1
|
Amangeldinova M, Ersatır M, Necip A, Cimentepe M, Kudrina N, Terletskaya N, Cimentepe OO, Cakır O, Yilmaz MA, Yildirim M. Green Extraction Strategies and Bioactivity of Rheum cordatum Losinsk: Antioxidant, Antimicrobial, and Molecular Docking Insights. PLANTS (BASEL, SWITZERLAND) 2025; 14:1071. [PMID: 40219139 PMCID: PMC11991350 DOI: 10.3390/plants14071071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/22/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025]
Abstract
This study aimed to compare the efficiency of different green extraction methods for obtaining bioactive compounds from the roots of Rheum cordatum Losinsk and to evaluate their antioxidant and antimicrobial properties. The presence of some important phytochemicals in the extracts obtained using ultrasound-assisted extraction (UAE), subcritical ethanol extraction (Sbc-EtOH), and supercritical CO2 (ScCO2) extraction was determined by LC-MS/MS, and their antioxidant and antimicrobial properties were examined against Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa, and Escherichia coli. The goal was to determine the optimal extraction conditions that maximize the yield of bioactive compounds while preserving their biological properties. Different pressures (100 bar and 400 bar) were tested in UAE extraction, different solvents and times were tested in Sbc-EtOH extraction, and different pressures were tested in ScCO2 extraction. Most of the 53 important phenolic compounds have been extracted using the ScCO2 extraction method, either exclusively or in the highest amounts. It has been observed that more and higher amounts of phenolic compounds were extracted at lower pressure. The highest antioxidant activity was exhibited by the ScCO2 extracts. Additionally, the ScCO2-100 extract obtained at 100 bar showed strong antimicrobial activity, with a minimum inhibitory concentration (MIC) ranging from 31.25 to 250 μg/mL. Gallic acid, epicatechin gallate, epigallocatechin gallate, and catechin were found in extracts. Additionally, molecular docking studies against the 1QWZ, 2ANQ, 3H77, and 6QXS proteins revealed that epicatechin exhibited docking scores of -6.127, -9.479, -5.836, and -7.067 kcal/mol, respectively.
Collapse
Affiliation(s)
- Madina Amangeldinova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Avenue 71, Almaty 050040, Kazakhstan; (M.A.); (N.K.); (N.T.)
- Institute of Genetics and Physiology, Al-Farabi 93, Almaty 050040, Kazakhstan
| | - Mehmet Ersatır
- Department of Chemistry, Faculty of Art and Science, Cukurova Universiry, Adana 01330, Türkiye;
| | - Adem Necip
- Department of Pharmacy Services, Vocational School of Health Services, Harran University, Sanliurfa 63100, Türkiye;
| | - Mehmet Cimentepe
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Harran University, Sanliurfa 63100, Türkiye;
| | - Nataliya Kudrina
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Avenue 71, Almaty 050040, Kazakhstan; (M.A.); (N.K.); (N.T.)
- Institute of Genetics and Physiology, Al-Farabi 93, Almaty 050040, Kazakhstan
| | - Nina Terletskaya
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Avenue 71, Almaty 050040, Kazakhstan; (M.A.); (N.K.); (N.T.)
