1
|
Takashima Y, Komatsu S, Ohashi T, Kiuchi J, Kamiya H, Shimizu H, Arita T, Konishi H, Shiozaki A, Kubota T, Okamoto K, Fujiwara H, Tsuda H, Otsuji E. Overexpression of Tetraspanin31 contributes to malignant potential and poor outcomes in gastric cancer. Cancer Sci 2022; 113:1984-1998. [PMID: 35307915 PMCID: PMC9207375 DOI: 10.1111/cas.15342] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/09/2022] [Accepted: 03/12/2022] [Indexed: 12/24/2022] Open
Abstract
Tetraspanin has important functions in many cancers by aggregating with various proteins that interact with intracellular signaling proteins. The molecular function of Tetraspanin31 (TSPAN31), located in the 12q14 amplified region in various cancers, remains unclear in gastric cancer (GC). We tested whether TSPAN31 acts as a cancer‐promoting gene through its activation or overexpression in GC. We analyzed seven GC cell lines and 189 primary tumors, which were curatively resected in our hospital between 2011 and 2013. Overexpression of the TSPAN31 protein was frequently detected in three GC cell lines (42.9%) and 62 primary GC specimens (32.8%). Overexpression of TSPAN31 was significantly correlated with lymphatic invasion, venous invasion, more advanced pT and pN stages, and a higher recurrence rate. Moreover, TSPAN31 positivity was an independent factor predicting worse patient outcomes (p = 0.0283, hazard ratio 3.97). Ectopic overexpression of TSPAN31 facilitated cell proliferation of GC cells, and knockdown of TSPAN31 inhibited cell proliferation, migration, invasion, and epithelial–mesenchymal transition of GC cells through the PI3K‐Akt pathway and increased cell apoptosis in a TP53 mutation‐independent manner. In vivo analysis also revealed knockdown of TSPAN31 suppressed tumor progression. In addition, knockdown of TSPAN31 improved chemosensitivity to cisplatin through the suppression of ABCC2. These findings suggest that TSPAN31 plays a crucial role in tumor‐malignant potential through overexpression, highlighting its utility as a prognostic factor and a potential therapeutic target in GC.
Collapse
Affiliation(s)
- Yusuke Takashima
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shuhei Komatsu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takuma Ohashi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Jun Kiuchi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hajime Kamiya
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroki Shimizu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomohiro Arita
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hirotaka Konishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takeshi Kubota
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuma Okamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hitoshi Fujiwara
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hitoshi Tsuda
- Department of Pathology, National Cancer Center Hospital, Tokyo, Japan.,Department of Basic Pathology, National Defense Medical College, Tokorozawa, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
2
|
Abstract
Introduction: Nasopharyngeal carcinoma (NPC) is a distinct head and neck squamous cell carcinoma in its etiological association of Epstein-Barr virus (EBV) infection, hidden anatomical location, remarkable racial and geographical distribution, and high incidence of locoregional recurrence or metastasis. Thanks to the advancements in proteomics in recent decades, more understanding of the disease etiology, carcinogenesis, and progression has been gained, potentially deciphering the molecular characteristics of the malignancy. Areas covered: In this review, we provide an overview of the proteomic aberrations that are likely involved or drive NPC development and progression, focusing on the contributions of major EBV-encoded factors, intercommunication with environment, protein features of high metastasis and therapy resistance, and protein-protein interactions that allow NPC cells to evade immune recognition and elimination. Finally, multistep carcinogenesis and subtypes of NPC from a proteomic perspective are inquired. Expert commentary: Proteomic studies have covered various aspects involved in NPC pathogenesis, yet much remains to be uncovered. Coherent study designs, optimal conditions for obtaining high-quality data, and compelling interpretation are critical in ensuring the emergence of good science out of NPC proteomics. NPC proteogenomics and proteoform analysis are two promising fields to promote the application of the proteomic findings from bench to bedside.
Collapse
Affiliation(s)
- Zhefeng Xiao
- a NHC Key Laboratory of Cancer Proteomics , Xiangya Hospital, Central South University , Changsha , P. R. China
| | - Zhuchu Chen
- a NHC Key Laboratory of Cancer Proteomics , Xiangya Hospital, Central South University , Changsha , P. R. China
| |
Collapse
|
3
|
Xu H, Zeng L, Guan Y, Feng X, Zhu Y, Lu Y, Shi C, Chen S, Xia J, Guo J, Kuang C, Li W, Jin F, Zhou W. High NEK2 confers to poor prognosis and contributes to cisplatin-based chemotherapy resistance in nasopharyngeal carcinoma. J Cell Biochem 2019; 120:3547-3558. [PMID: 30295336 PMCID: PMC6704366 DOI: 10.1002/jcb.27632] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a common malignant tumor in southern China and Southeast Asia, but the molecular mechanism of its pathogenesis is poorly understood. Our previous work demonstrated that NEK2 is overexpressed in multiple cancers. However, how NEK2 involves in NPC development remains to be elucidated. In this study, we firstly identified NEK2, located at +1q32-q33, a late event in NPC pathogenesis, overexpressed in the stage III-IV and paired sequential recurrent patients with NPC by immunohistochemistry. Furthermore, Kaplan-Meier analysis indicated high NEK2 conferred an inferior overall survival in NPC. In addition, cisplatin experiments with cell counting kit-8, colony formation, and a xenograft mice model of NPC demonstrated that NEK2 contributed to proliferation and cisplatin resistance in vitro and in vivo. On the contrary, downregulation of NEK2 by short hairpin RNA inhibited NPC cell growth and increased the sensitivity of cisplatin treatment in vitro. Thus, increased expression of NEK2 protein could not be predicted for poor survival but used as a novel biomarker for recurrence of NPC. Targeting NEK2 has the potential to eradicate the cisplatin-based chemotherapy resistant NPC cells.
