1
|
Fares M, Alsherbiny M, Elkelesh IA, Said MA, Maklad RM, Lewis W, Li CG, Eldehna WM, Groundwater PW, Gale PA, Keller PA. Investigating the multi-mechanistic anticancer effects of 4-bisarylurea thiouracil derivatives in breast cancer cells. Bioorg Chem 2025; 162:108581. [PMID: 40412224 DOI: 10.1016/j.bioorg.2025.108581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/21/2025] [Accepted: 05/10/2025] [Indexed: 05/27/2025]
Abstract
The study reports the synthesis of a series of 4-bisarylureathiouracil derivatives (6a-e) for potential use in breast cancer treatment. In vitro cytotoxicity was assessed in MCF-7 and MDA-MB-231 human breast cancer cell lines, revealing significant anti-cancer activity. Compound 6e exhibited the highest cytotoxicity, with IC50 values of 7.94 μM for MCF-7 and 6.67 μM for MDA-MB-231, although it was also the most toxic to RAW 264.7 macrophage cells. In contrast, compound 6c demonstrated strong efficacy against both cancer cell lines (IC50 = 9.23 ± 0.6 μM for MCF-7 and 7.72 ± 0.6 μM for MDA-MB-231) while maintaining selectivity (SI values >10.8 and > 12.9, respectively). Flow cytometry and caspase-3 assays indicated that compounds 6a-c induced apoptosis in MCF-7 cells. In anti-inflammatory assays, compounds 6a and 6d showed significant effects, while 6c demonstrated the weakest, suggesting its cytotoxicity is not linked to anti-inflammatory properties. Compound 6c was prioritised for further investigation because of its preferential targeting of cancer cells. Proteomic analysis of 6c-treated cells revealed significant dysregulation of apoptosis, angiogenesis and VEGF signalling, Rho signal transduction, and pi3k-akt signalling pathways. These findings highlighted the potential of compounds 6a-e as effective anticancer agents, warranting further investigation and optimization for therapeutic applications.
Collapse
Affiliation(s)
- Mohamed Fares
- Sydney Pharmacy School, The University of Sydney, NSW 2006, Australia; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr city 11829, Egypt.
| | - Muhammad Alsherbiny
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; Metabolomics Facility, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Islam A Elkelesh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr city 11829, Egypt
| | - Mohamed A Said
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr city 11829, Egypt
| | - Raed M Maklad
- School of Chemistry, The University of Sydney, NSW 2006, Australia; School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - William Lewis
- School of Chemistry, The University of Sydney, NSW 2006, Australia; Sydney Analytical, The University of Sydney, NSW 2006, Australia
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Westmead 2145, NSW, Australia
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria 21648, Egypt
| | | | - Philip A Gale
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Paul A Keller
- School of Science, Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
2
|
Mohapatra P, Madhulika S, Behera S, Singh P, Sa P, Prasad P, Swain RK, Sahoo SK. Nimbolide-based nanomedicine inhibits breast cancer stem-like cells by epigenetic reprogramming of DNMTs-SFRP1-Wnt/β-catenin signaling axis. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102031. [PMID: 37771911 PMCID: PMC10523002 DOI: 10.1016/j.omtn.2023.102031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 09/06/2023] [Indexed: 09/30/2023]
Abstract
Triple-negative breast cancer (TNBC) harbors a high percentage of breast cancer stem-like cells (BCSCs) that significantly contribute to poor prognosis, metastasis, and relapse of the disease. Thus, targeting BCSCs could be a promising approach to combat TNBC. In this context, we investigated nimbolide (Nim), a limonoid triterpenoid that has potent anticancer properties, but poor pharmacokinetics and low bioavailability limit its therapeutic application. So, to enhance the therapeutic potential of Nim, Nim-encapsulated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (Nim NPs) were formulated and the anticancer stem cell (CSC) effects evaluated in vitro and in vivo. In vitro studies suggested that Nim NPs significantly inhibited several inherent characteristics of BCSCs, such as stemness, self-renewability, chemoresistance, epithelial-to-mesenchymal transition (EMT), and migration in comparison to native Nim. Next, the mechanism behind the anti-CSC effect of Nim was explored. Mechanistically, we found that Nim epigenetically restores tumor suppressor gene secreted frizzled-related protein 1 (SFRP1) expression by downregulating DNA methyltransferases (DNMTs), leading to Wnt/β-catenin signaling inhibition. Further, in vivo results demonstrated that Nim NPs showed enhanced anti-tumor and anti-metastatic effects compared to native Nim in two preclinical models without any systemic toxicity. Overall, these findings provide proof of concept that Nim-based phytonanomedicine can inhibit BCSCs by epigenetic reprogramming of the DNMTs-SFRP1-Wnt/β-catenin signaling axis.