- Institute of Genetics and Physiology, Al-Farabi 93, Almaty 050040, Kazakhstan
| | - Ozge Oztürk Cimentepe
- Department of Pharmacology, Faculty of Pharmacy, Harran University, Sanliurfa 63100, Türkiye;
| | - Oguz Cakır
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Dicle University, Diyarbakir 21280, Türkiye;
| | - Mustafa Abdullah Yilmaz
- Department of Analytical Chemistry, Faculty of Pharmacy, Dicle University, Diyarbakir 21280, Türkiye;
| | - Metin Yildirim
- Department of Biochemistry, Faculty of Pharmacy, Harran University, Sanliurfa 63100, Türkiye
| |
Collapse
|
2
|
He BT, Li BZ. Engineering yeast to produce fraxetin from ferulic acid and lignin. Appl Microbiol Biotechnol 2025; 109:26. [PMID: 39869203 PMCID: PMC11772470 DOI: 10.1007/s00253-025-13409-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/02/2025] [Accepted: 01/12/2025] [Indexed: 01/30/2025]
Abstract
Lignin, the most abundant renewable source of aromatic compounds on earth, remains underexploited in traditional biorefining. Fraxetin, a naturally occurring flavonoid, has garnered considerable attention in the scientific community due to its diverse and potent biological activities such as antimicrobial, anticancer, antioxidant, anti-inflammatory, and neurological protective actions. To enhance the green and value-added utilization of lignin, Saccharomyces cerevisiae was engineered as a cell factory to transform lignin derivatives to produce fraxetin. The expression of scopoletin 8-hydroxylase (S8H) and coumarin synthase (COSY) enabled S. cerevisiae to produce fraxetin from ferulic acid, one of the three principal monomers. The optimized fermentation strategies produced 19.1 mg/L fraxetin from ferulic acid by engineered S. cerevisiae. Additionally, the engineered cell factory achieved a fraxetin titer of 7.7 mg/L in lignin hydrolysate. This study successfully demonstrates the biotransformation of lignin monomers and lignin hydrolysate into fraxetin using a S. cerevisiae cell factory, thereby providing a viable strategy for the valorization of lignin. KEY POINTS: • AtS8H showed substance specificity in the hydroxylation of scopoletin. • AtCOSY and AtS8H were key enzymes for converting ferulic acid into fraxetin. • Yeast was engineered to produce fraxetin from lignin hydrolysate.
Collapse
Affiliation(s)
- Bo-Tao He
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China.
| |
Collapse
|
3
|
Sorita GD, Caicedo Chacon WD, Strieder MM, Rodriguez-García C, Fritz AM, Verruck S, Ayala Valencia G, Mendiola JA. Biorefining Brazilian Green Propolis: An Eco-Friendly Approach Based on a Sequential High-Pressure Extraction for Recovering High-Added-Value Compounds. Molecules 2025; 30:189. [PMID: 39795246 PMCID: PMC11722997 DOI: 10.3390/molecules30010189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Propolis is a valuable natural resource for extracting various beneficial compounds. This study explores a sustainable extraction approach for Brazilian green propolis. First, supercritical fluid extraction (SFE) process parameters were optimized (co-solvent: 21.11% v/v CPME, and temperature: 60 °C) to maximize yield, total phenolic content (TPC), antioxidant capacity, and LOX (lipoxygenase) inhibitory activity. GC-MS analysis identified 40 metabolites in SFE extracts, including fatty acids, terpenoids, phenolics, and sterols. After selecting the optimum SFE process parameters, a sequential high-pressure extraction (HPE) approach was developed, comprising SFE, pressurized liquid extraction (PLE) with EtOH/H2O, and subcritical water extraction (SWE). This process was compared to a similar sequential extraction using low-pressure extractions (LPE) with a Soxhlet extractor. The HPE process achieved a significantly higher overall yield (80.86%) than LPE (71.43%). SFE showed higher selectivity, resulting in a lower carbohydrate content in the non-polar fraction, and PLE extracted nearly twice the protein amount of LPE-2. Despite the HPE selectivity, LPE extracts exhibited better acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and LOX inhibition, demonstrating that the neuroprotective and anti-inflammatory activity of the extracts may be associated with a symbiosis of a set of compounds. Finally, a comprehensive greenness assessment revealed that the HPE process proved more sustainable and aligned with green chemistry principles than the LPE method.
