1
|
Krisanits BA, Kaur B, Fahey JW, Turner DP. The Anti-AGEing and RAGEing Potential of Isothiocyanates. Molecules 2024; 29:5986. [PMID: 39770075 PMCID: PMC11677037 DOI: 10.3390/molecules29245986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 01/03/2025] Open
Abstract
Isothiocyanates (ITCs), found in edible plants such as cruciferous vegetables, are a group of reactive organo-sulfur phytochemicals produced by the hydrolysis of precursors known as glucosinolates. ITCs have been studied extensively both in vivo and in vitro to define their therapeutic potential for the treatment of chronic health conditions. Therapeutically, they have shown an intrinsic ability to inhibit oxidative and inflammatory phenotypes to support enhanced health. This review summarizes the current evidence supporting the observation that the antioxidant and anti-inflammatory activities of ITCs temper the pathogenic effects of a group of reactive metabolites called advanced glycation end products (AGEs). AGE exposure has significantly increased across the lifespan due to health risk factors that include dietary intake, a sedentary lifestyle, and comorbid conditions. By contributing to a chronic cycle of inflammatory stress through the aberrant activation of the transmembrane receptor for AGE (RAGE), increased AGE bioavailability is associated with chronic disease onset, progression, and severity. This review debates the potential molecular mechanisms by which ITCs may inhibit AGE bioavailability to reduce RAGE-mediated pro-oxidant and pro-inflammatory phenotypes. Bringing to light the molecular impact that ITCs may have on AGE biogenesis may stimulate novel intervention strategies for reversing or preventing the impact of lifestyle factors on chronic disease risk.
Collapse
Affiliation(s)
- Bradley A. Krisanits
- Department of Surgery, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA; (B.A.K.); (B.K.)
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Bhoomika Kaur
- Department of Surgery, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA; (B.A.K.); (B.K.)
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Jed W. Fahey
- Departments of Medicine, Pharmacology & Molecular Sciences, Psychiatry & Behavioral Sciences, and iMIND Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
- Institute of Medicine, University of Maine, Orono, ME 04469, USA
| | - David P. Turner
- Department of Surgery, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA; (B.A.K.); (B.K.)
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
2
|
He G, Yang SB, Wang YZ. Analysis of Chemical Changes during Maturation of Amomum tsao-ko Based on GC-MS, FT-NIR, and FT-MIR. ACS OMEGA 2024; 9:29857-29869. [PMID: 39005772 PMCID: PMC11238317 DOI: 10.1021/acsomega.4c03717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 07/16/2024]
Abstract
Amomum tsao-ko Crevost et Lemaire (A. tsao-ko) is widely grown for its high nutritional and economic value. However, the lack of a scientific harvesting and quality control system has resulted in an uneven product quality. The present study was based on A. tsao-ko from four maturity stages from the same growing area, and its chemical trends and quality were evaluated using a combination of agronomic trait analysis, spectroscopy, chromatography, chemometrics, and network pharmacology. The results showed that A. tsao-ko was phenotypically dominant in October. Spectroscopy showed that the absorbance intensity at different maturity stages showed a trend of October > September > August > July. Further chemical differences between A. tsao-ko at different stages of maturity were found by chromatography to originate mainly from alcohol, aromatic, acids, esters, hydrocarbons, ketone, heterocyclic, and aldehydes. The network pharmacology results showed that the active ingredient for the treatment of obesity was present in A. tsao-ko and had high levels in A. tsao-ko in September and October. The results of this study provide a new idea for the comprehensive evaluation of A. tsao-ko and a theoretical basis for the harvesting and resource utilization of A. tsao-ko.
Collapse
Affiliation(s)
- Gang He
- Medicinal
Plants Research Institute, Yunnan Academy
of Agricultural Sciences, Kunming, 650200, China
- College
of Food Science and Technology, Yunnan Agricultural
University, Kunming, 650201 China
| | - Shao-bing Yang
- Medicinal
Plants Research Institute, Yunnan Academy
of Agricultural Sciences, Kunming, 650200, China
| | - Yuan-zhong Wang
- Medicinal
Plants Research Institute, Yunnan Academy
of Agricultural Sciences, Kunming, 650200, China
| |
Collapse
|
3
|
Zhang M, Zhang Y, Guo X, Chen Y, Li H, Zhou G, Sun S, Ren Q, Simal-Gandara J, Sun J, Li N, Liu C. Extraction, purification and anticancer activity studies on triterpenes from pomegranate peel. Food Funct 2024; 15:6914-6928. [PMID: 38855842 DOI: 10.1039/d4fo00183d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Pomegranate peel is the by-product of pomegranate processing, which contains a lot of triterpene compounds. In this study, the total triterpenes of pomegranate peel (TPP) were extracted using an ultrasonic-assisted ethanol extraction method under optimal conditions, purified using D-101 macroporous resin to obtain a purity of 75.28%. The triterpenes in TPP were mainly pentacyclic triterpenes determined by LC-MS/MS. Network pharmacological analysis predicted that the anticancer targets were closely related to the MAPK pathway. The in vitro results showed that TPP could inhibit cell proliferation, promote apoptosis, reduce mitochondrial membrane potential and increase ROS levels. The western blot results indicated that the expression levels of the apoptotic proteins Bax, Bcl-2, cytochrome C, cleaved caspase-3 and cleaved caspase-9 were increased. In addition, the protein expression of the MAPK pathway predicted by network pharmacology also changed significantly. These results provided that TPP has potential for adjuvant therapy of tumors.
