, Hiroshima 739-8528, Japan
| | - Mohammad Ibrahim Haqani
- Laboratory of Animal Breeding and Genetics, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima City, Hiroshima 739-8528, Japan
| | - Teruo Maeda
- Laboratory of Animal Reproduction, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima City, Hiroshima 739-8528, Japan; Japanese Avian Bioresource Project Research Center, Hiroshima University, Higashi-Hiroshima City, Hiroshima 739-8528, Japan
| | - Shusei Mizushima
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan; Japanese Avian Bioresource Project Research Center, Hiroshima University, Higashi-Hiroshima City, Hiroshima 739-8528, Japan
| | - Tomohiro Sasanami
- Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, Shizuoka City, Shizuoka 422-8529, Japan; Japanese Avian Bioresource Project Research Center, Hiroshima University, Higashi-Hiroshima City, Hiroshima 739-8528, Japan.
| |
Collapse
|
20
|
Filice DCS, Bhargava R, Dukas R. Female mating experience and genetic background independently influence male mating success in fruit flies. J Evol Biol 2020; 34:309-318. [PMID: 33128417 DOI: 10.1111/jeb.13729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 10/12/2020] [Accepted: 10/25/2020] [Indexed: 11/29/2022]
Abstract
When the reproductive interests of males and females conflict, males can evolve traits that are harmful to females, and females can coevolve traits to resist this harm. In the fruit fly, Drosophila melanogaster, there is genetic variation in female resistance traits, which can affect the pre- and post-mating success of males that try to mate with them. However, it is not clear to what extent the expression of these phenotypes can be modified by environmental factors such as sociosexual experience. Here, we tested how the genetic background of a female and her previous mating experience interact to affect the mating success of focal males. In the experience phase, we placed females from 28 distinct genetic backgrounds individually either with a single male (low conflict) or with three males (high conflict) for 48 hr. In the subsequent test phase, we measured the mating and post-mating fertilization success of focal males paired individually with each female. We found that focal males paired with females from the high-conflict treatment were less successful at mating, took longer to mate when they were successful, and had a lower proportion of paternity share. Furthermore, we identified significant female genetic variation associated with male mating success. These results indicate that female experience, along with intrinsic genetic factors, can independently influence different fitness components of her subsequent mates and has implications for our understanding of plastic female mating strategies and the evolution of sexually antagonistic traits in males and females.
Collapse
Affiliation(s)
- David C S Filice
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Rajat Bhargava
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Reuven Dukas
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
21
|
Wigby S, Brown NC, Allen SE, Misra S, Sitnik JL, Sepil I, Clark AG, Wolfner MF. The Drosophila seminal proteome and its role in postcopulatory sexual selection. Philos Trans R Soc Lond B Biol Sci 2020; 375:20200072. [PMID: 33070726 DOI: 10.1098/rstb.2020.0072] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Postcopulatory sexual selection (PCSS), comprised of sperm competition and cryptic female choice, has emerged as a widespread evolutionary force among polyandrous animals. There is abundant evidence that PCSS can shape the evolution of sperm. However, sperm are not the whole story: they are accompanied by seminal fluid substances that play many roles, including influencing PCSS. Foremost among seminal fluid models is Drosophila melanogaster, which displays ubiquitous polyandry, and exhibits intraspecific variation in a number of seminal fluid proteins (Sfps) that appear to modulate paternity share. Here, we first consolidate current information on the identities of D. melanogaster Sfps. Comparing between D. melanogaster and human seminal proteomes, we find evidence of similarities between many protein classes and individual proteins, including some D. melanogaster Sfp genes linked to PCSS, suggesting evolutionary conservation of broad-scale functions. We then review experimental evidence for the functions of D. melanogaster Sfps in PCSS and sexual conflict. We identify gaps in our current knowledge and areas for future research, including an enhanced identification of PCSS-related Sfps, their interactions with rival sperm and with females, the role of qualitative changes in Sfps and mechanisms of ejaculate tailoring. This article is part of the theme issue 'Fifty years of sperm competition'.