Collapse
Affiliation(s)
- He Xu
- Cancer Center, The First Hospital of Jilin UniversityChangchunChina
- Cancer Research Institute, Central South University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education; Key Laboratory of Carcinogenesis, National Health and Family Planning CommissionChangshaHunanChina
| | - Liang Zeng
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangshaHunanChina
| | - Yongjun Guan
- Cancer Research Institute, Central South University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education; Key Laboratory of Carcinogenesis, National Health and Family Planning CommissionChangshaHunanChina
| | - Xiangling Feng
- School of Public Health, Central South UniversityChangshaHunanChina
| | - Yinghong Zhu
- Cancer Research Institute, Central South University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education; Key Laboratory of Carcinogenesis, National Health and Family Planning CommissionChangshaHunanChina
| | - Yichen Lu
- Cancer Center, The First Hospital of Jilin UniversityChangchunChina
- Cancer Research Institute, Central South University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education; Key Laboratory of Carcinogenesis, National Health and Family Planning CommissionChangshaHunanChina
| | - Chen Shi
- Cancer Center, The First Hospital of Jilin UniversityChangchunChina
- Cancer Research Institute, Central South University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education; Key Laboratory of Carcinogenesis, National Health and Family Planning CommissionChangshaHunanChina
| | - Shilian Chen
- Cancer Research Institute, Central South University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education; Key Laboratory of Carcinogenesis, National Health and Family Planning CommissionChangshaHunanChina
| | - Jiliang Xia
- Cancer Research Institute, Central South University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education; Key Laboratory of Carcinogenesis, National Health and Family Planning CommissionChangshaHunanChina
| | - Jiaojiao Guo
- Cancer Research Institute, Central South University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education; Key Laboratory of Carcinogenesis, National Health and Family Planning CommissionChangshaHunanChina
| | - Chunmei Kuang
- Cancer Research Institute, Central South University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education; Key Laboratory of Carcinogenesis, National Health and Family Planning CommissionChangshaHunanChina
| | - Wei Li
- Cancer Center, The First Hospital of Jilin UniversityChangchunChina
| | - Fengyan Jin
- Cancer Center, The First Hospital of Jilin UniversityChangchunChina
| | - Wen Zhou
- Cancer Research Institute, Central South University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education; Key Laboratory of Carcinogenesis, National Health and Family Planning CommissionChangshaHunanChina
| |
Collapse
|
4
|
Hainke K, Szugat S, Fried R, Rahnenführer J. Variable selection for disease progression models: methods for oncogenetic trees and application to cancer and HIV. BMC Bioinformatics 2017; 18:358. [PMID: 28764644 PMCID: PMC5539896 DOI: 10.1186/s12859-017-1762-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 07/14/2017] [Indexed: 12/12/2022] Open
Abstract
Background Disease progression models are important for understanding the critical steps during the development of diseases. The models are imbedded in a statistical framework to deal with random variations due to biology and the sampling process when observing only a finite population. Conditional probabilities are used to describe dependencies between events that characterise the critical steps in the disease process. Many different model classes have been proposed in the literature, from simple path models to complex Bayesian networks. A popular and easy to understand but yet flexible model class are oncogenetic trees. These have been applied to describe the accumulation of genetic aberrations in cancer and HIV data. However, the number of potentially relevant aberrations is often by far larger than the maximal number of events that can be used for reliably estimating the progression models. Still, there are only a few approaches to variable selection, which have not yet been investigated in detail. Results We fill this gap and propose specifically for oncogenetic trees ten variable selection methods, some of these being completely new. We compare them in an extensive simulation study and on real data from cancer and HIV. It turns out that the preselection of events by clique identification algorithms performs best. Here, events are selected if they belong to the largest or the maximum weight subgraph in which all pairs of vertices are connected. Conclusions The variable selection method of identifying cliques finds both the important frequent events and those related to disease pathways. Electronic supplementary material The online version of this article (doi:10.1186/s12859-017-1762-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katrin Hainke
- Department of Statistics, TU Dortmund University, Dortmund, 44221, Germany
| | - Sebastian Szugat
- Department of Statistics, TU Dortmund University, Dortmund, 44221, Germany
| | - Roland Fried
- Department of Statistics, TU Dortmund University, Dortmund, 44221, Germany
| | - Jörg Rahnenführer
- Department of Statistics, TU Dortmund University, Dortmund, 44221, Germany.
| |
Collapse
|
5
|
Abstract
Mathematical modelling approaches have become increasingly abundant in cancer research. The complexity of cancer is well suited to quantitative approaches as it provides challenges and opportunities for new developments. In turn, mathematical modelling contributes to cancer research by helping to elucidate mechanisms and by providing quantitative predictions that can be validated. The recent expansion of quantitative models addresses many questions regarding tumour initiation, progression and metastases as well as intra-tumour heterogeneity, treatment responses and resistance. Mathematical models can complement experimental and clinical studies, but also challenge current paradigms, redefine our understanding of mechanisms driving tumorigenesis and shape future research in cancer biology.
Collapse
Affiliation(s)
- Philipp M Altrock
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Department of Biostatistics, Harvard T.H. Chan School of Public Health, 450 Brookline Avenue, Boston, Massachusetts 02115, USA
- Program for Evolutionary Dynamics, Harvard University, 1 Brattle Square, Suite 6, Cambridge, Massachusetts 02138, USA
| | - Lin L Liu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Department of Biostatistics, Harvard T.H. Chan School of Public Health, 450 Brookline Avenue, Boston, Massachusetts 02115, USA
| | - Franziska Michor
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Department of Biostatistics, Harvard T.H. Chan School of Public Health, 450 Brookline Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
6
|
Welch AK, Jacobs ME, Wingo CS, Cain BD. Early progress in epigenetic regulation of endothelin pathway genes. Br J Pharmacol 2013; 168:327-34. [PMID: 22220553 DOI: 10.1111/j.1476-5381.2012.01826.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Control of gene transcription is a major regulatory determinant for function of the endothelin pathway. Epigenetic mechanisms act on tissue-specific gene expression during development and in response to physiological stimuli. Most of the limited evidence available on epigenetic regulation of the endothelin pathway focuses on the EDN1 and EDNRB genes. Examination of whole genome databases suggests that both genes are influenced by histone modifications and DNA methylation. This interpretation is supported by studies directed at detecting epigenetic action on the two genes. The clearest illustration of epigenetic factors altering endothelin signalling is DNA methylation-associated EDNRB silencing during tumourigenesis. This review summarizes our current understanding of epigenetic regulation of the endothelin pathway genes. LINKED ARTICLES This article is part of a themed section on Endothelin. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.168.issue-1.