Collapse
Affiliation(s)
- Priyanka Mohapatra
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Swati Madhulika
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Somalisa Behera
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
| | - Priya Singh
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Pratikshya Sa
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Punit Prasad
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
| | - Rajeeb Kumar Swain
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
| | | |
Collapse
|
3
|
Klingler S, Hsu KS, Hua G, Martin ML, Adileh M, Baslan T, Zhang Z, Paty PB, Fuks Z, Brown AM, Kolesnick R. Disruption of the crypt niche promotes outgrowth of mutated colorectal tumor stem cells. JCI Insight 2022; 7:153793. [PMID: 35260534 PMCID: PMC8983138 DOI: 10.1172/jci.insight.153793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/26/2022] [Indexed: 12/14/2022] Open
Abstract
Recent data establish a logarithmic expansion of leucine rich repeat containing G protein coupled receptor 5–positive (Lgr5+) colonic epithelial stem cells (CESCs) in human colorectal cancer (CRC). Complementary studies using the murine 2-stage azoxymethane–dextran sulfate sodium (AOM-DSS) colitis-associated tumor model indicate early acquisition of Wnt pathway mutations drives CESC expansion during adenoma progression. Here, subdivision of the AOM-DSS model into in vivo and in vitro stages revealed DSS induced physical separation of CESCs from stem cell niche cells and basal lamina, a source of Wnt signals, within hours, disabling the stem cell program. While AOM delivery in vivo under non-adenoma-forming conditions yielded phenotypically normal mucosa and organoids derived thereof, niche injury ex vivo by progressive DSS dose escalation facilitated outgrowth of Wnt-independent dysplastic organoids. These organoids contained 10-fold increased Lgr5+ CESCs with gain-of-function Wnt mutations orthologous to human CRC driver mutations. We posit CRC originates by niche injury–induced outgrowth of normally suppressed mutated stem cells, consistent with models of adaptive oncogenesis.