Collapse
Affiliation(s)
- Stuart Wigby
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZB, UK.,Faculty Biology, Applied Zoology, Technische Universität Dresden, 01069 Dresden, Germany
| | - Nora C Brown
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Sarah E Allen
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Snigdha Misra
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Jessica L Sitnik
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Irem Sepil
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
22
|
Kerwin P, von Philipsborn AC. Copulation Song in Drosophila: Do Females Sing to Change Male Ejaculate Allocation and Incite Postcopulatory Mate Choice? Bioessays 2020; 42:e2000109. [PMID: 32964470 DOI: 10.1002/bies.202000109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/02/2020] [Indexed: 12/14/2022]
Abstract
Drosophila males sing a courtship song to achieve copulations with females. Females were recently found to sing a distinct song during copulation, which depends on male seminal fluid transfer and delays female remating. Here, it is hypothesized that female copulation song is a signal directed at the copulating male and changes ejaculate allocation. This may alter female remating and sperm usage, and thereby affect postcopulatory mate choice. Mechanisms of how female copulation song is elicited, how males respond to copulation song, and how remating is modulated, are considered. The potential adaptive value of female signaling during copulation is discussed with reference to vertebrate copulation calls and their proposed function in eliciting mate guarding. Female copulation song may be widespread within the Drosophila genus. This newly discovered behavior opens many interesting avenues for future research, including investigation of how sexually dimorphic neuronal circuits mediate communication between nervous system and reproductive organs.
Collapse
Affiliation(s)
- Peter Kerwin
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, 8000, Denmark
| | - Anne C von Philipsborn
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, 8000, Denmark
| |
Collapse
|
23
|
Matsumura Y, Gürke S, Tramsen HT, Gorb SN. 3D printed spermathecae as experimental models to understand sperm dynamics in leaf beetles. BMC ZOOL 2020. [DOI: 10.1186/s40850-020-00058-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Postcopulatory mate choice occurs ubiquitously in the animal kingdom. However, it is usually a major challenge to visualise the process taking place in a body. This fact makes it difficult to understand the mechanisms of the process. By focusing on the shape of female sperm storage organs (spermathecae), we aimed to elucidate their functional morphology using six representative beetle species and to simulate sperm dynamics in artificial spermathecae with different structural features.
Results
Morphology and material gradients were studied using micro-computed tomography (μCT) and confocal laser scanning microscopy. This study shows a diversity of external and internal structures of the spermathecae among species. Despite the diversity, all species possess a common pumping region, which is composed of a sclerotised chamber, muscles and a resilin-enriched region. By focusing on the species Agelastica alni, whose spermatheca is relatively simple in shape with an internal protuberance, we simulated sperm dynamics by establishing a fabrication method to create enlarged, transparent, flexible and low-cost 3D models of biological structures based on μCT data. This experiment shows that the internal protuberance in the species functions as an efficient mixing device of stored sperm.
Conclusions
The observed spermathecal musculature implies that the sclerotised chamber of the spermatheca with muscles works as a pumping organ. Our fluid dynamics tests based on 3D printed spermathecae show that a tiny structural difference causes entirely different fluid dynamics in the spermatheca models. This result suggests that structural variations of the spermatheca strongly affect sperm dynamics. However, fluid dynamics tests still require essential measurements including sperm viscosity and the velocity of pumping cycles of the spermatheca.