Collapse
Affiliation(s)
- A K Welch
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | | | | |
Collapse
|
7
|
Over-expression of BCAT1, a c-Myc target gene, induces cell proliferation, migration and invasion in nasopharyngeal carcinoma. Mol Cancer 2013; 12:53. [PMID: 23758864 PMCID: PMC3698204 DOI: 10.1186/1476-4598-12-53] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 05/31/2013] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a common malignant tumor in southern China and Southeast Asia, but its molecular mechanisms of pathogenesis are poorly understood. Our previous work has demonstrated that BCAT1 mRNA is over expressed in NPC and knocking down its expression in 5-8F NPC cell line can potently inhibit cell cycle progression and cell proliferation. However, the mechanism of BCAT1 up-regulation and its functional role in NPC development remain to be elucidated yet. METHODS Immunohistochemistry (IHC) method was utilized to detect the expression of BCAT1 protein in NPC at different pathological stages. The roles of gene mutation, DNA amplification and transcription factor c-Myc in regulating BCAT1 expression were analyzed using PCR-sequencing, quantitative polymerase chain reaction (qPCR), IHC, ChIP and luciferase reporter system, respectively. The functions of BCAT1 in colony formation, cell migration and invasion properties were evaluated by RNA interference (RNAi). RESULTS The positive rates of BCAT1 protein expression in normal epithelia, low-to-moderate grade atypical hyperplasia tissues, high-grade atypical hyperplasia tissues and NPC tissues were 23.6% (17/72), 75% (18/24), 88.9% (8/9) and 88.8% (71/80), respectively. Only one SNP site in exon1 was detected, and 42.4% (12/28) of the NPC tissues displayed the amplification of microsatellite loci in BCAT1. C-Myc could directly bind to the c-Myc binding site in promoter region of BCAT1 and up-regulate its expression. The mRNA and protein of c-Myc and BCAT1 were co-expressed in 53.6% (15/28) and 59.1% (13/22) of NPC tissues, respectively, and BCAT1 mRNA expression was also down-regulated in c-Myc knockdown cell lines. In addition, BCAT1 knockdown cells demonstrated reduced proliferation and decreased cell migration and invasion abilities. CONCLUSIONS Our study indicates that gene amplification and c-Myc up-regulation are responsible for BCAT1 overexpression in primary NPC, and overexpression of BCAT1 induces cell proliferation, migration and invasion. The results suggest that BCAT1 may be a novel molecular target for the diagnosis and treatment of NPC.
Collapse
|
8
|
LRIG1 modulates aggressiveness of head and neck cancers by regulating EGFR-MAPK-SPHK1 signaling and extracellular matrix remodeling. Oncogene 2013; 33:1375-84. [PMID: 23624915 DOI: 10.1038/onc.2013.98] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 01/29/2013] [Accepted: 02/01/2013] [Indexed: 12/20/2022]
Abstract
EGFR overexpression and chromosome 3p deletion are two frequent events in head and neck cancers. We previously mapped the smallest region of recurrent copy-number loss at 3p12.2-p14.1. LRIG1, a negative regulator of EGFR, was found at 3p14, and its copy-number loss correlated with poor clinical outcome. Inducible expression of LRIG1 in head and neck cancer TW01 cells, a line with low LRIG1 levels, suppressed cell proliferation in vitro and tumor growth in vivo. Gene expression profiling, quantitative RT-PCR, chromatin immunoprecipitation, and western blot analysis demonstrated that LRIG1 modulated extracellular matrix (ECM) remodeling and EGFR-MAPK-SPHK1 transduction pathway by suppressing expression of EGFR ligands/activators, MMPs and SPHK1. In addition, LRIG1 induction triggered cell morphology changes and integrin inactivation, which coupled with reduced SNAI2 expression. By contrast, knockdown of endogenous LRIG1 in TW06 cells, a line with normal LRIG1 levels, significantly enhanced cell proliferation, migration and invasiveness. Such tumor-promoting effects could be abolished by specific MAPK or SPHK1 inhibitors. Our data suggest LRIG1 as a tumor suppressor for head and neck cancers; LRIG1 downregulation in cancer cells enhances EGFR-MAPK-SPHK1 signaling and ECM remodeling activity, leading to malignant phenotypes of head and neck cancers.
Collapse
|
9
|
Feng BJ. Descriptive, Environmental and Genetic Epidemiology of Nasopharyngeal Carcinoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013. [DOI: 10.1007/978-1-4614-5947-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Lo KW, Chung GTY, To KF. Acquired Genetic and Epigenetic Alterations in Nasopharyngeal Carcinoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013. [DOI: 10.1007/978-1-4614-5947-7_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Lo KW, Chung GTY, To KF. Deciphering the molecular genetic basis of NPC through molecular, cytogenetic, and epigenetic approaches. Semin Cancer Biol 2012; 22:79-86. [PMID: 22245473 DOI: 10.1016/j.semcancer.2011.12.011] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Revised: 12/21/2011] [Accepted: 12/22/2011] [Indexed: 12/12/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is consistently associated with EBV infection and prevalence in southern China and Southeast Asia. In addition to EBV, the development of NPC involves cumulative genetic and epigenetic changes influenced by predisposing genetic factors and environmental carcinogens. Over the past two decades, knowledge of genetic and epigenetic alterations of NPC has rapidly accumulated. Multiple chromosomal abnormalities (e.g. copy number changes on chromosomes 3p, 9p, 11q, 12p, and 14q), gene alterations (e.g. p16 deletion and LTBR amplification), and epigenetic changes (e.g. RASSF1A and TSLC1 methylation) have been identified by various genome-wide approaches, such as allelotyping, CGH, and microarray analysis. In this review, we will discuss the critical genetic events that contribute to the initiation and progression of NPC. Studies on the precancerous lesions and in vitro immortalized nasopharyngeal epithelial cell models provide important evidence for the involvement of genetic alterations and EBV infection in early development of this cancer. A hypothetical model describing the role of EBV latent infection and multiple genetic changes in NPC tumorigenesis is proposed.
Collapse
Affiliation(s)
- Kwok-Wai Lo
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | | | | |
Collapse
|
12
|
Li X, Chen J, Lü B, Peng S, Desper R, Lai M. -8p12-23 and +20q are predictors of subtypes and metastatic pathways in colorectal cancer: construction of tree models using comparative genomic hybridization data. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2010; 15:37-47. [PMID: 21194300 DOI: 10.1089/omi.2010.0101] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A substantial body of evidence suggests the genetic heterogeneous pattern and multiple pathways in colorectal cancer initiation and progression. In this study, we construct a branching tree and multiple distance-based tree models to elucidate these genetic patterns and pathways in colorectal cancer by using a data set comprised of 244 cases of comparative genomic hybridization. We identify the six most common gains of chromosomal regions of 7p (37.0%), 7q11-32 (34.8%), 8q (48.3%), 13q (49.1%), 20p (36.1%), and 20q (50.4%), and the nine most common losses of 1p13-36 (30.9%), 4p15 (24.3%), 4q33-34 (24.3%), 8p12-23 (50.9%), 15q13-14 (23.5%), 15q24-25 (24.3%), 17p (34.8%), 18p (36.5%), and 18q (61.7%) in colorectal cancer. We classify colorectal cancer into two distinct groups: one preceding with -8p12-23, and the other with +20q. The sample-based classification tree also demonstrates that colorectal cancer can be classified into multiple subtypes marked by -8p12-23 and +20q. By comparing chromosomal abnormalities between primary and metastatic colorectal cancer, we identify five potential metastatic pathways: (-18q, -18p), (-8p12-23, -4p15, -4q33-34), (+20q, +20p), (+20q, +7p, +7q11-32), and +8q. -8p12-23 and +20q are inferred to be the two marker events of colorectal cancer metastasis. The current oncogenetic tree models may contribute to our understanding towards molecular genetics in colorectal cancer. Particularly, the metastatic pathways we describe may provide pivotal clues for metastatic candidate genes, and thus impact on the prediction and intervention of metastatic colorectal cancer.
