1
|
Shewa AG, Anamoo ST, Abera S, Ali MK, Gelan J. Development of nutrient-rich complementary foods using locally sourced ingredients for low-income households in Eastern Ethiopia. Front Nutr 2025; 12:1537357. [PMID: 40110166 PMCID: PMC11919676 DOI: 10.3389/fnut.2025.1537357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 02/14/2025] [Indexed: 03/22/2025] Open
Abstract
Background The prevalence of malnutrition among infants continues to be a significant issue in Ethiopia. Although commercial complementary foods are accessible in the market, their prohibitive costs render them unaffordable for low-income households. Consequently, this study was undertaken to formulate complementary foods utilizing locally available, nutrient-rich ingredients tailored for low-income households. Method The effect of various processing techniques-such as boiling, germination, and roasting-on the physicochemical properties of maize and groundnut flours, including proximate composition, mineral content, phytochemicals, and β-carotene levels, was evaluated using standard methodologies. A complementary food product was developed by varying the blending ratios of maize flour, groundnuts, spinach leaves, and sweet potatoes. Subsequently, the physicochemical and sensory characteristics of the product were assessed. Results The processes of germination and roasting (applied to maize and groundnut) demonstrated minimal impact on the proximate composition, mineral content, and β-carotene levels while also decreasing the amounts of specific phytochemicals (such as tannins, phenols, and phytic acid) found in the raw materials. Consequently, these processed ingredients were used to formulate eight complementary food products. The results of the proximate composition analysis for the eight developed food formulas indicated that the protein content ranged from 15.35 to 16.39%. Additionally, the fat, carbohydrate, and energy values were observed to range from 8.1 to 11.9%, 59.12 to 63.07%, and 383.82 to 412.87 kcal, respectively, indicating a nutritional profile consistent with locally available commercial complementary foods. Similarly, the levels of calcium, zinc, iron, magnesium, and β-carotene were measured to range from 66.75 mg to 102.48 mg, 1.33 mg to 2.48 mg, 6.64 mg to 10.36 mg, 122.60 mg to 181.73 mg, and 113.40 mg to 197.53 mg per 100 g, respectively, alongside notably low levels of anti-nutritional factors. Conclusion Including supplementary food is crucial when breastfeeding alone does not adequately meet an infant's nutritional requirements. As a result, the complementary food developed can provide 5 to 50% of the daily recommended nutrient allowance for infants.
Collapse
Affiliation(s)
- Anbesse Girma Shewa
- Department of Food Science and Postharvest Technology, Haramaya Institute of Technology, Haramaya University, Harar, Ethiopia
| | - Shewangizawe Teketele Anamoo
- Department of Food Science and Postharvest Technology, Haramaya Institute of Technology, Haramaya University, Harar, Ethiopia
| | - Solomon Abera
- Department of Food Technology and Process Engineering, Haramaya Institute of Technology, Haramaya University, Harar, Ethiopia
| | - Mikiyas Kebede Ali
- Department of Food Technology and Process Engineering, Haramaya Institute of Technology, Haramaya University, Harar, Ethiopia
| | - Jalene Gelan
- Department of Food Science and Postharvest Technology, Haramaya Institute of Technology, Haramaya University, Harar, Ethiopia
| |
Collapse
|
2
|
Sangeeta, Sharma D, Ramniwas S, Mugabi R, Uddin J, Nayik GA. Revolutionizing Mushroom processing: Innovative techniques and technologies. Food Chem X 2024; 23:101774. [PMID: 39280230 PMCID: PMC11402429 DOI: 10.1016/j.fochx.2024.101774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/11/2024] [Accepted: 08/24/2024] [Indexed: 09/18/2024] Open
Abstract
In recent years, the global mushroom industry has seen remarkable growth due to its nutritional benefits, increasing market value, and rising consumer demand. Mushrooms are valued for their unique flavor, low sugar and salt, and rich Vitamin D content. In India as well as across the globe, mushroom cultivation is becoming increasingly popular among new entrepreneurs, leveraging the diverse agro-climatic conditions and substantial agricultural waste. Various government policies are also fostering research and development in this sector. To extend shelf life and preserve quality, various preservation techniques are employed, including drying, freezing, canning, high-pressure processing and modified atmosphere packaging. Furthermore, cutting-edge technologies such as nuclear magnetic resonance and spectroscopy are improving post-harvest processing, helping to maintain sensory properties and nutritional content. Automation is also transforming mushroom processing by enhancing efficiency and scalability. This review examines the innovative methods and technologies driving advancements in mushroom production and quality worldwide.
Collapse
Affiliation(s)
- Sangeeta
- Department of Agriculture & Food Processing, Guru Nanak College, Budhlada, Mansa, Punjab, India
| | - Dhriti Sharma
- Department of Agriculture & Food Processing, Guru Nanak College, Budhlada, Mansa, Punjab, India
| | - Seema Ramniwas
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, Punjab, India
| | - Robert Mugabi
- Department of Food Technology and Nutrition, Makerere University, Kampala, Uganda
| | - Jalal Uddin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Gulzar Ahmad Nayik
- Marwadi University Research Centre, Department of Microbiology, Marwadi University, Rajkot, Gujarat 360003, India
| |
Collapse
|
3
|
Moutia I, Lakatos E, Kovács AJ. Impact of Dehydration Techniques on the Nutritional and Microbial Profiles of Dried Mushrooms. Foods 2024; 13:3245. [PMID: 39456307 PMCID: PMC11507520 DOI: 10.3390/foods13203245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The global consumption of dried mushrooms has increased worldwide because of their rich nutritional value and culinary versatility. Dehydration methods such as sun drying, hot air drying, freeze drying, and microwave drying are employed to prolong the shelf life of a food product. These methods can also affect the food product's nutritional value and the final product's microbial profile. Each technique affects the retention of essential nutrients like vitamins, minerals, and bioactive compounds differently. Additionally, these techniques vary in their effectiveness at reducing microbial load, impacting the dried mushrooms' safety and shelf life. This review addresses the gap in understanding how different dehydration methods influence dried mushrooms' nutritional quality and microbial safety, which is crucial for optimizing their processing and consumption. It targets researchers, food processors, and consumers seeking to improve the quality and safety of dried mushrooms. This review comprehensively examines the impact of major dehydration techniques, including sun drying, hot air drying, microwave drying, and freeze drying, on the nutritional and microbial profiles of dried mushrooms. Each method is evaluated for its effectiveness in preserving essential nutrients and reducing microbial load. Current research indicates that freeze drying is particularly effective in preserving nutritional quality, while hot air and microwave drying significantly reduce microbial load. However, more well-designed studies are needed to fully understand the implications of these methods for safety and nutritional benefits. These findings are valuable for optimizing dehydration methods for high-quality dried mushrooms that are suited for culinary and medicinal use.