Collapse
Affiliation(s)
- Guilherme Dallarmi Sorita
- Foodomics Laboratory, Institute of Food Science Research (CIAL) (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, Santa Catarina, Brazil
| | - Wilson Daniel Caicedo Chacon
- Foodomics Laboratory, Institute of Food Science Research (CIAL) (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, Santa Catarina, Brazil
| | - Monique Martins Strieder
- Foodomics Laboratory, Institute of Food Science Research (CIAL) (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), Universidade Estadual de Campinas, Campinas 13484-350, São Paulo, Brazil
| | - Camilo Rodriguez-García
- Foodomics Laboratory, Institute of Food Science Research (CIAL) (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain
- High Pressure Laboratory, Food Chemistry Research Group, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 30 No. 45-03, Bogotá D.C. 111321, Colombia
| | - Alcilene Monteiro Fritz
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, Santa Catarina, Brazil
| | - Silvani Verruck
- Department of Food Science and Technology, Federal University of Santa Catarina, Rodovia Admar Gonzaga, 1346, Itacorubi, Florianópolis 88034-000, Santa Catarina, Brazil
| | - Germán Ayala Valencia
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, Santa Catarina, Brazil
| | - José A. Mendiola
- Foodomics Laboratory, Institute of Food Science Research (CIAL) (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain
| |
Collapse
|
4
|
Sankaran S, Dubey R, Gomatam A, Chakor R, Kshirsagar A, Lohidasan S. Deciphering the multi-functional role of Indian propolis for the management of Alzheimer's disease by integrating LC-MS/MS, network pharmacology, molecular docking, and in-vitro studies. Mol Divers 2024; 28:4325-4342. [PMID: 38466554 DOI: 10.1007/s11030-024-10818-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/27/2024] [Indexed: 03/13/2024]
Abstract
The conventional one-drug-one-disease theory has lost its sheen in multigenic diseases such as Alzheimer's disease (AD). Propolis, a honeybee-derived product has ethnopharmacological evidence of antioxidant, anti-inflammatory, antimicrobial and neuroprotective properties. However, the chemical composition is complex and highly variable geographically. So, to leverage the potential of propolis as an effective treatment modality, it is essential to understand the role of each phytochemical in the AD pathophysiology. Therefore, the present study was aimed at investigating the anti-Alzheimer effect of bioactive in Indian propolis (IP) by combining LC-MS/MS fingerprinting, with network-based analysis and experimental validation. First, phytoconstituents in IP extract were identified using an in-house LC-MS/MS method. The drug likeness and toxicity were assessed, followed by identification of AD targets. The constituent-target-gene network was then constructed along with protein-protein interactions, gene pathway, ontology, and enrichment analysis. LC-MS/MS analysis identified 16 known metabolites with druggable properties except for luteolin-5-methyl ether. The network pharmacology-based analysis revealed that the hit propolis constituents were majorly flavonoids, whereas the main AD-associated targets were MAOB, ESR1, BACE1, AChE, CDK5, GSK3β, and PTGS2. A total of 18 gene pathways were identified to be associated, with the pathways related to AD among the topmost enriched. Molecular docking analysis against top AD targets resulted in suitable binding interactions at the active site of target proteins. Further, the protective role of IP in AD was confirmed with cell-line studies on PC-12, in situ AChE inhibition, and antioxidant assays.
Collapse
Affiliation(s)
- Sandeep Sankaran
- Department of Quality Assurance Techniques, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Rahul Dubey
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Anish Gomatam
- Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Mumbai, Maharashtra, 400098, India
| | - Rishikesh Chakor
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Ashwini Kshirsagar
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Sathiyanarayanan Lohidasan
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India.
| |
Collapse
|
5
|
Ha NM, Son NT. Health benefits of fraxetin: From chemistry to medicine. Arch Pharm (Weinheim) 2024; 357:e2400092. [PMID: 38501886 DOI: 10.1002/ardp.202400092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
Fraxetin is a bioactive molecule present in various natural plants, especially Cortex Fraxini. Evidenced outcomes in phytochemical and biological analyses for this agent are now available in the literature, but an insightful review is yet unknown. The goal of the current research is to offer a panoramic illustration of natural observation, biosynthesis, synthesis, pharmacology, and pharmacokinetics for fraxetin. Esculetin and ferulic acid acted as precursors in the enzymatic biosynthetic route, whereas fraxetin could be easily synthesized from simple phenols. A great deal of interest was obtained in using this molecule for pharmacological targets. Herein, its pharmacological value included anticancer, antioxidative, anti-inflammatory, antidiabetic, antiobesity, and antimicrobial activities, as well as the protection of the liver, neurons, heart, bone, lung, kidney, and others. Anticancer activity may involve the inhibition of proliferation, invasion, and migration, together with apoptotic induction. Health benefits from this molecule were deduced from its ability to suppress cytokines and protect the immune syndrome. Various signaling pathways, such as Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3), phosphoinositide 3 kinase (PI3K)/protein kinase B (Akt), nuclear factor kappa B (NF-κB)/NLRP3, Akt/AMPK, have been proposed for in vitro and in vivo mechanisms of action. Fraxetin is highly distributed to rat plasma and several organs. However, more pharmacokinetic studies to improve its bioavailability are needed since its solubility in water is still limited.