Collapse
Affiliation(s)
- Xiaobo Li
- Department of Pathology, School of Medicine, Zhejiang University, Hangzhou 310058, People's Republic of China
| | | | | | | | | | | |
Collapse
|
13
|
Sheu JJC, Lee CH, Ko JY, Tsao GS, Wu CC, Fang CY, Tsai FJ, Hua CH, Chen CL, Chen JY. Chromosome 3p12.3-p14.2 and 3q26.2-q26.32 Are Genomic Markers for Prognosis of Advanced Nasopharyngeal Carcinoma. Cancer Epidemiol Biomarkers Prev 2009; 18:2709-16. [DOI: 10.1158/1055-9965.epi-09-0349] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
14
|
Mathematical modeling of carcinogenesis based on chromosome aberration data. Chin J Cancer Res 2009. [DOI: 10.1007/s11670-009-0240-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
15
|
Tahara H, Sato M, Thurin M, Wang E, Butterfield LH, Disis ML, Fox BA, Lee PP, Khleif SN, Wigginton JM, Ambs S, Akutsu Y, Chaussabel D, Doki Y, Eremin O, Fridman WH, Hirohashi Y, Imai K, Jacobson J, Jinushi M, Kanamoto A, Kashani-Sabet M, Kato K, Kawakami Y, Kirkwood JM, Kleen TO, Lehmann PV, Liotta L, Lotze MT, Maio M, Malyguine A, Masucci G, Matsubara H, Mayrand-Chung S, Nakamura K, Nishikawa H, Palucka AK, Petricoin EF, Pos Z, Ribas A, Rivoltini L, Sato N, Shiku H, Slingluff CL, Streicher H, Stroncek DF, Takeuchi H, Toyota M, Wada H, Wu X, Wulfkuhle J, Yaguchi T, Zeskind B, Zhao Y, Zocca MB, Marincola FM. Emerging concepts in biomarker discovery; the US-Japan Workshop on Immunological Molecular Markers in Oncology. J Transl Med 2009; 7:45. [PMID: 19534815 PMCID: PMC2724494 DOI: 10.1186/1479-5876-7-45] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 06/17/2009] [Indexed: 02/08/2023] Open
Abstract
Supported by the Office of International Affairs, National Cancer Institute (NCI), the "US-Japan Workshop on Immunological Biomarkers in Oncology" was held in March 2009. The workshop was related to a task force launched by the International Society for the Biological Therapy of Cancer (iSBTc) and the United States Food and Drug Administration (FDA) to identify strategies for biomarker discovery and validation in the field of biotherapy. The effort will culminate on October 28th 2009 in the "iSBTc-FDA-NCI Workshop on Prognostic and Predictive Immunologic Biomarkers in Cancer", which will be held in Washington DC in association with the Annual Meeting. The purposes of the US-Japan workshop were a) to discuss novel approaches to enhance the discovery of predictive and/or prognostic markers in cancer immunotherapy; b) to define the state of the science in biomarker discovery and validation. The participation of Japanese and US scientists provided the opportunity to identify shared or discordant themes across the distinct immune genetic background and the diverse prevalence of disease between the two Nations. Converging concepts were identified: enhanced knowledge of interferon-related pathways was found to be central to the understanding of immune-mediated tissue-specific destruction (TSD) of which tumor rejection is a representative facet. Although the expression of interferon-stimulated genes (ISGs) likely mediates the inflammatory process leading to tumor rejection, it is insufficient by itself and the associated mechanisms need to be identified. It is likely that adaptive immune responses play a broader role in tumor rejection than those strictly related to their antigen-specificity; likely, their primary role is to trigger an acute and tissue-specific inflammatory response at the tumor site that leads to rejection upon recruitment of additional innate and adaptive immune mechanisms. Other candidate systemic and/or tissue-specific biomarkers were recognized that might be added to the list of known entities applicable in immunotherapy trials. The need for a systematic approach to biomarker discovery that takes advantage of powerful high-throughput technologies was recognized; it was clear from the current state of the science that immunotherapy is still in a discovery phase and only a few of the current biomarkers warrant extensive validation. It was, finally, clear that, while current technologies have almost limitless potential, inadequate study design, limited standardization and cross-validation among laboratories and suboptimal comparability of data remain major road blocks. The institution of an interactive consortium for high throughput molecular monitoring of clinical trials with voluntary participation might provide cost-effective solutions.
Collapse
Affiliation(s)
- Hideaki Tahara
- Department of Surgery and Bioengineering, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Marimo Sato
- Department of Surgery and Bioengineering, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Magdalena Thurin
- Cancer Diagnosis Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Rockville, Maryland, 20852, USA
| | - Ena Wang
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center and Center for Human Immunology (CHI), NIH, Bethesda, Maryland, 20892, USA
| | - Lisa H Butterfield
- Departments of Medicine, Surgery and Immunology, Division of Hematology Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, 15213, USA
| | - Mary L Disis
- Tumor Vaccine Group, Center for Translational Medicine in Women's Health, University of Washington, Seattle, Washington, 98195, USA
| | - Bernard A Fox
- Earle A Chiles Research Institute, Robert W Franz Research Center, Providence Portland Medical Center, and Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, 97213, USA
| | - Peter P Lee
- Department of Medicine, Division of Hematology, Stanford University, Stanford, California, 94305, USA
| | - Samir N Khleif
- Cancer Vaccine Section, NCI, NIH, Bethesda, Maryland, 20892, USA
| | - Jon M Wigginton
- Discovery Medicine-Oncology, Bristol-Myers Squibb Inc., Princeton, New Jersey, USA
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, Center of Cancer Research, NCI, NIH, Bethesda, Maryland, 20892, USA
| | - Yasunori Akutsu
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Damien Chaussabel
- Baylor Institute for Immunology Research and Baylor Research Institute, Dallas, Texas, 75204, USA
| | - Yuichiro Doki
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Oleg Eremin
- Section of Surgery, Biomedical Research Unit, Nottingham Digestive Disease Centre, University of Nottingham, NG7 2UH, UK
| | - Wolf Hervé Fridman
- Centre de la Reserche des Cordeliers, INSERM, Paris Descarte University, 75270 Paris, France
| | | | - Kohzoh Imai
- Sapporo Medical University, School of Medicine, Sapporo, Japan
| | - James Jacobson
- Cancer Diagnosis Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Rockville, Maryland, 20852, USA
| | - Masahisa Jinushi
- Department of Surgery and Bioengineering, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Akira Kanamoto
- Department of Surgery and Bioengineering, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | - Kazunori Kato
- Department of Molecular Medicine, Sapporo Medical University, School of Medicine, Sapporo, Japan
| | - Yutaka Kawakami
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - John M Kirkwood
- Departments of Medicine, Surgery and Immunology, Division of Hematology Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, 15213, USA
| | - Thomas O Kleen
- Cellular Technology Ltd, Shaker Heights, Ohio, 44122, USA
| | - Paul V Lehmann
- Cellular Technology Ltd, Shaker Heights, Ohio, 44122, USA
