1
|
Deka K, Li Y. Transcriptional Regulation during Aberrant Activation of NF-κB Signalling in Cancer. Cells 2023; 12:788. [PMID: 36899924 PMCID: PMC10001244 DOI: 10.3390/cells12050788] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/16/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The NF-κB signalling pathway is a major signalling cascade involved in the regulation of inflammation and innate immunity. It is also increasingly recognised as a crucial player in many steps of cancer initiation and progression. The five members of the NF-κB family of transcription factors are activated through two major signalling pathways, the canonical and non-canonical pathways. The canonical NF-κB pathway is prevalently activated in various human malignancies as well as inflammation-related disease conditions. Meanwhile, the significance of non-canonical NF-κB pathway in disease pathogenesis is also increasingly recognized in recent studies. In this review, we discuss the double-edged role of the NF-κB pathway in inflammation and cancer, which depends on the severity and extent of the inflammatory response. We also discuss the intrinsic factors, including selected driver mutations, and extrinsic factors, such as tumour microenvironment and epigenetic modifiers, driving aberrant activation of NF-κB in multiple cancer types. We further provide insights into the importance of the interaction of NF-κB pathway components with various macromolecules to its role in transcriptional regulation in cancer. Finally, we provide a perspective on the potential role of aberrant NF-κB activation in altering the chromatin landscape to support oncogenic development.
Collapse
Affiliation(s)
- Kamalakshi Deka
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551, Singapore
| | - Yinghui Li
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551, Singapore
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore 138673, Singapore
| |
Collapse
|
2
|
Espinosa L, Marruecos L. NF-κB-Dependent and -Independent (Moonlighting) IκBα Functions in Differentiation and Cancer. Biomedicines 2021; 9:1278. [PMID: 34572464 PMCID: PMC8468488 DOI: 10.3390/biomedicines9091278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 12/23/2022] Open
Abstract
IκBα is considered to play an almost exclusive role as inhibitor of the NF-κB signaling pathway. However, previous results have demonstrated that SUMOylation imposes a distinct subcellular distribution, regulation, NF-κB-binding affinity and function to the IκBα protein. In this review we discuss the main alterations of IκBα found in cancer and whether they are (most likely) associated with NF-κB-dependent or NF-κB-independent (moonlighting) activities of the protein.
Collapse
Affiliation(s)
- Lluís Espinosa
- Cancer Research Program, Institut Mar d’Investigacions Mèdiques, CIBERONC, Hospital del Mar, Doctor Aiguader 88, 08003 Barcelona, Spain;
| | | |
Collapse
|
3
|
Riedlinger T, Haas J, Busch J, van de Sluis B, Kracht M, Schmitz ML. The Direct and Indirect Roles of NF-κB in Cancer: Lessons from Oncogenic Fusion Proteins and Knock-in Mice. Biomedicines 2018; 6:biomedicines6010036. [PMID: 29562713 PMCID: PMC5874693 DOI: 10.3390/biomedicines6010036] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 12/24/2022] Open
Abstract
NF-κB signaling pathways play an important role in the regulation of cellular immune and stress responses. Aberrant NF-κB activity has been implicated in almost all the steps of cancer development and many of the direct and indirect contributions of this transcription factor system for oncogenesis were revealed in the recent years. The indirect contributions affect almost all hallmarks and enabling characteristics of cancer, but NF-κB can either promote or antagonize these tumor-supportive functions, thus prohibiting global NF-κB inhibition. The direct effects are due to mutations of members of the NF-κB system itself. These mutations typically occur in upstream components that lead to the activation of NF-κB together with further oncogenesis-promoting signaling pathways. In contrast, mutations of the downstream components, such as the DNA-binding subunits, contribute to oncogenic transformation by affecting NF-κB-driven transcriptional output programs. Here, we discuss the features of recently identified oncogenic RelA fusion proteins and the characterization of pathways that are regulating the transcriptional activity of NF-κB by regulatory phosphorylations. As NF-κB’s central role in human physiology prohibits its global inhibition, these auxiliary or cell type-specific NF-κB regulating pathways are potential therapeutic targets.