Collapse
Affiliation(s)
- Mengqi Zhang
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan, 250100, PR China.
- Shandong Huatai Industrial Technology Institute of Nutrition and Health Co, Ltd, 9 Hongji Road, Jinan, 251400, PR China
| | - Yutao Zhang
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan, 250100, PR China.
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, 271017, PR China
| | - Xu Guo
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan, 250100, PR China.
| | - Yingying Chen
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan, 250100, PR China.
| | - Huimin Li
- Development Center of Melon, Fruit and Vegetable industry in Kashi, Kashi, 844000, PR China
| | - Guihua Zhou
- Development Center of Melon, Fruit and Vegetable industry in Kashi, Kashi, 844000, PR China
| | - Shutao Sun
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan, 250100, PR China.
| | - Qidong Ren
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan, 250100, PR China.
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain
| | - Jinyue Sun
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan, 250100, PR China.
| | - Ningyang Li
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, 271017, PR China
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, PR China
| | - Chao Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan, 250100, PR China.
| |
Collapse
|
4
|
Choi PG, Park SH, Nirmala FS, Kim HS, Kim MJ, Hahm JH, Seo HD, Ahn J, Ha T, Jung CH. Geniposide-Rich Gardenia jasminoides Ellis Fruit Extract Increases Healthspan in Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 2023; 78:1108-1115. [PMID: 36821434 DOI: 10.1093/gerona/glad066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Indexed: 02/24/2023] Open
Abstract
The human life span has been markedly extended since the 1900s, but it has not brought healthy aging to everyone. This increase in life expectancy without an increase in healthspan is a major global concern that imposes considerable health care budgets and degrades the quality of life of older adults. Dietary interventions are a promising strategy to increase healthspan. In this study, we evaluated whether a Gardenia jasminoides Ellis fruit ethanol extract (GFE) increases the life span of Caenorhabditis elegans (C. elegans). Treatment with 10 mg/mL GFE increased the life span by 27.1% when compared to the vehicle group. GFE (10 mg/mL) treatment improved healthspan-related markers (pharyngeal pumping, muscle quality, age-pigment, and reactive oxygen species accumulation) and exerted a protective effect against amyloid β 1-42 toxicity. These effects of GFE are related to the inhibition of insulin/IGF-1 signaling and activation of SKN-1/Nrf, thereby promoting the expression of stress resistance-related genes. In addition, treatment with 10 mM geniposide, the most abundant component of GFE, improved healthspan-related markers and increased life span by 18.55% when compared to the vehicle group. Collectively, these findings demonstrate that GFE and its component geniposide increase the life span along with healthspan in C. elegans.