Collapse
Affiliation(s)
- Imane Moutia
- Department of Biosystems Engineering and Precision Technology, Albert Kázmér Mosonmagyaróvár Faculty of Agricultural and Food Sciences, Széchenyi István University, Vár tér 2, H-9200 Mosonmagyaróvár, Hungary;
| | - Erika Lakatos
- Department of Food Science, Albert Kázmér Mosonmagyaróvár Faculty of Agricultural and Food Sciences, Széchenyi István University, Lucsony utca 15-17, H-9200 Mosonmagyaróvár, Hungary;
| | - Attila József Kovács
- Department of Biosystems Engineering and Precision Technology, Albert Kázmér Mosonmagyaróvár Faculty of Agricultural and Food Sciences, Széchenyi István University, Vár tér 2, H-9200 Mosonmagyaróvár, Hungary;
| |
Collapse
|
4
|
Dong WJ, He SX, Li XY, Zeng JY, Li MY, Guan DX, Ma LQ. Chromium contents, distribution and bioaccessibility in cultivated mushrooms from market: Health implications for human consumption. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132643. [PMID: 37774608 DOI: 10.1016/j.jhazmat.2023.132643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Mushrooms are consumed worldwide as they constitute a part of traditional cuisine culture in many countries. However, chromium (Cr) accumulation in mushrooms may constitute a potential pathway for its chronical exposure to humans. In this work, the Cr contents, distribution and bioaccessibility in 140 cultivated mushrooms from 14 species in 10 top-producing provinces in China were examined. Total Cr contents were 0.09-4.71 mg·kg-1 dw (mean 0.74 mg kg-1), with 59% exceeding the 0.5 mg kg-1standard. Additionally, less Cr was accumulated in the caps than stipes, with Cr ratio in caps/stipes being 0.28-2.6, averaging 0.91. Based on the Solubility Bioaccessibility Research Consortium (SBRC) assay, the mean Cr bioaccessibility in the mushrooms was 24.8% and 50.1% in the gastric phase (GP) and intestinal phase (IP). However, samples from Guizhou show the lowest Cr bioaccessibility at 12.5% in GP and 24.8% in IP. Further, a negative correlation between total Cr contents and Cr bioaccessibility suggests that Cr bioaccessibility is critical for accurate assessment of Cr exposure. In addition, drying mushrooms increased their bioaccessibility in the gastric phase. This study shows a high Cr exceeding rate of cultivated mushrooms, which may indicate a potential exposure risk, with Cr contents and bioaccessibility showing species and regional variation.
Collapse
Affiliation(s)
- Wen-Jie Dong
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Si-Xue He
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xing-Yue Li
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jing-Yu Zeng
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Meng-Ya Li
- Jiangsu Province Engineering Research Center of Soil and Groundwater Pollution Prevention and Control, Jiangsu Provincial Academy of Environmental Science, Nanjing 210036, China
| | - Dong-Xing Guan
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lena Q Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
5
|
Zheng C, Li J, Liu H, Wang Y. Review of postharvest processing of edible wild-grown mushrooms. Food Res Int 2023; 173:113223. [PMID: 37803541 DOI: 10.1016/j.foodres.2023.113223] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 10/08/2023]
Abstract
Edible wild-grown mushrooms, plentiful in resources, have excellent organoleptic properties, flavor, nutrition, and bioactive substances. However, fresh mushrooms, which have high water and enzymatic activity, are not protected by cuticles and are easily attacked by microorganisms. And wild-grown mushroom harvesting is seasonal the harvest of edible wild-grown mushrooms is subject to seasonality, so their market availability is challenging. Many processing methods have been used for postharvest mushroom processing, including sun drying, freezing, packaging, electron beam radiation, edible coating, ozone, and cooking, whose effects on the parameters and composition of the mushrooms are not entirely positive. This paper reviews the effect of processing methods on the quality of wild and some cultivated edible mushrooms. Drying and cooking, as thermal processes, reduce hardness, texture, and color browning, with the parallel that drying reduces the content of proteins, polysaccharides, and phenolics while cooking increases the chemical composition. Freezing, which allows mushrooms to retain better hardness, color, and higher chemical content, is a better processing method. Water washing and ozone help maintain color by inhibiting enzymatic browning. Edible coating facilitates the maintenance of hardness and total sugar content. Electrolytic water (EW) maintains total phenol levels and soluble protein content. Pulsed electric field and ultrasound (US) inhibit microbial growth. Frying maintains carbohydrates, lipids, phenolics, and proteins. And the mushrooms processed by these methods are safe. They are the focus of future research that combines different methods or develops new processing methods, molecular mechanisms of chemical composition changes, and exploring the application areas of wild mushrooms.
Collapse
Affiliation(s)
- Chuanmao Zheng
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
| | - Jieqing Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Honggao Liu
- Yunnan Key Laboratory of Gastrodia and Fungi Symbiotic Biology, Zhaotong University, Zhaotong 657000, Yunnan, China.
| | - Yuanzhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China.