Collapse
Affiliation(s)
- Stefan Klingler
- Laboratory of Signal Transduction, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Kuo-Shun Hsu
- Laboratory of Signal Transduction, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Guoqiang Hua
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Maria Laura Martin
- Laboratory of Signal Transduction, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Mohammad Adileh
- Laboratory of Signal Transduction, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | | | | | - Zvi Fuks
- Department of Radiation Oncology, and
| | - Anthony Mc Brown
- Department of Cell & Developmental Biology, Weill Cornell Medicine, New York, New York, USA
| | - Richard Kolesnick
- Laboratory of Signal Transduction, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
4
|
Bridging the Species Gap: Morphological and Molecular Comparison of Feline and Human Intestinal Carcinomas. Cancers (Basel) 2021; 13:cancers13235941. [PMID: 34885050 PMCID: PMC8656578 DOI: 10.3390/cancers13235941] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 01/09/2023] Open
Abstract
Simple Summary Colorectal cancer (CRC) is the second leading cause of cancer deaths in humans (2020) but modeling late-stage human CRC, including high tumor budding and metastatic activity, experimentally in mouse models is a major challenge. In the present study, histopathological, immunohistochemical and molecular features of spontaneous intestinal carcinomas in cats were evaluated with a special focus on their potential applicability as a valuable model for human CRC. Feline intestinal tumors display aggressive growth patterns and adequately model invasive late-stage human CRC. They exhibit the same histological subtypes and display strikingly high tumor budding activity, both of which are highly significant prognostic factors in human CRC. Moreover, human and feline colorectal tumors harbor the same mutations of the CTNNB1 gene, encoding β-catenin. Our data indicate that feline intestinal carcinomas constitute a valuable and promising in vivo model for human CRC. Further comparative oncological research, and especially investigation of the molecular landscape of feline intestinal neoplasms, is imperative. Abstract Limited availability of in vivo experimental models for invasive colorectal cancer (CRC) including metastasis and high tumor budding activity is a major problem in colorectal cancer research. In order to compare feline and human intestinal carcinomas, tumors of 49 cats were histologically subtyped, graded and further characterized according to the human WHO classification. Subsequently, feline tumors were compared to a cohort of 1004 human CRC cases. Feline intestinal tumors closely resembled the human phenotype on a histomorphological level. In both species, adenocarcinoma not otherwise specified (ANOS) was the most common WHO subtype. In cats, the second most common subtype of the colon (36.4%), serrated adenocarcinoma (SAC), was overrepresented compared to human CRC (8.7%). Mucinous adenocarcinoma (MAC) was the second most common subtype of the small intestine (12.5%). Intriguingly, feline carcinomas, particularly small intestinal, were generally of high tumor budding (Bd) status (Bd3), which is designated an independent prognostic key factor in human CRC. We also investigated the relevance of feline CTNNB1 exon 2 alterations by Sanger sequencing. In four cases of feline colonic malignancies (3 ANOS, 1 SAC), somatic missense mutations of feline CTNNB1 (p.D32G, p.D32N, p.G34R, and p.S37F) were detected, indicating that mutational alterations of the WNT/β-catenin signaling pathway potentially play an essential role in feline intestinal tumorigenesis comparable to humans and dogs. These results indicate that spontaneous intestinal tumors of cats constitute a useful but so far underutilized model for human CRC. Our study provides a solid foundation for advanced comparative oncology studies and emphasizes the need for further (molecular) characterization of feline intestinal carcinomas.
Collapse
|
5
|
Roy S, Pradhan D, Ernst WL, Mercurio S, Najjar Y, Parikh R, Parwani AV, Pai RK, Dhir R, Nikiforova MN. Next-generation sequencing-based molecular characterization of primary urinary bladder adenocarcinoma. Mod Pathol 2017; 30:1133-1143. [PMID: 28548125 DOI: 10.1038/modpathol.2017.33] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 03/13/2017] [Accepted: 03/13/2017] [Indexed: 12/24/2022]
Abstract
Primary bladder adenocarcinoma is a rare and aggressive tumor with poor clinical outcomes and no standard of care therapy. Molecular biology of this tumor is unknown due to the lack of comprehensive molecular profiling studies. The study aimed to identify genomic alterations of clinical and therapeutic significance using next-generation sequencing and compare genomic profile of primary bladder adenocarcinoma with that of high-grade urothelial carcinoma and colorectal adenocarcinoma. A cohort of 15 well-characterized primary bladder adenocarcinoma was subjected to targeted next-generation sequencing for the identification of mutations and copy-number changes in 51 cancer-related genes. Genomic profiles of 25 HGUCs and 25 colorectal adenocarcinomas using next-generation sequencing of 50 genes were compared with primary bladder adenocarcinoma. Genomic profiles were visualized using JavaScript library D3.js. A striking finding was the distinct lack of genomic alterations across the 51 genes assessed in mucinous subtype of primary bladder adenocarcinoma. Eleven of 15 primary bladder adenocarcinoma harbored at least one genomic alteration in TP53, KRAS, PIK3CA, CTNNB1, APC, TERT, FBXW7, IDH2 and RB1, many of which are novel findings and of potential therapeutic significance. CTNNB1 and APC mutations were restricted to enteric subtype only. While genomic alterations of primary bladder adenocarcinoma showed substantial overlap with colorectal adenocarcinoma, FGFR3 and HRAS mutations and APC, CTNNB1 and IDH2 alterations were mutually exclusive between primary bladder adenocarcinoma and high-grade urothelial carcinoma. These alterations affecting the MAP kinase, PI3K/Akt, Wnt, IDH (metabolic) and Tp53/Rb1 signaling pathways may provide the opportunity for defining targeted therapeutic approaches.