| | - Lance Liotta
- Department of Molecular Pathology and Microbiology, Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, 10900, USA
| | - Michael T Lotze
- Illman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
| | - Michele Maio
- Medical Oncology and Immunotherapy, Department. of Oncology, University, Hospital of Siena, Istituto Toscano Tumori, Siena, Italy
- Cancer Bioimmunotherapy Unit, Department of Medical Oncology, Centro di Riferimento Oncologico, IRCCS, Aviano, 53100, Italy
| | - Anatoli Malyguine
- Laboratory of Cell Mediated Immunity, SAIC-Frederick, Inc. NCI-Frederick, Frederick, Maryland, 21702, USA
| | - Giuseppe Masucci
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, 171 76, Sweden
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shawmarie Mayrand-Chung
- The Biomarkers Consortium (BC), Public-Private Partnership Program, Office of the Director, NIH, Bethesda, Maryland, 20892, USA
| | - Kiminori Nakamura
- Department of Molecular Medicine, Sapporo Medical University, School of Medicine, Sapporo, Japan
| | - Hiroyoshi Nishikawa
- Department of Cancer Vaccine, Department of Immuno-gene Therapy, Mie University Graduate School of Medicine, Mie, Japan
| | - A Karolina Palucka
- Baylor Institute for Immunology Research and Baylor Research Institute, Dallas, Texas, 75204, USA
| | - Emanuel F Petricoin
- Department of Molecular Pathology and Microbiology, Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, 10900, USA
| | - Zoltan Pos
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center and Center for Human Immunology (CHI), NIH, Bethesda, Maryland, 20892, USA
| | - Antoni Ribas
- Department of Medicine, Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, 90095, USA
| | - Licia Rivoltini
- Unit of Immunotherapy of Human Tumors, IRCCS Foundation, Istituto Nazionale Tumori, Milan, 20100, Italy
| | - Noriyuki Sato
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Shiku
- Department of Cancer Vaccine, Department of Immuno-gene Therapy, Mie University Graduate School of Medicine, Mie, Japan
| | - Craig L Slingluff
- Department of Surgery, Division of Surgical Oncology, University of Virginia School of Medicine, Charlottesville, Virginia, 22908, USA
| | - Howard Streicher
- Cancer Therapy Evaluation Program, DCTD, NCI, NIH, Rockville, Maryland, 20892, USA
| | - David F Stroncek
- Cell Therapy Section (CTS), Department of Transfusion Medicine, Clinical Center, NIH, Bethesda, Maryland, 20892, USA
| | - Hiroya Takeuchi
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Minoru Toyota
- Department of Biochemistry, Sapporo Medical University, School of Medicine, Sapporo, Japan
| | - Hisashi Wada
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Xifeng Wu
- Department of Epidemiology, University of Texas, MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Julia Wulfkuhle
- Department of Molecular Pathology and Microbiology, Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, 10900, USA
| | - Tomonori Yaguchi
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | | | - Yingdong Zhao
- Biometric Research Branch, NCI, NIH, Bethesda, Maryland, 20892, USA
| | | | - Francesco M Marincola
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center and Center for Human Immunology (CHI), NIH, Bethesda, Maryland, 20892, USA
| |
Collapse
|
16
|
Pathare S, Schäffer AA, Beerenwinkel N, Mahimkar M. Construction of oncogenetic tree models reveals multiple pathways of oral cancer progression. Int J Cancer 2009; 124:2864-71. [PMID: 19267402 PMCID: PMC2670951 DOI: 10.1002/ijc.24267] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Oral cancer develops and progresses by accumulation of genetic alterations. The interrelationship between these alterations and their sequence of occurrence in oral cancers has not been thoroughly understood. In the present study, we applied oncogenetic tree models to comparative genomic hybridization (CGH) data of 97 primary oral cancers to identify pathways of progression. CGH revealed the most frequent gains on chromosomes 8q (72.4%) and 9q (41.2%) and frequent losses on 3p (49.5%) and 8p (47.5%). Both mixture and distance-based tree models suggested multiple progression pathways and identified +8q as an early event. The mixture model suggested two independent pathways namely a major pathway with -8p and a less frequent pathway with +9q. The distance-based tree identified three progression pathways, one characterized by -8p, another by -3p and the third by alterations +11q and +7p. Differences were observed in cytogenetic pathways of node-positive and node-negative oral cancers. Node-positive cancers were characterized by more non-random aberrations (n = 11) and progressed via -8p or -3p. On the other hand, node-negative cancers involved fewer non-random alterations (n = 6) and progressed along -3p. In summary, the tree models for oral cancers provided novel information about the interactions between genetic alterations and predicted their probable order of occurrence.
Collapse
Affiliation(s)
- Swapnali Pathare
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Cancer Research Institute (CRI), Tata Memorial Centre (TMC), Navi Mumbai-410210, India
| | - Alejandro A. Schäffer
- Computational Biology Branch, National Center for Biotechnology Information, NIH, DHHS, Bethesda,Maryland, USA
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Manoj Mahimkar
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Cancer Research Institute (CRI), Tata Memorial Centre (TMC), Navi Mumbai-410210, India
| |
Collapse
|
17
|
Sweeney C, Boucher KM, Samowitz WS, Wolff RK, Albertsen H, Curtin K, Caan BJ, Slattery ML. Oncogenetic tree model of somatic mutations and DNA methylation in colon tumors. Genes Chromosomes Cancer 2009; 48:1-9. [PMID: 18767147 PMCID: PMC3742107 DOI: 10.1002/gcc.20614] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Our understanding of somatic alterations in colon cancer has evolved from a concept of a series of events taking place in a single sequence to a recognition of multiple pathways. An oncogenetic tree is a model intended to describe the pathways and sequence of somatic alterations in carcinogenesis without assuming that tumors will fall in mutually exclusive categories. We applied this model to data on colon tumor somatic alterations. An oncogenetic tree model was built using data on mutations of TP53, KRAS2, APC, and BRAF genes, methylation at CpG sites of MLH1 and TP16 genes, methylation in tumor (MINT) markers, and microsatellite instability (MSI) for 971 colon tumors from a population-based series. Oncogenetic tree analysis resulted in a reproducible tree with three branches. The model represents methylation of MINT markers as initiating a branch and predisposing to MSI, methylation of MHL1 and TP16, and BRAF mutation. APC mutation is the first alteration in an independent branch and is followed by TP53 mutation. KRAS2 mutation was placed a third independent branch, implying that it neither depends on, nor predisposes to, the other alterations. Individual tumors were observed to have alteration patterns representing every combination of one, two, or all three branches. The oncogenetic tree model assumptions are appropriate for the observed heterogeneity of colon tumors, and the model produces a useful visual schematic of the sequence of events in pathways of colon carcinogenesis.