| |
Collapse
|
6
|
Cruz JDD, Mpalantinos MA, Oliveira LRD, Branches TG, Xavier A, Souza FDCDA, Aguiar JPL, Ferreira JLP, Silva JRDA, Amaral ACF. Nutritional and chemical composition of Alpinia zerumbet leaves, a traditional functional food. Food Res Int 2023; 173:113417. [PMID: 37803755 DOI: 10.1016/j.foodres.2023.113417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/31/2023] [Accepted: 08/28/2023] [Indexed: 10/08/2023]
Abstract
Alpinia zerumbet, a species of the Zingiberaceae family, is a common plant in tropical and subtropical areas used in traditional medicine to treat various diseases and also included as food in the traditional Okinawan diet (Japan). The leaves and rhizomes of this plant are used as spice and flavoring in foods such as rice, meats, and pasta. Studies of the chemical and nutritional characteristics of fresh leaves and of leaves submitted to thermal treatments such as boiling and steaming are lacking. In the current study, the leaves of A. zerumbet were subjected to boiling or steaming for 10, 20, and 30 min as part of the thermal treatments. The study also provides noteworthy results regarding the proximate composition, physical-chemical data, minerals, phenolic compounds, antioxidant activity, volatile compounds, and LC-MS chromatographic profiles of the extracts produced with fresh leaves and with thermal treatments. The carbohydrate content of A. zerumbet leaves improved during the thermal treatments, showing an increase after steaming (18.86 to 19.79%) and boiling for 30 min (25.85%). After boiling treatment for 20 min, a significant amount of protein was found (6.79%) and all heat treatments resulted in low content of lipid (<1.0%). The boiling treatment for 10 min (BT10) resulted in the highest concentrations of total phenolic components (TPC), 339.5 mg/g, and flavonoids (TF), 54.6 mg/g, among the three thermal treatments (BT10, BT20 and BT30). The results of the steaming treatments (ST 10, 20, and 30 min) differed, with ST20 leading to higher TPC (150.4 mg/g) and TF (65.0 mg/g). The quantity of total phenolics and flavonoids, as well as the antioxidant activity, were significantly affected by the cooking method and the length of time of sample exposure to heat. The samples boiled for 30 and 10 min had higher concentrations of antioxidant activity as measured by the phosphomolybdenum and DPPH methods (151.5 mg/g of extract and 101.5 μg/mL, respectively). Thirty-eight volatile organic compounds (VOCs) were identified by chromatographic analysis of fresh and thermally treated leaves of A. zerumbet. Terpenoids were the predominant class of volatile compounds in the fresh leaves and in all thermal treatments. p-Cymene, 1,8-cineole, 4-terpineol, linalool, α-copaene and β-bisabolene have the greatest impact on overall aroma perception, with odor activity values (OAV) greater than five. Among the phenolic compounds identified by LC-HRMS in the extracts of fresh and thermally treated leaves were proanthocyanidins, (+) catechin, (-) epicatechin, quercetin-3-O-glucoronide, isorhamnetin-3-O-glucoronide, kaempferol-3-O-rutinoside, pinocembrin, alpinetin, pinostrobin, and other compounds. The present results support the traditional use of this plant as a potential food with properties that certainly contribute to health improvement.
Collapse
Affiliation(s)
- Jefferson Diocesano da Cruz
- Laboratório de Plantas Medicinais e Derivados, Farmanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Maria A Mpalantinos
- Laboratório de Plantas Medicinais e Derivados, Farmanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Laena Rebouças de Oliveira
- Laboratório de Cromatografia, Departamento de Química, Instituto de Ciências Exatas, Universidade Federal do Amazonas, Manaus, AM, Brazil
| | - Tainara Garcia Branches
- Laboratório de Cromatografia, Departamento de Química, Instituto de Ciências Exatas, Universidade Federal do Amazonas, Manaus, AM, Brazil
| | - Alexandre Xavier
- Laboratório de Plantas Medicinais e Derivados, Farmanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil; Plataforma de métodos analíticos, Farmanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Francisca das Chagas do A Souza
- Laboratório de Análises Físico-Químicas e Funcionais dos Alimentos, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brazil
| | - Jaime P Lopes Aguiar
- Laboratório de Análises Físico-Químicas e Funcionais dos Alimentos, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brazil
| | | | - Jefferson Rocha de Andrade Silva
- Laboratório de Cromatografia, Departamento de Química, Instituto de Ciências Exatas, Universidade Federal do Amazonas, Manaus, AM, Brazil.
| | - Ana Claudia Fernandes Amaral
- Laboratório de Plantas Medicinais e Derivados, Farmanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
7
|
Zhu J, Zhou L, Yao J, Hu Y, Li Z, Liu J, Marchioni E. Untargeted Metabolomic Analysis Combined with Chemometrics Revealed the Effects of Different Cooking Methods on Lentinus edodes. Molecules 2023; 28:6009. [PMID: 37630261 PMCID: PMC10458448 DOI: 10.3390/molecules28166009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/05/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Cooking methods affect the compositions of Lentinus edodes metabolites. Nevertheless, little information is available on the specific impact of different cooking methods on Lentinus edodes via metabolomic analysis. This study determined the influence of boiling, steaming, air-frying, and roasting on the metabolomic profiles of Lentinus edodes based on UHPLC-Q-Exactive Orbitrap MS/MS in combination with chemometrics. A total of 990 metabolites were detected and classified into 11 super-classes. Subsequently, the metabolites of the four cooking methods were distinguished using multivariate statistical analysis. The results showed that boiling caused a massive loss of metabolites while roasting and air-frying led to an evident upregulation. The upregulation of metabolites in the steaming groups was not as significant as in roasting and air-frying. This study provided reference data for a comprehensive understanding of the metabolites associated with domestic cooking methods and valuable guidance for the development of Lentinus edodes and its products in the future.
Collapse
Affiliation(s)
- Jinrui Zhu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (J.Z.); (J.Y.); (Y.H.)
| | - Li Zhou
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (J.Z.); (J.Y.); (Y.H.)
| | - Jiaxu Yao
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (J.Z.); (J.Y.); (Y.H.)
| | - Yueqi Hu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (J.Z.); (J.Y.); (Y.H.)
| | - Zhenghui Li
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (J.Z.); (J.Y.); (Y.H.)
| | - Jikai Liu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (J.Z.); (J.Y.); (Y.H.)
| | - Eric Marchioni
- Equipe de Chimie Analytique des Molécules Bioactives et Pharmacognoise, Institut Pluridisciplinaire Hubert Curien (UMR 7178, CNRS/UDS), 74 Route du Rhin, 67400 Illkirch, France;
| |
Collapse
|
8
|
Yao F, Gao H, Yin CM, Shi DF, Fan XZ. Effect of Different Cooking Methods on the Bioactive Components, Color, Texture, Microstructure, and Volatiles of Shiitake Mushrooms. Foods 2023; 12:2573. [PMID: 37444310 DOI: 10.3390/foods12132573] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The effects of different cooking methods (steaming, boiling, air frying, and oven baking) and cooking times (0, 5, 10, 15, and 20 min) on the bioactive components (total phenol, total flavonoid, crude polysaccharides, and eritadenine), color, texture, microstructure, and volatiles in shiitake mushrooms were investigated in this study. Steaming, boiling, and air frying for 5-20 min could decrease the contents of all the four bioactive components in the shiitake mushroom. However, oven baking for 5 min and 10 min showed the highest contents of total phenolics and total flavonoids, respectively. Moreover, the lowest losses of crude polysaccharides and eritadenine were observed for oven baking for 5 min and 15 min, respectively. The lightness of shiitake mushrooms was decreased by all treatments; however, steaming could keep a higher brightness compared with other methods. The microstructure was damaged by all cooking methods, especially air frying for 20 min. Meanwhile, steaming for 20 min decreased the hardness mostly, and there was no significant difference with air frying for 20 min. All cooking treatments decreased the complexity of the flavors and the relative contents of volatile compounds; the lowest contents were found when boiling for 5 min. From these results it can be seen that the physical, histological, and chemical features in shiitake mushroom were influenced by cooking methods and times. In addition, our results provide valuable information for the cooking and processing of shiitake mushrooms and other fungi.