Collapse
Affiliation(s)
- Somak Roy
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Dinesh Pradhan
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Wayne L Ernst
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Stephanie Mercurio
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Yana Najjar
- Department of Medical Oncology and Hematology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Rahul Parikh
- Department of Medical Oncology and Hematology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Anil V Parwani
- Department of Pathology, Ohio State University, Columbus, OH, USA
| | - Reetesh K Pai
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Rajiv Dhir
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Marina N Nikiforova
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Guo J, Jing R, Lv X, Wang X, Li J, Li L, Li C, Wang D, Bi B, Chen X, Yang JH. H2A/K pseudogene mutation may promote cell proliferation. Mutat Res 2016; 787:32-42. [PMID: 26953487 DOI: 10.1016/j.mrfmmm.2016.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 01/01/2016] [Accepted: 02/28/2016] [Indexed: 11/16/2022]
Abstract
Little attention has been paid to the histone H2A/K pseudogene. Results from our laboratory showed that 7 of 10 kidney cancer patients carried a mutant H2A/K pseudogene; therefore, we were interested in determining the relationship between mutant H2A/K and cell proliferation. We used shotgun and label-free proteomics methods to study whether mutant H2A/K lncRNAs affected cell proliferation. Quantitative proteomic analysis indicated that the expression of mutant H2A/K lncRNAs resulted in the upregulation of many oncogenes, which promoted cell proliferation. Further interaction analyses revealed that a proliferating cell nuclear antigen (PCNA)-protein interaction network, with PCNA in the center, contributes to cell proliferation in cells expressing the mutant H2A/K lncRNAs. Western blotting confirmed the critical upregulation of PCNA by mutant H2A/K lncRNA expression. Finally, the promotion of cell proliferation by mutant H2A/K lncRNAs (C290T, C228A and A45G) was confirmed using cell proliferation assays. Although we did not determine the exact mechanism by which the oncogenes were upregulated by the mutant H2A/K lncRNAs, we confirmed that the mutant H2A/K lncRNAs promoted cell proliferation by upregulating PCNA and other oncogenes. The hypothesis that cell proliferation is promoted by the mutant H2A/K lncRNAs was supported by the protein expression and cell proliferation assay results. Therefore, mutant H2A/K lncRNAs may be a new factor in renal carcinogenesis.
Collapse
Affiliation(s)
- Jisheng Guo
- Cancer Research Center, Shandong University School of Medicine, Jinan 250012, China
| | - Ruirui Jing
- Cancer Research Center, Shandong University School of Medicine, Jinan 250012, China
| | - Xin Lv
- Cancer Research Center, Shandong University School of Medicine, Jinan 250012, China
| | - Xiaoyue Wang
- Cancer Research Center, Shandong University School of Medicine, Jinan 250012, China
| | - Junqiang Li
- Cancer Research Center, Shandong University School of Medicine, Jinan 250012, China
| | - Lin Li
- Cancer Research Center, Shandong University School of Medicine, Jinan 250012, China
| | - Cuiling Li
- Cancer Research Center, Shandong University School of Medicine, Jinan 250012, China
| | - Daoguang Wang
- Cancer Research Center, Shandong University School of Medicine, Jinan 250012, China
| | - Baibing Bi
- Cancer Research Center, Shandong University School of Medicine, Jinan 250012, China
| | - Xinjun Chen
- Cancer Research Center, Shandong University School of Medicine, Jinan 250012, China
| | - Jing-Hua Yang
- Cancer Research Center, Shandong University School of Medicine, Jinan 250012, China; Department of Surgery, VA Boston Healthcare System, Boston University School of Medicine, Boston 510660, MA, USA.