Collapse
Affiliation(s)
- Tabea Riedlinger
- Institute of Biochemistry, Justus-Liebig-University, D-35392 Giessen, Germany.
| | - Jana Haas
- Institute of Biochemistry, Justus-Liebig-University, D-35392 Giessen, Germany.
| | - Julia Busch
- Institute of Biochemistry, Justus-Liebig-University, D-35392 Giessen, Germany.
| | - Bart van de Sluis
- Department of Pediatrics, Molecular Genetics Section, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| | - Michael Kracht
- Rudolf-Buchheim-Institute of Pharmacology, Justus-Liebig-University, D-35392 Giessen, Germany.
| | - M Lienhard Schmitz
- Institute of Biochemistry, Justus-Liebig-University, D-35392 Giessen, Germany.
| |
Collapse
|
4
|
Haery L, Mussakhan S, Waxman DJ, Gilmore TD. Evidence for an oncogenic modifier role for mutant histone acetyltransferases in diffuse large B-cell lymphoma. Leuk Lymphoma 2016; 57:2661-71. [PMID: 27003102 DOI: 10.3109/10428194.2016.1160083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mutations in histone acetyltransferases (HATs) are among the most common mutations in diffuse large B-cell lymphoma (DLBCL). We previously showed that two human DLBCL cell lines, RC-K8 and SUDHL2, express C-terminally truncated, HAT domain-deficient p300 proteins (p300ΔC) that are required for optimal cell proliferation. Microarray analysis of mRNA expression in RC-K8 cells following p300ΔC knockdown shows upregulation of NF-κB and p53 gene expression programs and downregulation of a MYC gene expression program. Experiments indicate that these gene expression changes are due to inhibitory effects of p300ΔC on NF-κB activity and on p53 protein levels and stimulatory effects on MYC protein levels, suggesting that p300ΔC mutants enhance the proliferation of DLBCL cells by adjusting the transcriptional output of cell-specific oncoproteins. We propose that p300/CBP gene truncation represents a new class of oncogenic mutation that optimizes the activity of context-specific oncogenic transcription factors. We propose 'oncogenic modifier' to describe such mutations.
Collapse
Affiliation(s)
- Leila Haery
- a Department of Biology , Boston University , Boston , MA , USA
| | | | - David J Waxman
- a Department of Biology , Boston University , Boston , MA , USA
| | | |
Collapse
|
5
|
Kewitz S, Volkmer I, Staege MS. Curcuma Contra Cancer? Curcumin and Hodgkin's Lymphoma. CANCER GROWTH AND METASTASIS 2013; 6:35-52. [PMID: 24665206 PMCID: PMC3941149 DOI: 10.4137/cgm.s11113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Curcumin, a phytochemical isolated from curcuma plants which are used as coloring ingredient for the preparation of curry powder, has several activities which suggest that it might be an interesting drug for the treatment or prevention of cancer. Curcumin targets different pathways which are involved in the malignant phenotype of tumor cells, including the nuclear factor kappa B (NFKB) pathway. This pathway is deregulated in multiple tumor entities, including Hodgkin’s lymphoma (HL). Indeed, curcumin can inhibit growth of HL cell lines and increases the sensitivity of these cells for cisplatin. In this review we summarize curcumin activities with special focus on possible activities against HL cells.
Collapse
Affiliation(s)
- Stefanie Kewitz
- Martin-Luther-University Halle-Wittenberg, University Clinic and Polyclinic for Child and Adolescent Medicine, Halle, Germany
| | - Ines Volkmer
- Martin-Luther-University Halle-Wittenberg, University Clinic and Polyclinic for Child and Adolescent Medicine, Halle, Germany
| | - Martin S Staege
- Martin-Luther-University Halle-Wittenberg, University Clinic and Polyclinic for Child and Adolescent Medicine, Halle, Germany
| |
Collapse
|
6
|
Stary S, Vinatzer U, Müllauer L, Raderer M, Birner P, Streubel B. t(11;14)(q23;q32) involving IGH and DDX6 in nodal marginal zone lymphoma. Genes Chromosomes Cancer 2012; 52:33-43. [PMID: 22965301 DOI: 10.1002/gcc.22004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 08/06/2012] [Indexed: 11/09/2022] Open
Abstract
Nodal marginal zone lymphoma (NMZL) is a primary nodal B-cell lymphoma that shares morphological and immunophenotypic characteristics with extranodal and splenic marginal zone lymphoma. Data on altered genes and signaling pathways are scarce in this rare tumor entity. To gain further insights into the genetic background of NMZL, seven cases were investigated by microarray analysis, G-banding, and FISH. Chromosomal imbalances were observed in 3/7 cases (43%) with gains of chromosome arms 1q, 8q, and 12q being the most frequent findings. Furthermore, we identified a translocation t(11;14)(q23;q32) involving IGH and DDX6. Chromosomal walking, expression analysis, siRNA-mediated gene knockdown and a yeast two hybrid screen were performed for further characterization of the translocation in vitro. In siRNA experiments, DDX6 appeared not to be involved in NF-κB activation as frequently observed for genes promoting lymphomagenesis but was found to interfere with the expression of BCL6 and BCL2 in an NF-κB independent manner. In conclusion, we identified several unbalanced aberrations and a t(11;14) involving IGH and DDX6 providing evidence for a contribution of DDX6 to lymphomagenesis by deregulation of BCL6 in NMZL.