Collapse
Affiliation(s)
- Carol Sweeney
- Health Sciences Center, University of Utah, Salt Lake City, UT, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Zhou W, Feng X, Li H, Wang L, Zhu B, Liu W, Zhao M, Yao K, Ren C. Inactivation of LARS2, located at the commonly deleted region 3p21.3, by both epigenetic and genetic mechanisms in nasopharyngeal carcinoma. Acta Biochim Biophys Sin (Shanghai) 2009; 41:54-62. [PMID: 19129950 DOI: 10.1093/abbs/gmn006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Allelic loss of chromosome 3p, including the 3p21.3 region, is found in 95-100% of primary nasopharyngeal carcinoma (NPC) biopsies, suggesting that this region should harbor some tumor suppressor genes (TSGs) closely related to NPC development. Several TSGs located at 3p21.3, such as RASSF1A, LTF and BLU, have been demonstrated to be involved in NPC development. LARS2 (leucyl-tRNA synthetase 2, mitochondrial) is another gene located in the chromosome 3 common eliminated region-1 (C3CER1) at 3p21.3. In this study, we focussed on the epigenetic and genetic alterations of LARS2 in NPC. The mRNA expression of LARS2 was detected in 36 NPC and 8 chronic nasopharyngitis (NP) tissues by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) and real-time RT-PCR. Subsequently, the mutation, allelic loss, and methylation status of LARS2 were analysed by polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP), homozygous deletion (HD) analysis and methylation-specific polymerase chain reaction in primary NPC tissues. No expression or downregulation of LARS2 was observed in 78% of primary NPC tissues. No mutations, assessed by PCR-SSCP and DNA sequencing, were found in the promoter region and exon 1 of LARS2 in NPC tissues, whereas HD was detected in 28% of NPC specimens at the LARS2 locus. In addition, hypermethylation of LARS2 was found in 64% of NPC samples but only in 12.5% of NP biopsies. Our data indicate that inactivation of LARS2 by both genetic and epigenetic mechanisms may be a common and important event in the carcinogenesis of NPC.
Collapse
Affiliation(s)
- Wen Zhou
- Cancer Research Institute, Xiang-Ya School of Medicine, Central South University, Changsha, China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Huang ZX, Tian HY, Hu ZF, Zhou YB, Zhao J, Yao KT. GenCLiP: a software program for clustering gene lists by literature profiling and constructing gene co-occurrence networks related to custom keywords. BMC Bioinformatics 2008; 9:308. [PMID: 18620599 PMCID: PMC2483997 DOI: 10.1186/1471-2105-9-308] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Accepted: 07/13/2008] [Indexed: 01/13/2023] Open
Abstract
Background Biomedical researchers often want to explore pathogenesis and pathways regulated by abnormally expressed genes, such as those identified by microarray analyses. Literature mining is an important way to assist in this task. Many literature mining tools are now available. However, few of them allows the user to make manual adjustments to zero in on what he/she wants to know in particular. Results We present our software program, GenCLiP (Gene Cluster with Literature Profiles), which is based on the methods presented by Chaussabel and Sher (Genome Biol 2002, 3(10):RESEARCH0055) that search gene lists to identify functional clusters of genes based on up-to-date literature profiling. Four features were added to this previously described method: the ability to 1) manually curate keywords extracted from the literature, 2) search genes and gene co-occurrence networks related to custom keywords, 3) compare analyzed gene results with negative and positive controls generated by GenCLiP, and 4) calculate probabilities that the resulting genes and gene networks are randomly related. In this paper, we show with a set of differentially expressed genes between keloids and normal control, how implementation of functions in GenCLiP successfully identified keywords related to the pathogenesis of keloids and unknown gene pathways involved in the pathogenesis of keloids. Conclusion With regard to the identification of disease-susceptibility genes, GenCLiP allows one to quickly acquire a primary pathogenesis profile and identify pathways involving abnormally expressed genes not previously associated with the disease.
Collapse
Affiliation(s)
- Zhong-Xi Huang
- Cancer Institute, Southern Medical University, Guangzhou, 510515, PR China.
| | | | | | | | | | | |
Collapse
|
20
|
Fang W, Li X, Jiang Q, Liu Z, Yang H, Wang S, Xie S, Liu Q, Liu T, Huang J, Xie W, Li Z, Zhao Y, Wang E, Marincola FM, Yao K. Transcriptional patterns, biomarkers and pathways characterizing nasopharyngeal carcinoma of Southern China. J Transl Med 2008; 6:32. [PMID: 18570662 PMCID: PMC2443113 DOI: 10.1186/1479-5876-6-32] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 06/20/2008] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The pathogenesis of nasopharyngeal carcinoma (NPC) is a complicated process involving genetic predisposition, Epstein-Bar Virus infection, and genetic alterations. Although some oncogenes and tumor suppressor genes have been previously reported in NPC, a complete understanding of the pathogenesis of NPC in the context of global gene expression, transcriptional pathways and biomarker assessment remains to be elucidated. METHODS Total RNA from 32 pathologically-confirmed cases of poorly-differentiated NPC was divided into pools inclusive of four consecutive specimens and each pool (T1 to T8) was co-hybridized with pooled RNA from 24 normal non-cancerous nasopharyngeal tissues (NP) to a human 8K cDNA array platform. The reliability of microarray data was validated for selected genes by semi-quantitative RT-PCR and immunohistochemistry. RESULTS Stringent statistical filtering parameters identified 435 genes to be up-regulated and 257 genes to be down-regulated in NPC compared to NP. Seven up-regulated genes including CYC1, MIF, LAMB3, TUBB2, UBE2C and TRAP1 had been previously proposed as candidate common cancer biomarkers based on a previous extensive comparison among various cancers and normal tissues which did not, however, include NPC or NP. In addition, nine known oncogenes and tumor suppressor genes, MIF, BIRC5, PTTG1, ATM, FOXO1A, TGFBR2, PRKAR1A, KLF5 and PDCD4 were identified through the microarray literature-based annotation search engine MILANO, suggesting these genes may be specifically involved in the promotion of the malignant conversion of nasopharyngeal epithelium. Finally, we found that these differentially expressed genes were involved in apoptosis, MAPK, VEGF and B cell receptor signaling pathways and other functions associated with cell growth, signal transduction and immune system activation. CONCLUSION This study identified potential candidate biomarkers, oncogenes/tumor suppressor genes involved in several pathways relevant to the oncogenesis of NPC. This information may facilitate the determination of diagnostic and therapeutic targets for NPC as well as provide insights about the molecular pathogenesis of NPC.