| |
Collapse
|
7
|
Wemmert S, Willnecker V, Kulas P, Weber S, Lerner C, Berndt S, Wendler O, Schick B. Identification of CTNNB1 mutations, CTNNB1 amplifications, and an Axin2 splice variant in juvenile angiofibromas. Tumour Biol 2015; 37:5539-49. [PMID: 26572152 DOI: 10.1007/s13277-015-4422-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/10/2015] [Indexed: 11/25/2022] Open
Abstract
Juvenile angiofibromas (JAs) are benign fibro-vascular tumors occurring nearly exclusively in adolescent males. Even less is known about this rare tumor entity, alterations affecting the Wnt-pathway seem to play a pivotal role in tumor biology as activating CTNNB1 mutations have been detected. However, the knowledge of Wnt-pathway changes is still limited. Therefore, we aimed to determine in JAs further insight into Wnt/β-catenin pathway components. In our present study, genetic alterations of the Wnt-pathway members CTNNB1, APC, GSK3β, and Axin2 detected by metaphase comparative genomic hybridization (CGH) were shown to result in elevated transcript levels in the majority of JA samples compared to nasal mucosa stroma (p < 0.001, p = 0.001, p = 0.046, and p = 0.006, respectively). Additionally, amplifications of CTNNB1 were validated by fluorescence in situ hybridization (FISH) and genomic qPCR. Moreover, our mutation analysis detected already known mutations as well as, to the best of our knowledge, mutations and an interstitial deletion of CTNNB1 not described in JAs before. Additionally, a so far unknown transcribed Axin2 splice variant was found, but no further Axin2 mutations. Taken together, our current study supports the importance of aberrant Wnt-signaling as a common event in JAs, most likely by the observed genetic alterations driven by mutations, interstitial deletions but also amplifications of CTNNB1 contributing to the stabilization of β-catenin.
Collapse
Affiliation(s)
- Silke Wemmert
- Department of Otolaryngology, Saarland University Medical Center, 66421, Homburg/Saar, Germany.
| | - Vivienne Willnecker
- Department of Otolaryngology, Saarland University Medical Center, 66421, Homburg/Saar, Germany
| | - Philipp Kulas
- Department of Otolaryngology, Saarland University Medical Center, 66421, Homburg/Saar, Germany
| | - Stefanie Weber
- Department of Otolaryngology, Saarland University Medical Center, 66421, Homburg/Saar, Germany
| | - Cornelia Lerner
- Department of Otolaryngology, Saarland University Medical Center, 66421, Homburg/Saar, Germany
| | - Sabrina Berndt
- Department of Otolaryngology, Saarland University Medical Center, 66421, Homburg/Saar, Germany
| | - Olaf Wendler
- Experimental Otorhinolaryngology, ENT-Hospital, Head and Neck Surgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, 91054, Germany
| | - Bernhard Schick
- Department of Otolaryngology, Saarland University Medical Center, 66421, Homburg/Saar, Germany
| |
Collapse
|
8
|
Bae SM, Lim W, Jeong W, Lee JY, Kim J, Han JY, Bazer FW, Song G. Hormonal regulation of beta-catenin during development of the avian oviduct and its expression in epithelial cell-derived ovarian carcinogenesis. Mol Cell Endocrinol 2014; 382:46-54. [PMID: 24055276 DOI: 10.1016/j.mce.2013.09.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 09/04/2013] [Accepted: 09/06/2013] [Indexed: 01/19/2023]
Abstract
Beta-catenin (CTNNB1) is a dual function molecule that acts as a key component of the cadherin complex and WNT signaling pathway. It has a crucial role in embryogenesis, tumorigenesis, angiogenesis and progression of metastasis. Recently, it has been suggested that the CTNNB1 complex is a major regulator of development of the mouse oviduct and uterus. However, little is known about the CTNNB1 gene in chickens. Therefore, in this study, we focused on the CTNNB1 gene in the chicken reproductive tract and hormonal control of its expression in the chicken oviduct. CTNNB1 was localized specifically to the luminal and glandular epithelium of the four segments of chicken oviduct and DES (diethylstilbestrol, a synthetic non-steroidal estrogen) increased its expression primarily in LE of the magnum. In addition, CTNNB1 mRNA and protein were expressed abundantly in glandular epithelium of endometrioid-type ovarian carcinoma, but not in normal ovaries. Moreover, CTNNB1 expression was post-transcriptionally regulated via its 3'-UTR by binding with target miRNAs including miR-217, miR-1467, miR-1623 and miR-1697. Collectively, these results indicate that CTNNB1 is a novel gene regulated by estrogen in epithelial cells of the chicken oviduct and that it is also abundantly expressed in epithelial cells of endometrioid-type ovarian carcinoma suggesting that it could be used as a marker for diagnosis of ovarian cancer in laying hens and women.