Collapse
Affiliation(s)
- Fen Yao
- Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Hong Gao
- Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Chao-Min Yin
- Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - De-Fang Shi
- Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Jinzhong 030801, China
| | - Xiu-Zhi Fan
- Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Jinzhong 030801, China
| |
Collapse
|
9
|
Jiang Y, Zhao Q, Deng H, Li Y, Gong D, Huang X, Long D, Zhang Y. The Nutrients and Volatile Compounds in Stropharia rugoso-annulata by Three Drying Treatments. Foods 2023; 12:foods12102077. [PMID: 37238895 DOI: 10.3390/foods12102077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
This study aimed to examine the differences in the nutrients and volatile compounds of Stropharia rugoso-annulata after undergoing three different drying treatments. The fresh mushrooms were dried using hot air drying (HAD), vacuum freeze drying (VFD), and natural air drying (NAD), respectively. After that, the nutrients, volatile components, and sensory evaluation of the treated mushrooms were comparably analyzed. Nutrients analysis included proximate compositions, free amino acids, fatty acids, mineral elements, bioactive compositions, and antioxidant activity. Volatile components were identified by headspace-solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) and analyzed with principal component analysis (PCA). Finally, sensory evaluation was conducted by ten volunteers for five sensory properties. The results showed that the HAD group had the highest vitamin D2 content (4.00 μg/g) and antioxidant activity. Compared with other treatments, the VFD group had higher overall nutrient contents, as well as being more preferred by consumers. Additionally, there were 79 volatile compounds identified by HS-SPME-GC-MS, while the NAD group showed the highest contents of volatile compounds (1931.75 μg/g) and volatile flavor compounds (1307.21 μg/g). PCA analysis suggested the volatile flavor compositions were different among the three groups. In summary, it is recommended that one uses VFD for obtaining higher overall nutritional values, while NAD treatment increased the production of volatile flavor components of the mushroom.
Collapse
Affiliation(s)
- Yu Jiang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qilong Zhao
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Haolan Deng
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Yongjun Li
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou 730000, China
| | - Di Gong
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xiaodan Huang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Danfeng Long
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Ying Zhang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
10
|
Kumla J, Suwannarach N, Liu YS, Tanruean K, Lumyong S. Survey of Edible Amanita in Northern Thailand and Their Nutritional Value, Total Phenolic Content, Antioxidant and α-Glucosidase Inhibitory Activities. J Fungi (Basel) 2023; 9:343. [PMID: 36983511 PMCID: PMC10058571 DOI: 10.3390/jof9030343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Edible wild mushrooms are extremely popular among consumers and are highly valued for their potential economic benefits in northern Thailand. In this present study, a total of 19 specimens of edible Amanita were collected during investigations of wild edible mushrooms in northern Thailand during the period from 2019 to 2022. Their morphological characteristics and the phylogenetic analyses of the internal transcribed spacer (ITS) and partial large subunit (nrLSU) of ribosomal RNA, RNA polymerase II second-largest subunit (rpb2) and partial translation elongation factor 1-alpha (tef-1) indicated that the collected specimens belonged to A. hemibapha, A. pseudoprinceps, A. rubromarginata, A. subhemibapha, and Amanita section Caesareae. This is the first report of A. pseudoprinceps and A. subhemibapha from Thailand. Full descriptions, illustrations and a phylogenetic placement of all specimens collected in this study are provided. Subsequently, the nutritional composition and total phenolic content, as well as the antioxidant and α-glucosidase inhibitory activities, of each species were investigated. The results indicate that the protein contents in both A. pseudoprinceps and A. subhemibapha were significantly higher than in A. hemibapha and A. rubromarginata. The highest total phenolic content was found in the extract of A. pseudoprinceps. In terms of antioxidant properties, the extract of A. pseudoprinceps also exhibited significantly high antioxidant activity by 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays. However, the extract of A. rubromarginata had the lowest total phenolic content and level of antioxidant activity. Additionally, α-glucosidase inhibitory activity varied for different Amanita species and the highest level of α-glucosidase inhibitory activity was found in the extract of A. pseudoprinceps. This study provides valuable information on the nutrient content, phenolic content and the antioxidant and α-glucosidase inhibitory potential of edible Amanita species found in northern Thailand.
Collapse
Affiliation(s)
- Jaturong Kumla
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yuan S. Liu
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Keerati Tanruean
- Biology Program, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000, Thailand
| | - Saisamorn Lumyong
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| |
Collapse
|
11
|
Liu Y, Chen S, Li Q, Liu L. Changes in Arsenic Speciation in Wild Edible Fungi after Different Cooking Processes and Gastrointestinal Digestion. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020603. [PMID: 36677657 PMCID: PMC9865972 DOI: 10.3390/molecules28020603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/25/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
Arsenic (As) is enriched in wild edible fungi, which is one of the main important sources of As in humans' diet. In this study, two wild edible fungi were employed for investigation: (1) Pleurotus citrinopileatusone, which contains a high content of inorganic As (iAs) and (2) Agaricus blazei Murill, which contains a high content of organic As. This study investigated the changes in As content and its speciation after different daily cooking methods. We found that the content of As in Pleurotus citrinipileatus and Agaricus blazei Murill reduced by soaking plus stir-frying by 55.4% and 72.9%, respectively. The As content in Pleurotus citrinipileatus and Agaricus blazei Murill decreased by 79.4% and 93.4%, respectively, after soaking plus boiling. The content of As speciation in dried wild edible fungi reduced significantly after different treatments. Among them, iAs decreased by 31.9~88.3%, and organic As decreased by 33.3~95.3%. This study also investigated the bioaccessibility of As in edible fungi after different cooking processes via an in-vitro physiologically based extraction test (PBET). The results showed that the bioaccessibility of As was relatively high if the edible fungi were uncooked, boiled, or stir-fried. The gastric (G) bioaccessibility of As ranged from 51.7% to 93.0% and the gastrointestinal (GI) bioaccessibility of As ranged from 63.5% to 98.1%. Meanwhile, the bioaccessibility of inorganic As was found to be as high as 94.6% to 151%, which indicates that further evaluation of the potential health risks of wild edible fungi is necessary.