Collapse
Affiliation(s)
- Pyeong Geun Choi
- Department of Food Biotechnology, University of Science and Technology, Daejeon, South Korea
- Aging and Metabolism Research Group, Korea Food Research Institute, Jeollabuk-do, South Korea
| | - So-Hyun Park
- Department of Food Biotechnology, University of Science and Technology, Daejeon, South Korea
- Aging and Metabolism Research Group, Korea Food Research Institute, Jeollabuk-do, South Korea
| | - Farida S Nirmala
- Department of Food Biotechnology, University of Science and Technology, Daejeon, South Korea
- Aging and Metabolism Research Group, Korea Food Research Institute, Jeollabuk-do, South Korea
| | - Hee Soo Kim
- Department of Food Biotechnology, University of Science and Technology, Daejeon, South Korea
- Aging and Metabolism Research Group, Korea Food Research Institute, Jeollabuk-do, South Korea
| | - Min Jung Kim
- Personalized Diet Research Group, Korea Food Research Institute, Jeollabuk-do, South Korea
| | - Jeong-Hoon Hahm
- Aging and Metabolism Research Group, Korea Food Research Institute, Jeollabuk-do, South Korea
| | - Hyo-Deok Seo
- Aging and Metabolism Research Group, Korea Food Research Institute, Jeollabuk-do, South Korea
| | - Jiyun Ahn
- Department of Food Biotechnology, University of Science and Technology, Daejeon, South Korea
- Aging and Metabolism Research Group, Korea Food Research Institute, Jeollabuk-do, South Korea
| | - Taeyoul Ha
- Department of Food Biotechnology, University of Science and Technology, Daejeon, South Korea
- Aging and Metabolism Research Group, Korea Food Research Institute, Jeollabuk-do, South Korea
| | - Chang Hwa Jung
- Department of Food Biotechnology, University of Science and Technology, Daejeon, South Korea
- Aging and Metabolism Research Group, Korea Food Research Institute, Jeollabuk-do, South Korea
| |
Collapse
|
5
|
Composition, metabolism and postharvest function and regulation of fruit cuticle: A review. Food Chem 2023; 411:135449. [PMID: 36669336 DOI: 10.1016/j.foodchem.2023.135449] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/19/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
The cuticle of plants, a hydrophobic membrane that covers their aerial organs, is crucial to their ability to withstand biotic and abiotic stressors. Fruit is the reproductive organ of plants, and an important dietary source that can offer a variety of nutrients for the human body, and fruit cuticle performs a crucial protective role in fruit development and postharvest quality. This review discusses the universality and diversity of the fruit cuticle composition, and systematically summarizes the metabolic process of fruit cuticle, including the biosynthesis, transport and regulatory factors (including transcription factors, phytohormones and environmental elements) of fruit cuticle. Additionally, we emphasize the postharvest functions and postharvest regulatory technologies of fruit cuticle, and propose future research directions for fruit cuticle.
Collapse
|
6
|
Liao S, Fan Z, Huang X, Ma Y, Huang F, Guo Y, Chen T, Wang P, Chen Z, Yang M, Yang T, Xie J, Si J, Liu J. Variations in the morphological and chemical composition of the rhizomes of Polygonatum species based on a common garden experiment. Food Chem X 2023; 17:100585. [PMID: 36824147 PMCID: PMC9941356 DOI: 10.1016/j.fochx.2023.100585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/28/2023] Open
Abstract
Polygonatum species have great potential in fighting chronic and hidden hunger. In this study, five Polygonatum species collected from different populations were cultivated in a common garden for 4 years. The species mainly differed in yield, saponin and polysaccharide contents, stem diameter, leaf width, inflorescence length, and floret inflorescence length. P. cyrtonema (PC) provides high-quality yield when planted in Zhejiang, with output as high as 7.5 tons per hectare and a promising breeding potential. Moreover, stem diameter can be used as an indicator of the harvest in the screening of varieties. In addition, the formation of plant genetic traits from different provenances is affected by the climatic factors of the origin. Furthermore, near-infrared spectroscopy combined with chemometrics for polysaccharide and saponin quantitation provides a rapid assessment of PC quality. Our findings provide a scientific basis for the development and sustainable utilization of PC as a high-yielding and high-quality forest crop.
Collapse
Affiliation(s)
- Shuhui Liao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Zhiwei Fan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
- Guizhou Botanical Garden, Guiyang, Guizhou 550004, China
| | - Xiujing Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Yuru Ma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Fangyan Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Yuntao Guo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Tianqi Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Pan Wang
- Pan'an Traditional Chinese Medicine Industry Innovation and Development Institute, Zhejiang 322300, China
| | - Zilin Chen
- Pan'an Traditional Chinese Medicine Industry Innovation and Development Institute, Zhejiang 322300, China
| | - Meisen Yang
- Xiushan Traditional Chinese Medicine Industry Center, Chongqing 409900, China
| | - Tongguang Yang
- Xiushan Traditional Chinese Medicine Industry Center, Chongqing 409900, China
- Xiushan Jiawo Agricultural Development Co., Ltd, Chongqing 409902, China
| | - Jianqiu Xie
- Lishui Institute of Agriculture and Forestry Sciences, Lishui, Zhejiang 323000, China
| | - Jinping Si
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Jingjing Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
7
|
Gao Y, Zong Z, Xia W, Fang X, Liu R, Wu W, Mu H, Han Y, Xiao S, Gao H, Chen H. Hepatoprotective effect of water bamboo shoot (
Zizania latifolia
) extracts against acute alcoholic liver injury in a mice model and screening of bioactive phytochemicals. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
8
|
Huang C, Xu T, Li Y, Ren J. Mapping the effect of plant‐based extracts on immune and tumor cells from a bioactive compound standpoint. FOOD FRONTIERS 2023; 4:333-342. [DOI: 10.1002/fft2.162] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2025] Open
Abstract
AbstractInstead of traditional regimen of “one molecule, one target, one disease,” natural plant extracts, as a multi‐component system, show great potential in alleviate disease with complex etiology and pathophysiological factors, such as cancer. In this study, we evaluated the chemical characteristic as well as bioactive activities profiles of 15 species of plant‐based extracts, which corresponding to polysaccharide, protein, polyphenol content, and effects on MC38, LLC, RAW264.7 cell viability, respectively. Person correlation analysis and multi‐criteria decision analysis method was proposed to evaluate dose‐effect relationship and the comprehensive activities of each extract. A significant positive correlation was found between polyphenol value and immune cell activity, which means that it was considered to perform well on antitumor and immunomodulatory effects when compared to the studied substances. The subsequent measurement by a MC38‐N4/OT‐I coculture model verified the results, showing an excellent effect of Grifola frondosa on enhancing the antigen‐specific killing of tumor cells. Here we give a general view of the chemical composition and the bioactive activities of 15 plant‐based extracts and provide a feasible strategy to estimate the complex effect of phytochemicals. That would help us to better understand the effect of phytochemical combination and lay a good foundation for further in vivo studies.