Collapse
Affiliation(s)
- Seung-Min Bae
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Whasun Lim
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Wooyoung Jeong
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Jin-Young Lee
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Jinyoung Kim
- Department of Animal Resources Science, Dankook University, Cheonan 330-714, Republic of Korea
| | - Jae Yong Han
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Fuller W Bazer
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea; Center for Animal Biotechnology and Genomics and Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | - Gwonhwa Song
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea; Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea.
| |
Collapse
|
9
|
Yoshida GJ, Saya H. Inversed relationship between CD44 variant and c-Myc due to oxidative stress-induced canonical Wnt activation. Biochem Biophys Res Commun 2014; 443:622-7. [DOI: 10.1016/j.bbrc.2013.12.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 12/03/2013] [Indexed: 01/10/2023]
|
10
|
Obeid S, Hebbard L. Role of adiponectin and its receptors in cancer. Cancer Biol Med 2013; 9:213-20. [PMID: 23691481 PMCID: PMC3643674 DOI: 10.7497/j.issn.2095-3941.2012.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 11/12/2012] [Indexed: 12/31/2022] Open
Abstract
Adiponectin (APN), a novel hormone/cytokine derived from adipocyte tissue, is involved in various physiological functions. Genetics, nutrition, and adiposity are factors contributing to circulating plasma concentrations of APN. Clinical correlation studies have shown that lower levels of serum APN are associated with increased malignancy of various cancers, such as breast and colon cancers, suggesting that APN has a role in tumorigenesis. APN affects insulin resistance, thus further influencing cancer development. Tumor cells may express receptors for APN. Cellular signaling is the mechanism by which APN exerts its host-protective responses. These factors suggest that serum APN levels and downstream signaling targets of APN may serve as potential diagnostic markers for malignancies. Further research is necessary to clarify the exact role of APN in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Stephanie Obeid
- Storr Liver Unit, Westmead Millennium Institute, PO Box 412, Darcy Road, Westmead, NSW 2145, Australia
| | | |
Collapse
|
11
|
Zeller E, Hammer K, Kirschnick M, Braeuning A. Mechanisms of RAS/β-catenin interactions. Arch Toxicol 2013; 87:611-32. [PMID: 23483189 DOI: 10.1007/s00204-013-1035-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 02/28/2013] [Indexed: 12/20/2022]
Abstract
Signaling through the WNT/β-catenin and the RAS (rat sarcoma)/MAPK (mitogen-activated protein kinase) pathways plays a key role in the regulation of various physiological cellular processes including proliferation, differentiation, and cell death. Aberrant mutational activation of these signaling pathways is closely linked to the development of cancer in many organs, in humans as well as in laboratory animals. Over the past years, more and more evidence for a close linkage of the two oncogenic signaling cascades has accumulated. Using different experimental approaches, model systems, and experimental conditions, a variety of molecular mechanisms have been identified by which signal transduction through WNT/β-catenin and RAS interact, either in a synergistic or an antagonistic manner. Mechanisms of interaction comprise an upstream crosstalk at the level of pathway-activating ligands and their receptors, interrelations of cytosolic kinases involved in either pathways, as well as interaction in the nucleus related to the joint regulation of target gene transcription. Here, we present a comprehensive review of the current knowledge on the interaction of RAS/MAPK- and WNT/β-catenin-driven signal transduction in mammalian cells.