Collapse
Affiliation(s)
- Weiyi Fang
- Cancer Research Institute of Southern Medical University, Key Lab for Transcriptomics and Proteomics of Human Fatal Diseases Supported by Ministry of Education and Guangdong Province, 510515, PR China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
[Exploration of carcinogenesis based on tree models using CGH data]. YI CHUAN = HEREDITAS 2008; 30:407-12. [PMID: 18424409 DOI: 10.3724/sp.j.1005.2008.00407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Comparative genomic hybridization (CGH) can detect chromosomal deletions and amplifications of tumors, and various laboratories and public databases have accumulated a large number of CGH data, providing the opportunity to analyze the molecular mechanism of tumorigenesis in the whole genome. Tree models are generally used to study the history of biological formation and evolution in the field of bioinformatics, and evolutionary relationships between species are usually represented using phylogenetic tree. Tree models are also powerful bioinformatics tools to analyze CGH data and explore carcinogenesis. Two common tree models, the branching tree and the distanced-based tree, as well as their basic principles, methods are introduced detailedly, several technical problems in construction of tree models are discussed, and their applications in cancer research are reviewed systematically in this paper. As a generalization of single path linear model, tree models can more accurately conclude multigene, multistep, multipathway process of tumorigenesis, exploring the molecular mechanism of tumorigenesis from different angels. Apart from CGH data, tree models can be used to analyze various types of data, including high-resolution data (e.g., array-CGH data).
Collapse
|
22
|
Wakefield L, Robinson J, Long H, Ibbitt JC, Cooke S, Hurst HC, Sim E. ArylamineN-acetyltransferase 1 expression in breast cancer cell lines: A potential marker in estrogen receptor-positive tumors. Genes Chromosomes Cancer 2008; 47:118-26. [DOI: 10.1002/gcc.20512] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
23
|
Zhou L, Feng X, Shan W, Zhou W, Liu W, Wang L, Zhu B, Yi H, Yao K, Ren C. Epigenetic and genetic alterations of the EDNRB gene in nasopharyngeal carcinoma. Oncology 2008; 72:357-63. [PMID: 18187958 DOI: 10.1159/000113146] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Accepted: 08/05/2007] [Indexed: 11/19/2022]
Abstract
BACKGROUND Loss of heterozygosity (LOH) at 13q22 is a common event in nasopharyngeal carcinoma (NPC). EDNRB gene located at 13q22 has been demonstrated to be hypermethylated in some kinds of tumors. In the current study, we focused on the epigenetic and genetic alterations of EDNRB in NPC. METHODS The mRNA expression of EDNRB was detected by semiquantitative RT-PCR and real-time quantitative PCR in 49 NPC and 12 chronic nasopharyngitis biopsies. The methylation and LOH status of EDNRB were examined by methylation-specific polymerase chain reaction, microsatellite PCR and sequencing. We also examined the mRNA expression of EDNRB in four NPC cell lines after 5-aza-2'-deoxycytidine treatment. RESULTS EDNRB was downregulated in primary NPC tissues and NPC cell lines, and a relatively higher methylation level of EDNRB was found in NPC biopsies (84%) compared to that in chronic nasopharyngitis biopsies (42%). Treatment of NPC cell lines with 5-aza-2'-deoxycytidine activated EDNRB expression. LOH of EDNRB gene was also found at two microsatellite sites with ratios of 6.25 and 16.67% in NPC. CONCLUSION Our results suggested that EDNRB expression may be affected by aberrant promoter methylation and gene deletion and may play a role in the development of NPC.
Collapse
Affiliation(s)
- Liang Zhou
- Cancer Research Institute, Xiang-Ya School of Medicine, Central South University, Changsha, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Nasopharyngeal carcinoma (NPC) is a prevalent tumour in southern China and southeast Asia, particularly in the Cantonese population, where its incidence has remained high for decades. Recent studies have demonstrated that the aetiology of NPC is complex, involving multiple factors including genetic susceptibility, infection with the Epstein-Barr virus (EBV) and exposure to chemical carcinogens. During development of the disease, viral infection and multiple somatic genetic and epigenetic changes synergistically disrupt normal cell function, thus contributing to NPC pathogenesis. NPC is highly radiosensitive and chemosensitive, but treatment of patients with locoregionally advanced disease remains problematic. New biomarkers for NPC, including EBV DNA copy number or methylation of multiple tumour suppressor genes, which can be detected in serum and nasopharyngeal brushings, have been developed for the molecular diagnosis of this tumour. Meanwhile, new therapeutic strategies such as intensity-modulated radiation therapy and immuno- and epigenetic therapies might lead to more specific and effective treatments.
Collapse
Affiliation(s)
- Qian Tao
- Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, Chinese University of Hong Kong, Shatin, Hong Kong.
| | | |
Collapse
|
25
|
Jiang HY, Huang ZX, Zhang XF, Desper R, Zhao T. Construction and analysis of tree models for chromosomal classification of diffuse large B-cell lymphomas. World J Gastroenterol 2007; 13:1737-42. [PMID: 17461480 PMCID: PMC4146956 DOI: 10.3748/wjg.v13.i11.1737] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To construct tree models for classification of diffuse large B-cell lymphomas (DLBCL) by chromosome copy numbers, to compare them with cDNA microarray classification, and to explore models of multi-gene, multi-step and multi-pathway processes of DLBCL tumorigenesis.
METHODS: Maximum-weight branching and distance-based models were constructed based on the comparative genomic hybridization (CGH) data of 123 DLBCL samples using the established methods and software of Desper et al. A maximum likelihood tree model was also used to analyze the data. By comparing with the results reported in literature, values of tree models in the classification of DLBCL were elucidated.
RESULTS: Both the branching and the distance-based trees classified DLBCL into three groups. We combined the classification methods of the two models and classified DLBCL into three categories according to their characteristics. The first group was marked by +Xq, +Xp, -17p and +13q; the second group by +3q, +18q and +18p; and the third group was marked by -6q and +6p. This chromosomal classification was consistent with cDNA classification. It indicated that -6q and +3q were two main events in the tumorigenesis of lymphoma.
CONCLUSION: Tree models of lymphoma established from CGH data can be used in the classification of DLBCL. These models can suggest multi-gene, multi-step and multi-pathway processes of tumorigenesis. Two pathways, -6q preceding +6q and +3q preceding +18q, may be important in understanding tumorigenesis of DLBCL. The pathway, -6q preceding +6q, may have a close relationship with the tumorigenesis of non-GCB DLBCL.