Collapse
Affiliation(s)
- Yang Liu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Shaozhan Chen
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Qianyu Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Liping Liu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
- School of Public Health, Capital Medical University, Beijing 100069, China
- Correspondence:
| |
Collapse
|
12
|
Li X, Yu L, Xie Y, Li C, Fang Z, Hu B, Wang C, Chen S, Wu W, Li X, Zeng Z, Liu Y. Effect of different cooking methods on the nutrient, and subsequent bioaccessibility and biological activities in Boletus auripes. Food Chem 2022; 405:134358. [DOI: 10.1016/j.foodchem.2022.134358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/04/2022] [Accepted: 09/18/2022] [Indexed: 11/06/2022]
|
13
|
Siti-Nuramira J, Farhana R, Nabil S, Jafari SM, Raseetha S. Impact of drying methods on the quality of grey (Pleurotus sajor caju) and pink (Pleurotus djamor) oyster mushrooms. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [PMCID: PMC9136210 DOI: 10.1007/s11694-022-01435-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- J. Siti-Nuramira
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Malaysia
| | - R. Farhana
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Malaysia
| | - S. Nabil
- Nas Agro Farm, Lot 6300, Jalan Ahmad Khushasi, Batu 29 Jenderam Hulu, 43900 Sepang, Selangor Malaysia
| | - S. M. Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - S. Raseetha
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Malaysia
- Mushroom Research Centre, University of Malaya, 50200 Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
de Oliveira Júnior SD, Dos Santos Gouvêa PR, de Aguiar LVB, Pessoa VA, Dos Santos Cruz Costa CL, Chevreuil LR, Dedo BritoNascimento LB, Dos Santos ES, Sales-Campos C. Production of Lignocellulolytic Enzymes and Phenolic Compounds by Lentinus strigosus from the Amazon Using Solid-State Fermentation (SSF) of Guarana (Paullinia cupana) Residue. Appl Biochem Biotechnol 2022; 194:2882-2900. [PMID: 35286593 DOI: 10.1007/s12010-022-03851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/11/2022] [Indexed: 11/30/2022]
Abstract
The Amazon rainforest has a rich biodiversity, and studies of Basidiomycete fungi that have biomolecules of biotechnological interest are relevant. The use of lignocellulosic biomass in biotechnological processes proposes an alternative use, and also adds value to the material when employed in the bioconversion of agro-industrial waste. In this context, this study evaluate the production of lignocellulolytic enzymes (carboxymethylcellulases (CMCase), xylanase, pectinase, laccase) as well as phenolic compounds and proteases by solid-state fermentation (SSF) using the fungus Lentinus strigosus isolated from Amazon. The guarana (Paullinia cupana) residue was characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). SSF was carried out with 60% humidification of the residue, at 30 °C, for 10 days. The lignocellulosic biomass presented fragmented structures with irregular shapes and porosities, and was mainly constituted by cellulose (19.16%), hemicellulose (32.83%), and lignin (6.06%). During the SSF, significant values of CMCase (0.84 U/g) on the 8th day, xylanase (1.00 U/g) on the 7th day, pectinase (2.19 U/g) on the 6th day, laccase (176.23 U/mL) on the 5th day, phenolic compounds (10.27 μg/mL) on the 1st day, soluble proteins (0.08 mg/mL) on the 5th day, and protease (8.30 U/mL) on the 6th day were observed. In general, the agro-industrial residue used provided promising results as a viable alternative for use as a substrate in biotechnological processes.
Collapse
Affiliation(s)
| | - Paula Romenya Dos Santos Gouvêa
- Edible Mushroom Cultivation Laboratory, National Institute for Amazonian Research (INPA), Manaus, Amazonas, 69067-375, Brazil.,Post-Graduate Program in Biotechnology, Federal University of Amazonas (UFAM), Manaus, Amazonas, 69067-005, Brazil
| | - Lorena Vieira Bentolila de Aguiar
- Edible Mushroom Cultivation Laboratory, National Institute for Amazonian Research (INPA), Manaus, Amazonas, 69067-375, Brazil.,Post-Graduate Program in Biodiversity and Biotechnology of the BIONORTE, Amazonas State University (UEA), Manaus, Amazonas, 69065-001, Brazil
| | - Vitor Alves Pessoa
- Edible Mushroom Cultivation Laboratory, National Institute for Amazonian Research (INPA), Manaus, Amazonas, 69067-375, Brazil.,Post-Graduate Program in Biotechnology and Natural Resources, Amazonas State University (UEA), Manaus, Amazonas, 69065-001, Brazil
| | | | - Larissa Ramos Chevreuil
- Edible Mushroom Cultivation Laboratory, National Institute for Amazonian Research (INPA), Manaus, Amazonas, 69067-375, Brazil
| | - Larissa Batista Dedo BritoNascimento
- Edible Mushroom Cultivation Laboratory, National Institute for Amazonian Research (INPA), Manaus, Amazonas, 69067-375, Brazil.,Post-Graduate Program in Biotechnology, Federal University of Amazonas (UFAM), Manaus, Amazonas, 69067-005, Brazil
| | - Everaldo Silvino Dos Santos
- Laboratory of Biochemical Engineering, Chemical Engineering Department, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, 59064-741, Brazil.
| | - Ceci Sales-Campos
- Edible Mushroom Cultivation Laboratory, National Institute for Amazonian Research (INPA), Manaus, Amazonas, 69067-375, Brazil
| |
Collapse
|
15
|
Dinda B, Dinda M. Natural Products, a Potential Source of New Drugs Discovery to Combat Obesity and Diabetes: Their Efficacy and Multi-targets Actions in Treatment of These Diseases. NATURAL PRODUCTS IN OBESITY AND DIABETES 2022:101-275. [DOI: 10.1007/978-3-030-92196-5_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
16
|
Kumar K, Mehra R, Guiné RPF, Lima MJ, Kumar N, Kaushik R, Ahmed N, Yadav AN, Kumar H. Edible Mushrooms: A Comprehensive Review on Bioactive Compounds with Health Benefits and Processing Aspects. Foods 2021; 10:2996. [PMID: 34945547 PMCID: PMC8700757 DOI: 10.3390/foods10122996] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/27/2021] [Accepted: 12/01/2021] [Indexed: 12/30/2022] Open
Abstract
Mushrooms are well-known functional foods due to the presence of a huge quantity of nutraceutical components. These are well recognized for their nutritional importance such as high protein, low fat, and low energy contents. These are rich in minerals such as iron, phosphorus, as well as in vitamins like riboflavin, thiamine, ergosterol, niacin, and ascorbic acid. They also contain bioactive constituents like secondary metabolites (terpenoids, acids, alkaloids, sesquiterpenes, polyphenolic compounds, lactones, sterols, nucleotide analogues, vitamins, and metal chelating agents) and polysaccharides chiefly β-glucans and glycoproteins. Due to the occurrence of biologically active substances, mushrooms can serve as hepatoprotective, immune-potentiating, anti-cancer, anti-viral, and hypocholesterolemic agents. They have great potential to prevent cardiovascular diseases due to their low fat and high fiber contents, as well as being foremost sources of natural antioxidants useful in reducing oxidative damages. However, mushrooms remained underutilized, despite their wide nutritional and bioactive potential. Novel green techniques are being explored for the extraction of bioactive components from edible mushrooms. The current review is intended to deliberate the nutraceutical potential of mushrooms, therapeutic properties, bioactive compounds, health benefits, and processing aspects of edible mushrooms for maintenance, and promotion of a healthy lifestyle.