Collapse
Affiliation(s)
- Chujun Huang
- School of Food Science and Engineering South China University of Technology Guangzhou Guangdong China
| | - Tianxiong Xu
- School of Food Science and Engineering South China University of Technology Guangzhou Guangdong China
| | - Yanping Li
- College of Catering and Tourism Guangzhou Institute of Technology Guangzhou Guangdong China
| | - Jiaoyan Ren
- School of Food Science and Engineering South China University of Technology Guangzhou Guangdong China
| |
Collapse
|
9
|
Wright KM, McFerrin J, Alcázar Magaña A, Roberts J, Caruso M, Kretzschmar D, Stevens JF, Maier CS, Quinn JF, Soumyanath A. Developing a Rational, Optimized Product of Centella asiatica for Examination in Clinical Trials: Real World Challenges. Front Nutr 2022; 8:799137. [PMID: 35096945 PMCID: PMC8797052 DOI: 10.3389/fnut.2021.799137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Botanical products are frequently sold as dietary supplements and their use by the public is increasing in popularity. However, scientific evaluation of their medicinal benefits presents unique challenges due to their chemical complexity, inherent variability, and the involvement of multiple active components and biological targets. Translation away from preclinical models, and developing an optimized, reproducible botanical product for use in clinical trials, presents particular challenges for phytotherapeutic agents compared to single chemical entities. Common deficiencies noted in clinical trials of botanical products include limited characterization of the product tested, inadequate placebo control, and lack of rationale for the type of product tested, dose used, outcome measures or even the study population. Our group has focused on the botanical Centella asiatica due to its reputation for enhancing cognition in Eastern traditional medicine systems. Our preclinical studies on a Centella asiatica water extract (CAW) and its bioactive components strongly support its potential as a phytotherapeutic agent for cognitive decline in aging and Alzheimer's disease through influences on antioxidant response, mitochondrial activity, and synaptic density. Here we describe our robust, scientific approach toward developing a rational phytotherapeutic product based on Centella asiatica for human investigation, addressing multiple factors to optimize its valid clinical evaluation. Specific aspects covered include approaches to identifying an optimal dose range for clinical assessment, design and composition of a dosage form and matching placebo, sourcing appropriate botanical raw material for product manufacture (including the evaluation of active compounds and contaminants), and up-scaling of laboratory extraction methods to available current Good Manufacturing Practice (cGMP) certified industrial facilities. We also address the process of obtaining regulatory approvals to proceed with clinical trials. Our study highlights the complexity of translational research on botanicals and the importance of identifying active compounds and developing sound analytical and bioanalytical methods for their determination in botanical materials and biological samples. Recent Phase I pharmacokinetic studies of our Centella asiatica product in humans (NCT03929250, NCT03937908) have highlighted additional challenges associated with designing botanical bioavailability studies, including specific dietary considerations that need to be considered.
Collapse
Affiliation(s)
- Kirsten M. Wright
- Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| | | | - Armando Alcázar Magaña
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, United States
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | | | - Maya Caruso
- Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| | - Doris Kretzschmar
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, United States
| | - Jan F. Stevens
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, United States
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Claudia S. Maier
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Joseph F. Quinn
- Department of Neurology, Oregon Health & Science University, Portland, OR, United States
- Department of Neurology, Veterans Affairs Portland Health Care System Center, Portland, OR, United States
| | - Amala Soumyanath
- Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|