Collapse
|
24
|
Johansson F, Berger D, Höglund J, Meyer-Lucht Y, Rödin-Mörch P, Sniegula S, Watts PC. High variation in last male sperm precedence and genital morphology in the emerald damselfly, Lestes sponsa. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
In organisms in which individuals mate multiply, knowledge of the proportion of offspring sired by the last male to mate (P2) under field conditions is important for a thorough understanding of how sexual selection works in nature. In many insect groups, pronounced intraspecific variation in P2 is commonplace. Interestingly, however, in stark contrast to these observations, compilation of P2 data in dragonflies and damselflies (Odonata) indicates that a high P2, seldom below 0.95, is a feature of this taxon. Here we used double digest restriction-site associated DNA sequencing to generate a panel of single nucleotide polymorphisms (SNPs) with which we could determine paternity and estimate values of P2 in the offspring of 19 field-collected pairs of the emerald damselfly Lestes sponsa. We also estimated the relationship between P2 and male genital shape of 16 males using geometric morphometric analysis. P2 was variable (range = 0.0–1.0; mean = 0.5), and there was a marginally non-significant (P = 0.069) relationship between genital shape and P2, suggesting that males with a high P2 had an aedeagus with a broader tip. We suggest that the high P2-values reported in past studies in Odonata are partly due to the methods used to infer paternity. Use of SNPs to determine patterns of paternity and P2 in odonates is needed for a better appraisal of fitness in odonates, and would open many future avenues for use of odonates as models of sexual selection.
Collapse
Affiliation(s)
- Frank Johansson
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
| | - David Berger
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
| | - Jacob Höglund
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
| | - Yvonne Meyer-Lucht
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
| | - Patrik Rödin-Mörch
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
| | - Szymon Sniegula
- Department of Ecosystem Conservation, Polish Academy of Sciences, Krakow, Poland
| | - Phillip C Watts
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
25
|
Jezovit JA, Rooke R, Schneider J, Levine JD. Behavioral and environmental contributions to drosophilid social networks. Proc Natl Acad Sci U S A 2020; 117:11573-11583. [PMID: 32404421 PMCID: PMC7261129 DOI: 10.1073/pnas.1920642117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Animals interact with each other in species-specific reproducible patterns. These patterns of organization are captured by social network analysis, and social interaction networks (SINs) have been described for a wide variety of species including fish, insects, birds, and mammals. The aim of this study is to understand the evolution of social organization in Drosophila Using a comparative ecological, phylogenetic, and behavioral approach, the different properties of SINs formed by 20 drosophilids were compared. We investigate whether drosophilid network structures arise from common ancestry, a response to the species' past climate, other social behaviors, or a combination of these factors. This study shows that differences in past climate predicted the species' current SIN properties. The drosophilid phylogeny offered no value to predicting species' differences in SINs through phylogenetic signal tests. This suggests that group-level social behaviors in drosophilid species are shaped by divergent climates. However, we find that the social distance at which flies interact correlated with the drosophilid phylogeny, indicating that behavioral elements of SINs have remained largely unchanged in their evolutionary history. We find a significant correlation of leg length to social distance, outlining the interdependence of anatomy and complex social structures. Although SINs display a complex evolutionary relationship across drosophilids, this study suggests that the ecology, and not common ancestry, contributes to diversity in social structure in Drosophila.
Collapse
Affiliation(s)
- Jacob A Jezovit
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Rebecca Rooke
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Jonathan Schneider
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Joel D Levine
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| |
Collapse
|
26
|
Gao K, van Wijk M, Clement Z, Egas M, Groot AT. A life-history perspective on sexual selection in a polygamous species. BMC Evol Biol 2020; 20:53. [PMID: 32380947 PMCID: PMC7206733 DOI: 10.1186/s12862-020-01618-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 04/27/2020] [Indexed: 01/18/2023] Open
Abstract
Background Ever since Darwin, evolutionary biologists have studied sexual selection driving differences in appearance and behaviour between males and females. An unchallenged paradigm in such studies is that one sex (usually the male) signals its quality as a mate to the other sex (usually the female), who is choosy in accepting a partner. Here, we hypothesize that in polygamous species these roles change dynamically with the mating status of males and females, depending on direct reproductive costs and benefits of multiple matings, and on sperm competition. We test this hypothesis by assessing fitness costs and benefits of multiple matings in both males and females in a polygamous moth species, as in moths not males but females are the signalers and males are the responders. Results We found that multiple matings confer fitness costs and benefits for both sexes. Specifically, the number of matings did not affect the longevity of males or females, but only 67% of the males and 14% of the females mated successfully in all five nights. In addition, the female’s reproductive output increased with multiple matings, although when paired with a new virgin male every night, more than 3 matings decreased her reproductive output, so that the Bateman gradient for females fit a quadratic model better than a linear model. The male’s reproductive success was positively affected by the number of matings and a linear regression line best fit the data. Simulations of the effect of sperm competition showed that increasing last-male paternity increases the steepness of the male Bateman gradient and thus the male’s relative fitness gain from additional mating. Irrespective of last-male paternity value, the female Bateman gradient is steeper than the male one for up to three matings. Conclusion Our results suggest that choosiness in moths may well change throughout the mating season, with males being more choosy early in the season and females being more choosy after having mated at least three times. This life-history perspective on the costs and benefits of multiple matings for both sexes sheds new light on sexual selection forces acting on sexual signals and responses.