Collapse
Affiliation(s)
- Susanne Stary
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
7
|
Gilmore TD, Gerondakis S. The c-Rel Transcription Factor in Development and Disease. Genes Cancer 2012; 2:695-711. [PMID: 22207895 DOI: 10.1177/1947601911421925] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 08/08/2011] [Indexed: 12/21/2022] Open
Abstract
c-Rel is a member of the nuclear factor κB (NF-κB) transcription factor family. Unlike other NF-κB proteins that are expressed in a variety of cell types, high levels of c-Rel expression are found primarily in B and T cells, with many c-Rel target genes involved in lymphoid cell growth and survival. In addition to c-Rel playing a major role in mammalian B and T cell function, the human c-rel gene (REL) is a susceptibility locus for certain autoimmune diseases such as arthritis, psoriasis, and celiac disease. The REL locus is also frequently altered (amplified, mutated, rearranged), and expression of REL is increased in a variety of B and T cell malignancies and, to a lesser extent, in other cancer types. Thus, agents that modulate REL activity may have therapeutic benefits for certain human cancers and chronic inflammatory diseases.
Collapse
|
8
|
A rearranged EP300 gene in the human B-cell lymphoma cell line RC-K8 encodes a disabled transcriptional co-activator that contributes to cell growth and oncogenicity. Cancer Lett 2011; 302:76-83. [PMID: 21232847 DOI: 10.1016/j.canlet.2010.12.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 12/12/2010] [Accepted: 12/18/2010] [Indexed: 12/27/2022]
Abstract
Human diffuse large B-cell lymphoma cell line RC-K8 has an altered EP300 locus that encodes a C-terminally truncated histone acetyltransferase (HAT) protein (p300ΔC). We now show that p300ΔC contains 1047N-terminal amino acids of p300 fused to 25 amino acids encoded by sequences from chromosome 6. Over-expressed p300ΔC localized to nuclear subdomains and interacted with transcription factor REL. p300ΔC did not function as a co-activator for REL-directed transactivation, and blocked the ability of wild-type p300 to enhance transcriptional activation by REL. Knock down of p300ΔC in RC-K8 cells reduced their growth in both liquid culture and soft agar. Truncations of p300 were not found in eight other B-lymphoma cell lines. These results suggest that p300ΔC contributes to the oncogenic state of RC-K8 cells by acting as a defective co-activator.
Collapse
|
9
|
Garbati MR, Alço G, Gilmore TD. Histone acetyltransferase p300 is a coactivator for transcription factor REL and is C-terminally truncated in the human diffuse large B-cell lymphoma cell line RC-K8. Cancer Lett 2009; 291:237-45. [PMID: 19948376 DOI: 10.1016/j.canlet.2009.10.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 10/22/2009] [Accepted: 10/26/2009] [Indexed: 01/03/2023]
Abstract
Human c-Rel (REL) is a member of the NF-kappaB family of transcription factors. REL's normal physiological role is in the regulation of B-cell proliferation and survival. The REL gene is amplified in many human B-cell lymphomas and overexpression of REL can transform chicken lymphoid cells. In this report, histone acetyltransferase p300 enhanced REL-induced transactivation and interacted with REL both in vitro and in REL-transformed chicken spleen cells and the B-lymphoma cell line RC-K8, in which REL is constitutively active and required for proliferation. However, due to a deletion in the EP300 locus, only a C-terminally truncated form of p300 is expressed in RC-K8 cells. These results suggest a role for p300 in REL-mediated oncogenic activity in B lymphoma.
Collapse
|
10
|
Overexpression of an activated REL mutant enhances the transformed state of the human B-lymphoma BJAB cell line and alters its gene expression profile. Oncogene 2009; 28:2100-11. [PMID: 19377508 PMCID: PMC2796798 DOI: 10.1038/onc.2009.74] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The human REL proto-oncogene encodes a transcription factor in the NF-κB family. Overexpression of REL is acutely transforming in chicken lymphoid cells, but has not been shown to transform any mammalian lymphoid cell type. In this report, we show that overexpression of a highly transforming mutant of REL (RELΔTAD1) increases the oncogenic properties of the human B-cell lymphoma BJAB cell line, as demonstrated by increased colony formation in soft agar, tumor formation in SCID mice, and adhesion. BJAB-RELΔTAD1 cells also show decreased activation of caspase in response to doxorubicin. BJAB-RELΔTAD1 cells have increased levels of active nuclear REL protein as determined by immunofluorescence, subcellular fractionation, and electrophoretic mobility shift assay. Overexpression of RELΔTAD1 in BJAB cells has transformed the gene expression profile of BJAB cells from that of a germinal center B-cell subtype of diffuse large B-cell lymphoma (GCB-DLBCL) to that of an activated B-cell subtype (ABC-DLBCL), as evidenced by increased expression of many ABC-defining mRNAs. Up-regulated genes in BJAB-RELΔTAD1 cells include several NF-κB targets that encode proteins previously implicated in B-cell development or oncogenesis, including BCL2, IRF4, CD40 and VCAM1. The cell system we describe here may be valuable for further characterizing the molecular details of REL-induced lymphoma in humans.