Collapse
Affiliation(s)
- Eva Zeller
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Tübingen, Germany
| | | | | | | |
Collapse
|
12
|
Kim JG, Takeshima H, Niwa T, Rehnberg E, Shigematsu Y, Yoda Y, Yamashita S, Kushima R, Maekita T, Ichinose M, Katai H, Park WS, Hong YS, Park CH, Ushijima T. Comprehensive DNA methylation and extensive mutation analyses reveal an association between the CpG island methylator phenotype and oncogenic mutations in gastric cancers. Cancer Lett 2013; 330:33-40. [PMID: 23196062 DOI: 10.1016/j.canlet.2012.11.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/12/2012] [Accepted: 11/12/2012] [Indexed: 12/12/2022]
Abstract
Recent development of personal sequencers for extensive mutation analysis and bead array technology for comprehensive DNA methylation analysis have made it possible to obtain integrated pictures of genetic and epigenetic alterations on the same set of cancer samples. Here, we aimed to establish such pictures of gastric cancers (GCs). Comprehensive methylation analysis of 30 GCs revealed that the number of aberrantly methylated genes was highly variable among individual GCs. Extensive mutation analysis of 55 known cancer-related genes revealed that 19 of the 30 GCs had 24 somatic mutations of eight different genes (CDH1, CTNNB1, ERBB2, KRAS, MLH1, PIK3CA, SMARCB1, and TP53). Integration of information on the genetic and epigenetic alterations revealed that the GCs with the CpG island methylator phenotype (CIMP) tended to have mutations of oncogenes, CTNNB1, ERBB2, KRAS, and PIK3CA. This is one of the first studies in which both genetic and epigenetic alterations were extensively analyzed in the same set of samples. It was also demonstrated for the first time in GCs that the CIMP was associated with oncogene mutations.
Collapse
Affiliation(s)
- Jeong Goo Kim
- Division of Epigenomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Seo KW, Roh KH, Bhandari DR, Park SB, Lee SK, Kang KS. ZNF281 knockdown induced osteogenic differentiation of human multipotent stem cells in vivo and in vitro. Cell Transplant 2012; 22:29-40. [PMID: 22963690 DOI: 10.3727/096368912x654948] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
ZNF281 is one of the core transcription factors in embryonic stem cells (ESCs) and has activation and repression roles in the transcription of ESC genes. A known target molecule of Zfp281 (the mouse homologue of ZNF281) is Nanog. However, NANOG is not expressed in most human multipotent stem cells (hMSCs). Here, we investigated the roles of ZNF281 with a gain- and loss-of-function study. The knockdown of ZNF281 in vivo and in vitro resulted in spontaneous osteochondrogenic differentiation and reduced the proliferation of hMSCs, as determined by cell morphology and molecular markers. When ZNF281-knockdown hMSCs were subcutaneously implanted into mice along with β-tricalcium phosphate (β-TCP), many cells were converted into osteoblasts within 4 weeks. In contrast, the overexpression of ZNF281 in hMSCs resulted in accelerated proliferation. The expression pattern of ZNF281 correlated well with the expression of β-CATENIN during differentiation and in the gain/loss-of-function study in hMSCs. The binding of ZNF281 to the promoter region of β-CATENIN was observed using a chromatin immunoprecipitation (ChIP) assay. In conclusion, we propose that ZNF281 plays an important role in the maintenance and osteogenic differentiation of stem cells via the transcriptional regulation of genes including β-CATENIN.