Collapse
Affiliation(s)
- Ke Gao
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, Netherlands
| | - Michiel van Wijk
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, Netherlands
| | - Zoe Clement
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, Netherlands
| | - Martijn Egas
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, Netherlands
| | - Astrid T Groot
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, Netherlands. .,Department Entomology, Max Planck Institute for Chemical Ecology, Hans Knoell Strasse 8, 07745, Jena, Germany.
| |
Collapse
|
27
|
Kerwin P, Yuan J, von Philipsborn AC. Female copulation song is modulated by seminal fluid. Nat Commun 2020; 11:1430. [PMID: 32188855 PMCID: PMC7080721 DOI: 10.1038/s41467-020-15260-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 02/29/2020] [Indexed: 01/23/2023] Open
Abstract
In most animal species, males and females communicate during sexual behavior to negotiate reproductive investments. Pre-copulatory courtship may settle if copulation takes place, but often information exchange and decision-making continue beyond that point. Here, we show that female Drosophila sing by wing vibration in copula. This copulation song is distinct from male courtship song and requires neurons expressing the female sex determination factor DoublesexF. Copulation song depends on transfer of seminal fluid components of the male accessory gland. Hearing female copulation song increases the reproductive success of a male when he is challenged by competition, suggesting that auditory cues from the female modulate male ejaculate allocation. Our findings reveal an unexpected fine-tuning of reproductive decisions during a multimodal copulatory dialog. The discovery of a female-specific acoustic behavior sheds new light on Drosophila mating, sexual dimorphisms of neuronal circuits and the impact of seminal fluid molecules on nervous system and behavior.
Collapse
Affiliation(s)
- Peter Kerwin
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Hoegh-Guldbergsgade 10, 8000, Aarhus, Denmark
| | - Jiasheng Yuan
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Hoegh-Guldbergsgade 10, 8000, Aarhus, Denmark
| | - Anne C von Philipsborn
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Hoegh-Guldbergsgade 10, 8000, Aarhus, Denmark.
| |
Collapse
|
28
|
Hopkins BR, Sepil I, Wigby S. Structural variation in Drosophila melanogaster spermathecal ducts and its association with sperm competition dynamics. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200130. [PMID: 32269825 PMCID: PMC7137968 DOI: 10.1098/rsos.200130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 02/27/2020] [Indexed: 06/11/2023]
Abstract
The ability of female insects to retain and use sperm for days, months, or even years after mating requires specialized storage organs in the reproductive tract. In most orders, these organs include a pair of sclerotized capsules known as spermathecae. Here, we report that some Drosophila melanogaster females exhibit previously uncharacterized structures within the distal portion of the muscular duct that links a spermatheca to the uterus. We find that these 'spermathecal duct presences' (SDPs) may form in either or both ducts and can extend from the duct into the sperm-storing capsule itself. We further find that the incidence of SDPs varies significantly between genotypes, but does not change significantly with the age or mating status of females, the latter indicating that SDPs are not composed of or stimulated by sperm or male seminal proteins. We show that SDPs affect neither the number of first male sperm held in a spermatheca nor the number of offspring produced after a single mating. However, we find evidence that SDPs are associated with a lack of second male sperm in the spermathecae after females remate. This raises the possibility that SDPs provide a mechanism for variation in sperm competition outcome among females.