Collapse
|
11
|
Leeman JR, Weniger MA, Barth TF, Gilmore TD. Deletion analysis and alternative splicing define a transactivation inhibitory domain in human oncoprotein REL. Oncogene 2008; 27:6770-81. [PMID: 18695674 DOI: 10.1038/onc.2008.284] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Misregulation of REL, a nuclear factor-kappaB family transcription factor, has been implicated in several human lymphoid malignancies. REL has a conserved N-terminal DNA-binding/dimerization domain called the Rel homology domain (RHD) and a C-terminal transactivation domain (TAD). Here, we define the sequences (amino acids (aa) 323-422) between the RHD and TAD as a REL inhibitory domain (RID) because deletion of these sequences increases both REL transactivation and DNA binding. Furthermore, we have characterized two REL mRNA splice variants that encode proteins with alterations near RID: one lacking exon 9 sequences (aa 308-330; RELDelta9) and one with an exonized Alu fragment insertion of 32 aa after aa 307 (REL+Alu). Deletion of RID or exon 9-encoded sequences increases transactivation by GAL4-REL by approximately threefold. Moreover, deletion of RID or exon 9 sequences increases transactivation by full-length REL from certain kappaB site-containing promoters and increases DNA binding by REL. Deletion of RID does not affect REL's ability to transform chicken spleen cells. Reverse transcriptase-polymerase chain reaction analysis of mRNA from both primary lymphoma samples and several transformed tissue culture cell lines indicates that the RELDelta9 splice variant is preferentially expressed in lymphoma, suggesting that the REL transcript lacking exon 9 could serve as a marker for certain types of lymphoid tumors.
Collapse
Affiliation(s)
- J R Leeman
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
12
|
Weniger MA, Gesk S, Ehrlich S, Martin-Subero JI, Dyer MJS, Siebert R, Möller P, Barth TFE. Gains ofREL in primary mediastinal B-cell lymphoma coincide with nuclear accumulation of REL protein. Genes Chromosomes Cancer 2007; 46:406-15. [PMID: 17243160 DOI: 10.1002/gcc.20420] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Gains or amplifications of the REL locus are frequently seen in primary mediastinal B-cell lymphoma (PMBL). In classical Hodgkin's lymphoma, genomic overrepresentation of REL correlated with nuclear REL protein accumulation. To investigate the correlation between REL gene copies and its RNA and protein expression in PMBL, we analyzed genomic, transcriptional, and protein levels in 20 PMBLs and the PMBL derived cell lines MedB-1 and Karpas1106P. We found gains/amplifications in 75% of the PMBLs by fluorescence in situ hybridization (FISH) and genomic REL overrepresentation in the PMBL lines. Three of the five PMBLs with amplifications displayed elevated REL transcripts, while only 3/10 PMBLs with gains showed increased REL transcripts by real-time PCR. One PMBL without gains displayed increased REL transcription. REL protein expression exhibited a variable pattern across the PMBLs except for a single case that was completely negative by immunohistochemistry despite having gained REL. Although transcript levels were generally low and nuclear REL staining was weak in the lymphoma cell lines, these nevertheless exhibited high NF-kappaB activation. By fluorescence immunophenotyping and interphase cytogenetics as a tool for investigation of neoplasms, genomic gains/amplifications of REL significantly correlated with nuclear REL expression (P < 0.05). In conclusion, the frequent genomic overrepresentation of REL in PMBL does not necessarily trigger an increased transcription/translation of REL. However, combined genomic and protein analysis revealed a significant association of gained REL and nuclear REL accumulation at the single cell level.