Collapse
Affiliation(s)
- Krishan Kumar
- Department of Food Technology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur 173101, Himachal Pradesh, India; (K.K.); (N.A.); (A.N.Y.)
| | - Rahul Mehra
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, Rajasthan, India; (R.M.); (N.K.)
| | - Raquel P. F. Guiné
- CERNAS Research Centre, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal;
| | - Maria João Lima
- CERNAS Research Centre, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal;
| | - Naveen Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, Rajasthan, India; (R.M.); (N.K.)
| | - Ravinder Kaushik
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun 248001, Uttrakhand, India;
| | - Naseer Ahmed
- Department of Food Technology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur 173101, Himachal Pradesh, India; (K.K.); (N.A.); (A.N.Y.)
| | - Ajar Nath Yadav
- Department of Food Technology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur 173101, Himachal Pradesh, India; (K.K.); (N.A.); (A.N.Y.)
| | - Harish Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, Rajasthan, India; (R.M.); (N.K.)
| |
Collapse
|
17
|
Mena García M, Paula VB, Olloqui ND, García DF, Combarros-Fuertes P, Estevinho LM, Árias LG, Bañuelos ER, Fresno Baro JM. Effect of different cooking methods on the total phenolic content, antioxidant activity and sensory properties of wild Boletus edulis mushroom. Int J Gastron Food Sci 2021. [DOI: 10.1016/j.ijgfs.2021.100416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
18
|
Orywal K, Socha K, Nowakowski P, Zoń W, Kaczyński P, Mroczko B, Łozowicka B, Perkowski M. Health risk assessment of exposure to toxic elements resulting from consumption of dried wild-grown mushrooms available for sale. PLoS One 2021; 16:e0252834. [PMID: 34161345 PMCID: PMC8221490 DOI: 10.1371/journal.pone.0252834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/24/2021] [Indexed: 11/19/2022] Open
Abstract
Mushrooms exhibit a high ability to accumulate potentially toxic elements. The legal regulations in force in the European Union countries do not define the maximum content of elements in dried wild-grown mushrooms. This study presents the content of mercury (Hg), lead (Pb), cadmium (Cd) and arsenic (As) determined in dried wild-grown mushrooms (Boletus edulis and Xerocomus badius) available for sale. Moreover, the health risk associated with their consumption is assessed. The inductively coupled plasma mass spectrometry (Cd, Pb, As) and atomic absorption spectrometry (Hg) were used. The mean Hg, Cd, Pb and As concentration in Boletus edulis was 3.039±1.092, 1.983±1.145, 1.156±1.049 and 0.897±0.469 mg/kg and in Xerocomus badius 0.102±0.020, 1.154±0.596, 0.928±1.810 and 0.278±0.108 mg/kg, respectively. The maximum value of the hazard index (HI) showed that the consumption of a standard portion of dried Boletus edulis may have negative consequences for health and corresponded to 76.2%, 34.1%, 33% and 4.3% of the maximum daily doses of Hg, Cd, Pb and As, respectively. The results indicate that the content of toxic elements in dried wild-grown mushrooms should be monitored. The issue constitutes a legal niche where unfavourable EU regulations may pose a threat to food safety and consumer health.
Collapse
Affiliation(s)
- Karolina Orywal
- Department of Biochemical Diagnostics, Medical University of Bialystok, Faculty of Pharmacy with the Division of Laboratory Medicine, Bialystok, Poland
- * E-mail:
| | - Katarzyna Socha
- Department of Bromatology, Medical University of Bialystok, Faculty of Pharmacy with the Division of Laboratory Medicine, Bialystok, Poland
| | - Patryk Nowakowski
- Department of Bromatology, Medical University of Bialystok, Faculty of Pharmacy with the Division of Laboratory Medicine, Bialystok, Poland
| | - Wojciech Zoń
- Department of Public International Law and European Law, University of Białystok, Faculty of Law, Białystok, Poland
| | - Piotr Kaczyński
- Institute of Plant Protection–National Research Institute, Bialystok, Poland
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University of Bialystok, Faculty of Pharmacy with the Division of Laboratory Medicine, Bialystok, Poland
| | - Bożena Łozowicka
- Institute of Plant Protection–National Research Institute, Bialystok, Poland
| | - Maciej Perkowski
- Department of Public International Law and European Law, University of Białystok, Faculty of Law, Białystok, Poland
| |
Collapse
|
19
|
Keerthana K, Anukiruthika T, Moses J, Anandharamakrishnan C. Development of fiber-enriched 3D printed snacks from alternative foods: A study on button mushroom. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2020.110116] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
20
|
A comparative study of antimicrobial and anti-inflammatory efficiency of modified solvent evaporated and vacuum oven dried bioactive components of Pleurotus floridanus. Journal of Food Science and Technology 2020; 58:3328-3337. [PMID: 34366450 DOI: 10.1007/s13197-020-04891-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/27/2020] [Accepted: 11/06/2020] [Indexed: 01/28/2023]
Abstract
In the present study, we compared vacuum microwave oven drying Vacuum Oven Drying (VOD) and modified solvent evaporation (MSE) assisted methanolic mushroom extracts for their antimicrobial and anti-inflammatory efficacy. MSE extract showed significantly (p < 0.05) higher total phenolic content (64.4 mg/g) followed by flavonoid content (20.62 mg/g), ascorbic acid (17.54 mg/g), β-carotene content (12.52 mg/g), and lycopene (9.57 mg/g) content than that of VOD extract. MSE showed a significantly (p < 0.05) higher zone of inhibition against all selected microorganisms as compared to VOD extract. During the time-kill study, the MSE extract inhibited significantly (p < 0.05) higher growth of Staphylococcus aureus followed by Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli than that of VOD extract. Also, MSE extract showed significantly (p < 0.05) higher anti-inflammatory activity in comparison with VOD extract during the Human Red Blood Cell (HRBC) membrane stabilization test and albumin denaturation test. MSE extract revealed significantly (p < 0.05) higher 2,2-diphenyl-1-picrylhydrazyl (DPPH) and N2O2 scavenging assay than that of VOD extract, however, statistically, MSE extract showed comparable results with Butylated Hydroxyanisole (BHA) and Butylated Hydroxytoluene (BHT). During the characterization of the selected extract, Fourier transform infrared spectroscopy confirmed the functional groups of the flavonoid content, ascorbic acid, β-carotene, and lycopene. Quantitative analysis of gallic acid (54.32 mg/g) and rutin content (14.80 mg/g) was revealed using a high-pressure liquid chromatogram.