Collapse
Affiliation(s)
- Hui-Yong Jiang
- Department of General Surgery, General Hospital of Shenyang Military Region, Shenyang, China
| | | | | | | | | |
Collapse
|
26
|
Maley CC. Multistage carcinogenesis in Barrett's esophagus. Cancer Lett 2006; 245:22-32. [PMID: 16713672 DOI: 10.1016/j.canlet.2006.03.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 03/13/2006] [Accepted: 03/14/2006] [Indexed: 01/08/2023]
Abstract
The multistage carcinogenesis of esophageal adenocarcinoma is a process of clonal evolution within Barrett's esophagus neoplasms. The initiating event for Barrett's esophagus is unknown, but is associated with chronic gastric reflux which probably also promotes progression. Inactivation of both alleles of CDKN2A appear to be early events causing clonal expansion. Clones with TP53 inactivated expand if they have already inactivated CDKN2A. After TP53 has been inactivated, tetraploid and aneuploid clones tend to develop. The final events that lead to invasion and metastasis are unknown. Evolutionary biology provides important tools to understand clonal evolution in progression and cancer prevention.
Collapse
Affiliation(s)
- Carlo C Maley
- The Wistar Institute, Cellular and Molecular Oncogenesis, 3601 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
27
|
Li X, Wang E, Zhao YD, Ren JQ, Jin P, Yao KT, Marincola FM. Chromosomal imbalances in nasopharyngeal carcinoma: a meta-analysis of comparative genomic hybridization results. J Transl Med 2006; 4:4. [PMID: 16423296 PMCID: PMC1403800 DOI: 10.1186/1479-5876-4-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Accepted: 01/19/2006] [Indexed: 12/02/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a highly prevalent disease in Southeast Asia and its prevalence is clearly affected by genetic background. Various theories have been suggested for its high incidence in this geographical region but to these days no conclusive explanation has been identified. Chromosomal imbalances identifiable through comparative genomic hybridization may shed some light on common genetic alterations that may be of relevance to the onset and progression of NPC. Review of the literature, however, reveals contradictory results among reported findings possibly related to factors associated with patient selection, stage of disease, differences in methodological details etc. To increase the power of the analysis and attempt to identify commonalities among the reported findings, we performed a meta-analysis of results described in NPC tissues based on chromosomal comparative genomic hybridization (CGH). This meta-analysis revealed consistent patters in chromosomal abnormalities that appeared to cluster in specific "hot spots" along the genome following a stage-dependent progression.
Collapse
Affiliation(s)
- Xin Li
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of pathology and Cancer research Institute, College of Basic Medicine, Southern Medical University, Guangzhou 510515, Guangdong Province, PR. China
| | - Ena Wang
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ying-dong Zhao
- Biometric Research Branch, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jia-Qiang Ren
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ping Jin
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kai-Tai Yao
- Department of pathology and Cancer research Institute, College of Basic Medicine, Southern Medical University, Guangzhou 510515, Guangdong Province, PR. China
| | - Francesco M Marincola
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
28
|
Wang N, Wu QL, Fang Y, Mai HQ, Zeng MS, Shen GP, Hou JH, Zeng YX. Expression of chemokine receptor CXCR4 in nasopharyngeal carcinoma: pattern of expression and correlation with clinical outcome. J Transl Med 2005; 3:26. [PMID: 15978137 PMCID: PMC1188078 DOI: 10.1186/1479-5876-3-26] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Accepted: 06/26/2005] [Indexed: 12/31/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a tumor derived from epithelial cells and Epstein-Barr virus infection has been reported to be a cause of this disease. Chemokine receptor CXCR4 was found to be involved in HIV infection and was highly expressed in human malignant breast tumors and the ligand for CXCR4, CXCL12 (SDF-1), exhibited high expression in organs in which breast cancer metastases are often found. The metastatic pattern of NPC is quite similar to that of malignant breast tumors. In this study, we investigated the expression of CXCR4 in nasopharyngeal carcinoma (NPC) tissues by immunohistostaining. We found different staining patterns, which included localization in the nucleus, membrane, cytoplasm or a combination of them. The staining intensity was also variable among samples. The metastatic rates in patients with high compared to low or absent expression was 38.6% versus 19.8%, respectively (P = 0.004). High expression of CXCR4 was associated with poor overall survival (OS = 67.05% versus 82.08%, P = 0.0225). These results suggest that CXCR4 may be involved in the progression of NPC and that a high level of CXCR4 expression could be used as a prognostic factor.
Collapse
Affiliation(s)
- Na Wang
- State Key Laboratory of Oncology in Southern China
- Department of Experimental Research, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Qiu-Liang Wu
- State Key Laboratory of Oncology in Southern China
- Department of Pathology, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yan Fang
- State Key Laboratory of Oncology in Southern China
- Department of Experimental Research, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Hai-Qiang Mai
- State Key Laboratory of Oncology in Southern China
- Department of Nasopharyngeal Carcinoma, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in Southern China
- Department of Experimental Research, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Guo-Ping Shen
- State Key Laboratory of Oncology in Southern China
- Department of Experimental Research, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jing-Hui Hou
- State Key Laboratory of Oncology in Southern China
- Department of Pathology, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yi-Xin Zeng
- State Key Laboratory of Oncology in Southern China
- Department of Experimental Research, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| |
Collapse
|
29
|
Yan W, Song L, Wei W, Li A, Liu J, Fang Y. Chromosomal Abnormalities Associated with Neck Nodal Metastasis in Nasopharyngeal Carcinoma. Tumour Biol 2005; 26:306-12. [PMID: 16254460 DOI: 10.1159/000089289] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Accepted: 05/25/2005] [Indexed: 02/03/2023] Open
Abstract
Neck lymphatic metastasis represents the single most important clinical prognostic factor in nasopharyngeal carcinoma (NPC), but underlying genetic mechanisms remain ill defined. In this study 23 samples of primary tumor (PT) and 9 of neck lymph node metastasis (NLNM) obtained from NPC patients were analyzed by comparative genomic hybridization (CGH) coupled with tissue microdissection and degenerate oligonucleotide primer-polymerase chain reaction (DOP-PCR). A similar pattern of chromosomal abnormalities was seen in PT and NLNM, the common aberrations were gains on 5p, 12p, 12q and 18p and deletions on 1p, 3p, 9q, 14q, 17p and 16q. However, NLNMs, but not PTs, also exhibited frequent losses on 9p, 16p, 17q, 20q, 21p, 21q and 22q and gains on 8q and 8p. The most frequent unique aberration in NLNMs was loss on 16p, observed in 100% (9/9) NLNMs tested, as well as loss of 20q, observed in 77.8% of tumors tested. For the first time, we report that a gain on 8p and a loss at 20q is common to NLNMs. The analysis furthermore suggests that specific alterations, e.g. losses of 9p, 16p, 7q, 20q, 21p, 21q, 22q and gains on 8q and 8p are associated with NLNM of NPC, and that these alterations may be involved in the onset and/or progression of a metastatic phenotype.
Collapse
Affiliation(s)
- Wensheng Yan
- Cancer Institute, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|