Collapse
Affiliation(s)
- Marc A Weniger
- Department of Pathology, University of Ulm, Ulm, Germany
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
The nuclear factor-kappa B (NF-kappaB) signaling pathway is a multi-component pathway that regulates the expression of hundreds of genes that are involved in diverse and key cellular and organismal processes, including cell proliferation, cell survival, the cellular stress response, innate immunity and inflammation. Not surprisingly, mis-regulation of the NF-kappaB pathway, either by mutation or epigenetic mechanisms, is involved in many human and animal diseases, especially ones associated with chronic inflammation, immunodeficiency or cancer. This review describes human diseases in which mutations in the components of the core NF-kappaB signaling pathway have been implicated and discusses the molecular mechanisms by which these alterations in NF-kappaB signaling are likely to contribute to the disease pathology. These mutations can be germline or somatic and include gene amplification (e.g., REL), point mutations and deletions (REL, NFKB2, IKBA, CYLD, NEMO) and chromosomal translocations (BCL-3). In addition, human genetic diseases are briefly described wherein mutations affect protein modifiers or transducers of NF-kappaB signaling or disrupt NF-kappaB-binding sites in promoters/enhancers.
Collapse
Affiliation(s)
- G Courtois
- INSERM U697, Hôpital Saint-Louis, Paris, France
| | | |
Collapse
|
14
|
Liang MC, Bardhan S, Porco JA, Gilmore TD. The synthetic epoxyquinoids jesterone dimer and epoxyquinone A monomer induce apoptosis and inhibit REL (human c-Rel) DNA binding in an IkappaBalpha-deficient diffuse large B-cell lymphoma cell line. Cancer Lett 2005; 241:69-78. [PMID: 16289774 DOI: 10.1016/j.canlet.2005.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Accepted: 10/07/2005] [Indexed: 12/13/2022]
Abstract
The NF-kappaB transcription factor signaling pathway is constitutively active in many human cancers, and inhibition of this pathway can often kill cancer cells by inducing apoptosis. In this study, we show that two synthetic epoxyquinoids, jesterone dimer (JD) and epoxyquinone A monomer (EqM), are equally effective at inhibiting the growth of two human lymphoma cell lines that have constitutively nuclear REL (human c-Rel) DNA-binding complexes, but either express (SUDHL-4 cells) or do not express (RC-K8 cells) the NF-kappaB inhibitor IkappaBalpha. Furthermore, in these cells, both JD and EqM dose-dependently induced apoptosis, inhibited REL DNA-binding activity, and converted REL to a high molecular weight form. In A293 cells, JD and EqM inhibited the DNA-binding activity of overexpressed REL, but not p50. Replacement of Cys-27 with Ser in REL reduced JD- and EqM-mediated inhibition of REL DNA-binding activity. These results suggest that JD and EqM can induce apoptosis in IkappaBalpha-deficient lymphoma cells through a mechanism involving direct inhibition of transcription factor REL.
Collapse
Affiliation(s)
- Mei-Chih Liang
- Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
15
|
Starczynowski DT, Reynolds JG, Gilmore TD. Mutations of tumor necrosis factor α-responsive serine residues within the C-terminal transactivation domain of human transcription factor REL enhance its in vitro transforming ability. Oncogene 2005; 24:7355-68. [PMID: 16027730 DOI: 10.1038/sj.onc.1208902] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The human c-rel gene (REL), encoding an NF-kappaB transcription factor, is amplified or mutated in several human B-cell lymphomas and can transform chicken lymphoid cells in vitro. We have previously shown that certain deletions of C-terminal transactivation sequences enhance REL's transforming ability in chicken spleen cells. In this report, we have analysed the effect of single amino-acid changes at select serine residues in the C-terminal transactivation domain on REL's transforming ability. Mutation of either of two TNFalpha-inducible serine residues (Ser460 and Ser471) to nonphosphorylatable residues (alanine, asparagine, phenylalanine) made REL more efficient at transforming chicken spleen cells in vitro. In contrast, mutation of Ser471 to a phosphorylation mimetic aspartate residue impaired REL's transforming ability, even though it increased REL's inherent transactivation ability as a GAL4-fusion protein. Alanine mutations of several other serine residues within the transactivation domain did not substantially affect REL's transforming ability. Transactivation by GAL4-REL fusion proteins containing either transformation enhancing or nonenhancing mutations at serine residues was generally similar to wild-type GAL4-REL. However, more transforming mutants with mutations at either Ser460 or Ser471 differed from wild-type REL in their ability to transactivate certain kappaB-site reporter genes. In particular, the SOD2 promoter, encoding manganese superoxide dismutase, was activated less strongly by the more transforming REL mutant REL-S471N in transient assays, but REL-S471N-transformed chicken spleen cells had increased levels of MnSOD protein as compared to wild-type REL-transformed cells. Taken together, our results show that mutations of certain serine residues can enhance REL's transforming ability in vitro and suggest that these mutations increase REL-mediated transformation by altering REL's ability to modulate the expression of select target genes. Furthermore, phosphorylation of Ser471 may be involved in REL-mediated modulation of transformation-specific target gene expression. Lastly, these results suggest that similar mutations in the REL transactivation domain contribute to the development of certain human B-cell lymphomas.