Collapse
|
21
|
Effect of processing and storage on physical and texture qualities of oyster mushrooms canned in different media. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
22
|
Barroso LS, Copetti C, Komeroski MR, Saudades JDO, Silva VLD, Doneda D, Camargo LDR, Flôres SH, Rios ADO, de Oliveira VR. Physicochemical and Sensory Evaluation in Sautéed Caps and Stems of Edible Mushrooms. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2020. [DOI: 10.1080/15428052.2019.1582448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Ludymila Schulz Barroso
- Nutrition Course, School of Medicine, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Cristiane Copetti
- Doctor in Food Science and Technology, Federal University of Santa Maria (UFSM), Porto Alegre, Brazil
| | - Marina Rocha Komeroski
- Nutrition Course, School of Medicine, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | | | - Vanuska Lima da Silva
- Nutrition Course, School of Medicine, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Divair Doneda
- Nutrition Course, School of Medicine, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Liziane da Rosa Camargo
- Nutrition Course, School of Medicine, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Simone Hickmann Flôres
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Alessandro de Oliveira Rios
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Viviani Ruffo de Oliveira
- Nutrition Course, School of Medicine, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
23
|
Choi YS, Jo K, Lee S, Yong HI, Jung S. Quality characteristics of the enhanced beef using winter mushroom juice. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2020; 62:396-408. [PMID: 32568260 PMCID: PMC7288239 DOI: 10.5187/jast.2020.62.3.396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/16/2020] [Accepted: 03/23/2020] [Indexed: 12/20/2022]
Abstract
This study investigated the quality properties of enhanced beef, manufactured by
injecting the beef with a brine containing winter mushroom juice powder (WMJP).
The enhanced beef was manufactured by injecting the eye of round with brine (15%
by green weight). Four treatments consisted of control (no injection of brine)
and three enhanced beef, EBS (brine containing 5 g sodium chloride per kg beef),
EBW 0.2 (brine containing 5 g sodium chloride and 2 g WMJP per kg beef), and EBW
0.5 (brine containing 5 g sodium chloride and 5 g WMJP per kg beef), were
tested. The effect of enhancement or WMJP on the quality properties of beef was
evaluated during storage at 4°C for 1, 5, and 10 days. Total aerobic
bacteria counts between the control and the enhanced beef, and among EBS, EBW
0.2, and EBW 0.5 were not significantly different after any storage period
(p > 0.05). The pH of beef was not different between
the control and the enhanced beef, and among enhanced beef at 1 and 5 days of
storage (p > 0.05). However, it was higher in the
enhanced beef than control, and EBW 0.2 and EBW 0.5 had higher pH than EBS after
10 days of storage (p < 0.05). The enhanced beef showed
a high total loss at all storage days (p < 0.05). There
were no differences in total loss among enhanced beef after any storage period
(p > 0.05). The enhanced beef had no consistent
differences in L*, a*, and b* values with control during storage, however, EBW
0.5 showed high color stability. The hardness of the enhanced beef was
significantly lower than that of the control after 10 days of storage, although
the values were lower at all storage stages. EBS 0.5 had the lowest
thiobarbituric acid reactive substance (TBARS) value among cooked beef of all
treatments at all storage days. The enhanced beef received higher scores in all
sensory properties than control, and no negative effect of WMJP was found in the
sensory quality of the enhanced beef. The use of winter mushroom juice can
result in quality improvement in enhanced beef.
Collapse
Affiliation(s)
- Yun-Sang Choi
- Researcher Group of Food Processing, Korea Food Research Institute, Wanju 55365, Korea
| | - Kyung Jo
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Seonmin Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Hae In Yong
- Researcher Group of Food Processing, Korea Food Research Institute, Wanju 55365, Korea
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
24
|
The effect of drying temperature on bioactive compounds and antioxidant activity of Leccinum scabrum (Bull.) Gray and Hericium erinaceus (Bull.) Pers. Journal of Food Science and Technology 2019; 57:513-525. [PMID: 32116361 PMCID: PMC7016157 DOI: 10.1007/s13197-019-04081-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 08/14/2019] [Accepted: 09/03/2019] [Indexed: 12/23/2022]
Abstract
In the study the effect of drying temperature on phenolic and organic acid content, total phenolic content, ergosterol content, antioxidant activity and content of 40 elements in fruiting bodies of Leccinum scabrum and Hericium erinaceus was estimated. The analysis was performed for fresh fruiting bodies and those dried at 20, 40 and 70 °C. Drying resulted in changes in the profile of phenolic and organic acids. Drying generally resulted in losses of the content of total phenolics, ergosterol and antioxidant activity in both species. However, a reduction and an increase of phenolic acids and organic acids were observed. The greatest reduction of the compounds was generally observed at 70 °C. The greatest losses concerned organic acids (some single components and total) (even more than 90% of some compounds). The inhibition of free radicals decreased in the following order: fresh samples > air-dried samples > samples dried at 40 °C > samples dried at 70 °C. The drying temperature affected only selected element contents in fruiting bodies.