Collapse
Affiliation(s)
- Nguyen Manh Ha
- Faculty of Chemical Technology, Hanoi University of Industry, Hanoi, Vietnam
| | - Ninh The Son
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
- Department of Chemistry, Graduate University of Science and Technology, VAST, Hanoi, Vietnam
| |
Collapse
|
6
|
Mergen Duymaz G, Duz G, Ozkan K, Karadag A, Yilmaz O, Karakus A, Cengiz O, Akyildiz IE, Basdogan G, Damarlı E, Sagdic O. The evaluation of L-arginine solution as a solvent for propolis extraction: The phenolic profile, antioxidant, antibacterial activity, and in vitro bioaccessibility. Food Sci Nutr 2024; 12:2724-2735. [PMID: 38628177 PMCID: PMC11016385 DOI: 10.1002/fsn3.3953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 04/19/2024] Open
Abstract
Ethanol has been widely used for the extraction of propolis. Due to its certain disadvantages, there has been an ongoing search to find alternative non-ethanolic extraction solvents. This study aimed to compare the phenolics, antioxidant, and antibacterial activity of propolis extracts prepared with 70% ethanol (EWE), propylene glycol (PGE), and L-arginine solution (BE). All extracts were subjected to an in vitro simulated digestion procedure, and the phenolic profile of non-digested and digested samples was determined by using LC-MS/MS. Additionally, the change in total phenolic (TPC), total flavonoid content (TFC), and antioxidant capacities were determined at each digestion phase. TPC and TFC of non-digested propolis extracts had similar values, although BE showed higher antioxidant capacity (p < .05). The amount of TPC reached or transformed at the intestinal stage was higher for BE and PG compared to EWE. BE also provided the highest antioxidant capacity assay in digested samples. The most common phenolics were pinocembrin, pinobanskin, galangin, and CAPE in non-digested extracts. However, their concentration was drastically reduced by digestion, and their recovery (R%) ranged from 0% to 9.38% of the initial amount detected in the non-digested extracts. Chrysin was the most bioaccessible flavonoid in all extracts. Among phenolic acids, the highest R% was determined for trans-cinnamic acid (22.14%) from BE. All extracts showed in vitro inhibitory activity against Escherichia coli and Staphylococcus aureus. This study suggests that an L-arginine solution could be used as an alternative solvent to ethanol and propylene glycol for propolis extraction.
Collapse
Affiliation(s)
- Gizem Mergen Duymaz
- Food Engineering DepartmentYildiz Technical UniversityIstanbulTurkey
- Altiparmak Gıda San. ve Tic. A.S. Balparmak R&D CenterIstanbulTurkey
| | - Gamze Duz
- Altiparmak Gıda San. ve Tic. A.S. Balparmak R&D CenterIstanbulTurkey
- Department of ChemistryIstanbul Technical UniversityIstanbulTurkey
| | - Kubra Ozkan
- Food Engineering DepartmentYildiz Technical UniversityIstanbulTurkey
| | - Ayse Karadag
- Food Engineering DepartmentYildiz Technical UniversityIstanbulTurkey
| | - Ozlem Yilmaz
- Altiparmak Gıda San. ve Tic. A.S. Balparmak R&D CenterIstanbulTurkey
| | - Ayca Karakus
- Altiparmak Gıda San. ve Tic. A.S. Balparmak R&D CenterIstanbulTurkey
| | - Ozlem Cengiz
- Altiparmak Gıda San. ve Tic. A.S. Balparmak R&D CenterIstanbulTurkey
| | - Ismail Emir Akyildiz
- Altiparmak Gıda San. ve Tic. A.S. Balparmak R&D CenterIstanbulTurkey
- Chemistry DepartmentMarmara UniversityIstanbulTurkey
| | - Gunay Basdogan
- Altiparmak Gıda San. ve Tic. A.S. Balparmak R&D CenterIstanbulTurkey
| | - Emel Damarlı
- Altiparmak Gıda San. ve Tic. A.S. Balparmak R&D CenterIstanbulTurkey
| | - Osman Sagdic
- Food Engineering DepartmentYildiz Technical UniversityIstanbulTurkey
| |
Collapse
|