Collapse
|
16
|
Trauzold A, Röder C, Sipos B, Karsten K, Arlt A, Jiang P, Martin-Subero JI, Siegmund D, Müerköster S, Pagerols-Raluy L, Siebert R, Wajant H, Kalthoff H. CD95 and TRAF2 promote invasiveness of pancreatic cancer cells. FASEB J 2005; 19:620-2. [PMID: 15670977 DOI: 10.1096/fj.04-2984fje] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pancreatic adenocarcinoma represents a tumor type with extremely poor prognosis. High apoptosis resistance and a strong invasive and early metastatic potential contribute to its highly malignant phenotype. Here we identified the death receptor adaptor molecule TRAF2 as a key player in pancreatic cancer pathophysiology. Using immunohistochemistry and Western blot analysis we found TRAF2 overexpressed in 34 of 36 pancreatic tumor samples as well as in pancreatic tumor cell lines resistant to CD95-mediated apoptosis. The high TRAF2 protein level was not related to chromosomal changes, as monitored by FISH analysis. Instead, the NF-kappaB- and MEK-signaling pathways were involved. Introduction of a TRAF2 expression vector in CD95-sensitive Colo357 cells resulted in (i) resistance to CD95-induced apoptosis; (ii) increased constitutive NF-kappaB and AP-1 activity; and (iii) higher basal secretion of matrix metalloproteinases (MMPs), urokinase-type plasminogen activator (uPA), and IL-8, leading to increased invasiveness. High apoptosis resistance and uPA secretion could be reverted by TRAF2-specific siRNA. Stimulation of TRAF2-overexpressing cells with CD95 ligand led to induction of NF-kappaB and AP-1, enhanced IL-8- and uPA-secretion, and a further increased invasiveness. Thus, TRAF2 overexpression does not only block apoptosis induction by CD95 but also converts this death receptor into a mediator of invasiveness.
Collapse
Affiliation(s)
- Anna Trauzold
- Molecular Oncology Unit, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kalaitzidis D, Ok J, Sulak L, Starczynowski DT, Gilmore TD. Characterization of a human REL-estrogen receptor fusion protein with a reverse conditional transforming activity in chicken spleen cells. Oncogene 2004; 23:7580-7. [PMID: 15326488 DOI: 10.1038/sj.onc.1207912] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Overexpression of the human REL transcription factor can malignantly transform chicken spleen cells in vitro. In this report, we have created and characterized a cDNA encoding a chimeric protein (RELDelta424-490-ER) in which sequences of a highly transforming REL mutant (RELDelta424-490) are fused to the ligand-binding domain of the human estrogen receptor (ER). Surprisingly, RELDelta424-490-ER is constitutively nuclear in A293 cells, and RELDelta424-490-ER activates transcription in the absence, but not in the presence, of estrogen in kappaB-site reporter gene assays. Furthermore, RELDelta424-490-ER transforms chicken spleen cells in the absence of estrogen, but the addition of estrogen blocks the ability of RELDelta424-490-ER-transformed cells to form colonies in soft agar, even though estrogen induces increased nuclear translocation of RELDelta424-490-ER in these cells. ERalpha can also inhibit REL-dependent transactivation in trans in an estrogen-dependent manner, and ERalpha can interact with REL in vitro. Thus, the RELDelta424-490-ER fusion protein shows an unusual, reverse hormone regulation, in that its most prominent biological activities (transformation and transactivation) are inhibited by estrogen, probably due to an estrogen-induced interaction between the ER sequences and sequences in the Rel homology domain. Nevertheless, these results indicate that the continual activity of REL is required to sustain the transformed state of chicken spleen cells in culture, suggesting that direct and specific inhibitors of REL may have therapeutic efficacy in certain human lymphoid cancers.