Collapse
|
25
|
Chiocchetti GM, Latorre T, Clemente MJ, Jadán-Piedra C, Devesa V, Vélez D. Toxic trace elements in dried mushrooms: Effects of cooking and gastrointestinal digestion on food safety. Food Chem 2019; 306:125478. [PMID: 31610326 DOI: 10.1016/j.foodchem.2019.125478] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/09/2019] [Accepted: 09/03/2019] [Indexed: 11/15/2022]
Abstract
Mushrooms can accumulate toxic trace elements. The objectives of the present study are to evaluate levels of mercury, cadmium, lead, and arsenic in dried mushrooms, to determine the effect of cooking on the contents of these elements, and to evaluate their bioaccessibility in the mushrooms ready for consumption. The results showed that Hg levels in Amanita ponderosa, Boletus edulis, Marasmius oreades, and Tricholoma georgii, as well as Cd levels in some samples of Amanita caesarea and T. georgii, exceeded the legislated limits. Cooking significantly reduced the levels of As (26-72%), whereas the reduction in levels of Hg, Cd, and Pb was much lower. However, the bioaccessibility of As (63-81%) was higher than the values obtained for the metals (<40%). Taking the effects of cooking and gastrointestinal digestion into account gives a more realistic estimate of the risk associated with the consumption of mushrooms.
Collapse
Affiliation(s)
- Gabriela M Chiocchetti
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Calle Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Teresa Latorre
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Calle Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - María Jesús Clemente
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Calle Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Carlos Jadán-Piedra
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Calle Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Vicenta Devesa
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Calle Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Dinoraz Vélez
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Calle Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
26
|
Zhao Y, Bi J, Yi J, Jin X, Wu X, Zhou M. Evaluation of sensory, textural, and nutritional attributes of shiitake mushrooms (
Lentinula edodes
) as prepared by five types of drying methods. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Yuanyuan Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science (CAAS)/Key Laboratory of Agro‐Products ProcessingMinistry of Agriculture and Rural Affairs Beijing China
| | - Jinfeng Bi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science (CAAS)/Key Laboratory of Agro‐Products ProcessingMinistry of Agriculture and Rural Affairs Beijing China
| | - Jianyong Yi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science (CAAS)/Key Laboratory of Agro‐Products ProcessingMinistry of Agriculture and Rural Affairs Beijing China
| | - Xin Jin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science (CAAS)/Key Laboratory of Agro‐Products ProcessingMinistry of Agriculture and Rural Affairs Beijing China
| | - Xinye Wu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science (CAAS)/Key Laboratory of Agro‐Products ProcessingMinistry of Agriculture and Rural Affairs Beijing China
| | - Mo Zhou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science (CAAS)/Key Laboratory of Agro‐Products ProcessingMinistry of Agriculture and Rural Affairs Beijing China
| |
Collapse
|
27
|
Zhang W, Wu S, Cai L, Liu X, Wu H, Xin F, Zhang M, Jiang M. Improved Treatment and Utilization of Rice Straw by Coprinopsis cinerea. Appl Biochem Biotechnol 2017; 184:616-629. [PMID: 28831773 DOI: 10.1007/s12010-017-2579-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/02/2017] [Indexed: 01/23/2023]
Abstract
As one of the most abundant renewable resources, rice straw is an attractive lignocellulosic material for animal feeding or for the production of biochemical. An appropriate pre-treatment technique is essential for converting rice straw to rich fodder or biofuel. Based on previous work, Coprinopsis cinerea can grow on rice straw medium and therefore it is useful for the treatment of rice straw. However, little is known regarding its degradation systems and nutrition values. In this study, we firstly found that C. cinerea could grow rapidly on rice straw without any additives by the production of a series of enzymes (laccase, cellulase, and xylanase) and that the microstructure and contents of rice straw changed significantly after being treated by C. cinerea. We propose that a possible underlying mechanism exists in the degradation. Moreover, C. cinerea has a high nutrition value (23.5% crude protein and 22.2% total amino acids). Hence, fermented rice straw with mycelium could be a good animal feedstuff resource instead of expensive forage. The direct usage of C. cinerea treatment is expected to be a practical, cost-effective, and environmental-friendly approach for enhancing the nutritive value and digestibility of rice straw.
Collapse
Affiliation(s)
- Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Sihua Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Liyin Cai
- Institute of Process Engineering in Life Sciences, Section II: Technical Biology, Karlsruher Institut für Technologie, Karlsruher, Germany
| | - Xiaole Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Hao Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Min Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China.
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China.
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Pukou District, Nanjing, 211800, People's Republic of China.
| |
Collapse
|
28
|
Reid T, Munyanyi M, Mduluza T. Effect of cooking and preservation on nutritional and phytochemical composition of the mushroom Amanita zambiana. Food Sci Nutr 2017; 5:538-544. [PMID: 28572939 PMCID: PMC5448345 DOI: 10.1002/fsn3.428] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 08/18/2016] [Accepted: 08/27/2016] [Indexed: 11/09/2022] Open
Abstract
The effect of different cooking and preservation methods on the nutritional and phytochemical composition of the mushroom, Amanita zambiana, was investigated. Fresh mushrooms were boiled in water, fried, or microwaved. In addition, fresh mushrooms were either air-dried for 7 days or frozen at -20°C for 14 days. The protein, lipid, carbohydrate, and phenolic content of the treated mushrooms were measured and compared to the fresh mushroom contents. Frying increased the protein (2.01% ± 0.2% [fresh mushroom] to 2.23% ± 0.09%), lipid (14.68% ± 0.9% to 15.56% ± 0.34%), and carbohydrate (0.89% ± 0.01% to 2.69% ± 0.03%) content, while microwaving increased the protein (2.01% ± 0.2% to 3.64% ± 0.08%) and carbohydrate content (0.89% ± 0.01% to 2.26% ± 0.09%). Boiling only increased the carbohydrate content (0.89% ± 0.01% to 1.71% ± 0.05%) of the mushroom and significantly decreased (p < .05) the phenolic content (8.77 ± 0.1 to 1.46 ± 0.2 mg gallic acid equivalent (GAE)/g mushroom). Drying resulted in significant increase (p < .05) in protein (2.01 ± 0.2% to 24.36 ± 0.09%), carbohydrate (0.89% ± 0.01% to 58.67% ± 3.29%), and phenolic contents (8.77 ± 0.1 to 119.8 ± 0.7 mg GAE/g mushroom), while freezing only increased the carbohydrate content (0.89% ± 0.01% to 1.77% ± 0.03%). From the three cooking methods studied, frying is recommended as the most effective cooking procedure in retaining or enhancing the mushroom nutrients, while drying is a better preservation method than freezing.
Collapse
Affiliation(s)
- Tsungai Reid
- Biochemistry DepartmentUniversity of ZimbabweHarareZimbabwe
| | | | - Takafira Mduluza
- Biochemistry DepartmentUniversity of ZimbabweHarareZimbabwe
- School of Laboratory Medicine & Medical SciencesUKZNDurbanSouth Africa
| |
Collapse
|