Collapse
Affiliation(s)
- Ben R. Hopkins
- Department of Zoology, University of Oxford, Oxford OX1 3SZ, UK
- Department of Evolution and Ecology, University of California – Davis, One Shields Ave., Davis, CA 95616, USA
| | - Irem Sepil
- Department of Zoology, University of Oxford, Oxford OX1 3SZ, UK
| | - Stuart Wigby
- Department of Zoology, University of Oxford, Oxford OX1 3SZ, UK
- Faculty Biology, Applied Zoology, Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|
29
|
Flatt T. Life-History Evolution and the Genetics of Fitness Components in Drosophila melanogaster. Genetics 2020; 214:3-48. [PMID: 31907300 PMCID: PMC6944413 DOI: 10.1534/genetics.119.300160] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/03/2019] [Indexed: 12/28/2022] Open
Abstract
Life-history traits or "fitness components"-such as age and size at maturity, fecundity and fertility, age-specific rates of survival, and life span-are the major phenotypic determinants of Darwinian fitness. Analyzing the evolution and genetics of these phenotypic targets of selection is central to our understanding of adaptation. Due to its simple and rapid life cycle, cosmopolitan distribution, ease of maintenance in the laboratory, well-understood evolutionary genetics, and its versatile genetic toolbox, the "vinegar fly" Drosophila melanogaster is one of the most powerful, experimentally tractable model systems for studying "life-history evolution." Here, I review what has been learned about the evolution and genetics of life-history variation in D. melanogaster by drawing on numerous sources spanning population and quantitative genetics, genomics, experimental evolution, evolutionary ecology, and physiology. This body of work has contributed greatly to our knowledge of several fundamental problems in evolutionary biology, including the amount and maintenance of genetic variation, the evolution of body size, clines and climate adaptation, the evolution of senescence, phenotypic plasticity, the nature of life-history trade-offs, and so forth. While major progress has been made, important facets of these and other questions remain open, and the D. melanogaster system will undoubtedly continue to deliver key insights into central issues of life-history evolution and the genetics of adaptation.
Collapse
Affiliation(s)
- Thomas Flatt
- Department of Biology, University of Fribourg, CH-1700, Switzerland
| |
Collapse
|
30
|
Female remating rate and pattern of sperm use suggest intense sperm competition in Drosophila antonietae (Diptera: Drosophilidae). Evol Ecol 2019. [DOI: 10.1007/s10682-019-10003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Schenkel MA, Pen I, Beukeboom LW, Billeter J. Making sense of intralocus and interlocus sexual conflict. Ecol Evol 2018; 8:13035-13050. [PMID: 30619603 PMCID: PMC6309128 DOI: 10.1002/ece3.4629] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 01/13/2023] Open
Abstract
Sexual conflict occurs because males and females are exposed to different selection pressures. This can affect many aspects of female and male biology, such as physiology, behavior, genetics, and even population ecology. Its broad impact has caused widespread interest in sexual conflict. However, a key aspect of sexual conflict is often confused; it comprises two distinct forms: intralocus and interlocus sexual conflict (IASC and IRSC). Although both are caused by sex differences in selection, they operate via different proximate and ultimate mechanisms. Intralocus sexual conflict and IRSC are often not clearly defined as separate processes in the scientific literature, which impedes a proper understanding of each form as well as of their relative impact on sexual conflict. Furthermore, our current knowledge of the genetics of these phenomena is severely limited. This prevents us from empirically testing numerous theories regarding the role of these two forms of sexual conflict in evolution. Here, we clarify the distinction between IASC and IRSC, by discussing how male and female interests differ, how and when sex-specific adaptation occurs, and how this may lead to evolutionary change. We then describe a framework for their study, focusing on how future experiments may help identify the genetics underlying these phenomena. Through this, we hope to promote a more critical reflection on IASC and IRSC as well as underline the necessity of genetic and mechanistic studies of these two phenomena.
Collapse
Affiliation(s)
- Martijn A. Schenkel
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Ido Pen
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Leo W. Beukeboom
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Jean‐Christophe Billeter
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|