Collapse
|
18
|
Gilmore TD, Kalaitzidis D, Liang MC, Starczynowski DT. The c-Rel transcription factor and B-cell proliferation: a deal with the devil. Oncogene 2004; 23:2275-86. [PMID: 14755244 DOI: 10.1038/sj.onc.1207410] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Activation of the Rel/NF-kappaB signal transduction pathway has been associated with a variety of animal and human malignancies. However, among the Rel/NF-kappaB family members, only c-Rel has been consistently shown to be able to malignantly transform cells in culture. In addition, c-rel has been activated by a retroviral promoter insertion in an avian B-cell lymphoma, and amplifications of REL (human c-rel) are frequently seen in Hodgkin's lymphomas and diffuse large B-cell lymphomas, and in some follicular and mediastinal B-cell lymphomas. Phenotypic analysis of c-rel knockout mice demonstrates that c-Rel has a normal role in B-cell proliferation and survival; moreover, c-Rel nuclear activity is required for B-cell development. Few mammalian model systems are available to study the role of c-Rel in oncogenesis, and it is still not clear what features of c-Rel endow it with its unique oncogenic activity among the Rel/NF-kappaB family. In any event, REL may provide an appropriate therapeutic target for certain human lymphoid cell malignancies.
Collapse
Affiliation(s)
- Thomas D Gilmore
- Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA.
| | | | | | | |
Collapse
|
19
|
Houldsworth J, Olshen AB, Cattoretti G, Donnelly GB, Teruya-Feldstein J, Qin J, Palanisamy N, Shen Y, Dyomina K, Petlakh M, Pan Q, Zelenetz AD, Dalla-Favera R, Chaganti RSK. Relationship between REL amplification, REL function, and clinical and biologic features in diffuse large B-cell lymphomas. Blood 2004; 103:1862-8. [PMID: 14615382 DOI: 10.1182/blood-2003-04-1359] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractAlthough it has been suggested that REL is the critical target gene of 2p12-16 amplification in diffuse large B-cell lymphoma (DLBCL), little experimental evidence supports this notion. In the present study, we sought to evaluate the relationship between REL amplification and REL function in a panel of 46 newly diagnosed DLBCLs and to correlate with DLBCL subgroups as identified by gene expression profiles and clinical features. The results indicate that amplification of the REL locus is not associated with accumulation of the active form of REL, as evaluated by immunofluorescence analysis. Upon subgrouping of the DLBCL cases based on gene expression signatures, REL amplification was detected in all subgroups, while high levels of nuclear-located REL were more frequently detected in activated B-cell–like DLBCL. Correlative analyses of REL copy number and REL nuclear accumulation with clinical parameters did not reveal any significant associations. Together these results indicate that 2p12-16 amplification does not lead to abnormal REL activation, suggesting that REL may not be the functional target of the amplification event. Nonetheless, these data indicate that DLBCLs are heterogeneous with respect to REL and thus nuclear factor–κB (NF-κB) activity.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Blotting, Southern
- Cell Nucleus/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Genes, rel
- Humans
- In Situ Hybridization, Fluorescence
- Karyotyping
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Male
- Microscopy, Fluorescence
- Middle Aged
- NF-kappa B/metabolism
- Proto-Oncogene Proteins c-rel/metabolism
- Proto-Oncogene Proteins c-rel/physiology
- RNA/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Translocation, Genetic
Collapse
Affiliation(s)
- Jane Houldsworth
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Starczynowski DT, Reynolds JG, Gilmore TD. Deletion of either C-terminal transactivation subdomain enhances the in vitro transforming activity of human transcription factor REL in chicken spleen cells. Oncogene 2003; 22:6928-36. [PMID: 14534540 DOI: 10.1038/sj.onc.1206801] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The REL gene is amplified in many human B-cell lymphomas and we have previously shown that expression of REL from a retroviral vector can malignantly transform chicken spleen cells in vitro. To identify REL protein functions necessary for malignant transformation, we have performed deletion analysis on REL sequences encoding residues of two C-terminal subdomains that are involved in transcriptional activation. We find that deletion of both C-terminal transactivation subdomains abolishes the ability of REL to transform chicken spleen cells in vitro. In contrast, deletion of either transactivation subdomain alone, which reduces the transactivation ability of REL, enhances the transforming activity of REL. Transforming REL mutants missing C-terminal sequences can also be selected at a low frequency in vitro. The REL transactivation domain can be functionally replaced in transformation assays by a portion of the VP16 transactivation domain that activates at a level similar to REL-transforming mutants. We also find that deletion of 29 C-terminal amino acids causes the subcellular localization of REL to change from cytoplasmic to nuclear in chicken embryo fibroblasts. In contrast, wild-type REL and all transforming REL mutants are located primarily in the cytoplasm of transformed spleen cells. Nevertheless, treatment of transformed spleen cells with leptomycin B causes wild-type REL and two REL mutants to relocalize to the nucleus, and nuclear extracts from these transformed cells contain REL DNA-binding activity. Taken together, these results suggest the following: (1) that REL must activate transcription to transform cells in vitro; (2) that a reduced level of transactivation enhances the oncogenicity of REL; (3) that REL shuttles from the cytoplasm to the nucleus in transformed chicken spleen cells; and (4) that mutations in REL, in addition to amplifications, could activate its oncogenicity in human lymphomas.
Collapse
|
21
|
Barth TFE, Martin-Subero JI, Joos S, Menz CK, Hasel C, Mechtersheimer G, Parwaresch RM, Lichter P, Siebert R, Möoller P. Gains of 2p involving the REL locus correlate with nuclear c-Rel protein accumulation in neoplastic cells of classical Hodgkin lymphoma. Blood 2003; 101:3681-6. [PMID: 12511414 DOI: 10.1182/blood-2002-08-2577] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Structural aberrations of the short arm of chromosome 2, mostly resulting in gains of 2p13 approximately 16, have recently been described as being highly recurrent in Hodgkin and Reed-Sternberg (HRS) cells of classical Hodgkin lymphoma (cHL). As these gains consistently lead to increased copy numbers of the REL oncogene locus, we investigated the expression of the c-Rel protein in a series of 30 cHL cases with known genomic REL status as determined by comparative genomic hybridization and interphase cytogenetics. Expression of the c-Rel protein was investigated in 26 biopsies by immunohistochemistry. Distinct patterns were observed in HRS cells with no staining, cytoplasmic, and/or nuclear staining for c-Rel. All 13 samples with additional copies of the REL locus displayed nuclear staining for c-Rel, while 13 cHL samples lacking chromosome 2 (2p) gains displayed a significantly lower proportion or complete absence of HRS cells with nuclear c-Rel expression. Detailed analysis using combined immunophenotyping and interphase cytogenetics of individual HRS cells demonstrated that REL gains correlated with the presence of nuclear c-Rel staining. Additionally, in 2 cHL samples with translocation breakpoints in 2p13 approximately 16, nuclear staining of c-Rel was observed; in one of them the staining pattern was indicative of a truncated c-Rel protein. The correlation between structural aberrations involving the REL locus and nuclear c-Rel accumulation in HRS cells qualifies REL as a target gene of the frequent gains in 2p in cHL. The data suggest that REL aberrations are a genetic mechanism contributing to constitutive nuclear factor (NF)-kappa B/Rel activation in cHL.
Collapse
|
22
|
Kalaitzidis D, Davis RE, Rosenwald A, Staudt LM, Gilmore TD. The human B-cell lymphoma cell line RC-K8 has multiple genetic alterations that dysregulate the Rel/NF-kappaB signal transduction pathway. Oncogene 2002; 21:8759-68. [PMID: 12483529 DOI: 10.1038/sj.onc.1206033] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2002] [Revised: 08/30/2002] [Accepted: 08/30/2002] [Indexed: 11/09/2022]
Abstract
The human large B-cell lymphoma cell line RC-K8 has a rearranged REL locus that directs the production of a chimeric protein, termed REL-NRG (Non-Rel Gene). In this study, we show that RC-K8 cells have constitutively nuclear heterodimeric and homodimeric DNA-binding complexes that consist of p50, REL, and REL-NRG. In vitro, IkappaBalpha can block the DNA-binding activity of wild-type REL homodimers but not REL-NRG homodimers. In vivo, REL-NRG cannot activate transcription of a kappaB site reporter plasmid, suggesting that it is a transcription repressing or blocking REL protein. By Western blotting, no IkappaBalpha protein can be detected in extracts of RC-K8 cells. The absence of IkappaBalpha protein in RC-K8 cells appears to be due to mutations that cause premature termination of translation in three of the four copies of the IKBA gene in RC-K8 cells. Re-expression of wild-type IkappaBalpha or a super-repressor form of IkappaBalpha in RC-K8 cells is cytotoxic; in contrast, expression of a dominant-negative form of IkappaB kinase does not affect the growth of RC-K8 cells. By cDNA microarray analysis, a number of previously identified Rel/NF-kappaB target genes are overexpressed in RC-K8 cells, consistent with there being transcriptionally active REL complexes. Taken together, our results suggest that the growth of RC-K8 cells is dependent on the activity of nuclear wild-type REL dimers, while the contribution of REL-NRG to the transformed state of RC-K8 cells is less clear. Nevertheless, the RC-K8 cell line is the first tumor cell line identified with mutations in genes encoding multiple proteins in the Rel/NF-kappaB signal transduction pathway.
Collapse
Affiliation(s)
- Demetrios Kalaitzidis
- Department of Biology, Boston University, 5 Cummington Street, Boston, Massachusetts, MA 02215, USA
| | | | | | | | | |
Collapse
|