Collapse
Affiliation(s)
- Kwang-Won Seo
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
14
|
Zhang D, Wang Z, Luo Y, Xu Y, Liu Y, Yang W, Zhang X. Analysis of DNA copy number aberrations by multiple ligation-dependent probe amplification on 50 intestinal type gastric cancers. J Surg Oncol 2010; 103:124-32. [PMID: 21259245 DOI: 10.1002/jso.21792] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Accepted: 09/26/2010] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND OBJECTIVES The molecular genetic alterations leading to gastric malignancy are largely unknown. This study aimed to unravel the genomic DNA copy number aberrations (CNAs) profile during gastric tumorigenesis. METHODS In this study, we performed genomic profiling in a set of 50 intestinal type gastric carcinomas by a PCR-based relative quantification method, multiple ligation-dependent probe amplification (MLPA) with 112 cancer-related gene loci selected throughout each human chromosome as probes of MLPA assay. RESULTS Numerous chromosomal DNA CNAs, including gains of 3p22, 4q25, 8q24, 11p13, and 20q13, and losses of 1p36 and 9p21, were identified by MLPA assay as recurrent DNA CNAs in gastric cancer. Moreover, we found the median numbers of gains, losses, and total CNAs were significantly higher in lymph node metastasis positive patients than in cases without metastasis. And gain of 11p13 and losses of 9p21.3, 11q13.3, 17q25.3, and 22q11.23 were associated with lymph node metastasis (P < 0.05). Finally, two major groups, including G1 + 2 with a large number of CNAs and G3 + 4 with a small number of CNAs, can be successfully distinguished by hierarchical cluster analysis. CONCLUSIONS Our results proved MLPA is a reliable and efficient method to evaluate DNA copy number changes in gastric cancers.
Collapse
Affiliation(s)
- Dai Zhang
- McKusick-Zhang Center for Genetic Medicine and State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Asciutti S, Akiri G, Grumolato L, Vijayakumar S, Aaronson SA. Diverse mechanisms of Wnt activation and effects of pathway inhibition on proliferation of human gastric carcinoma cells. Oncogene 2010; 30:956-66. [PMID: 21042278 PMCID: PMC3965355 DOI: 10.1038/onc.2010.475] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human gastric carcinomas are among the most treatment refractory epithelial malignancies. Increased understanding of the underlying molecular aberrations in such tumors could provide insights leading to improved therapeutic approaches. In this study, we characterized diverse genetic aberrations leading to constitutive Wnt signaling activation in a series of human gastric carcinoma cell lines. Downregulation of TCF signaling by stable transduction of dominant negative TCF-4 (DNTCF4) resulted in inhibition of proliferation in Wnt activated AGS tumor cells. c-Myc downregulation and the associated upregulation of its repression target, p21 observed in these tumor cells, as well as the profound growth inhibition induced by c-Myc shRNA implied their c-Myc addiction. In striking contrast, Wnt activated MKN-28 and MKN-74 tumor cells appeared refractory to DNTCF4 inhibition of proliferation despite comparably decreased c-Myc expression levels. The resistance of these same tumor cells to growth inhibition by c-Myc shRNA established that their refractoriness to DNTCF was due to their independence from c-Myc for proliferation. There was no correlation between this resistance phenotype and the presence or absence of constitutive MAPK and/or AKT pathway activation, commonly observed in gastrointestinal tumors. However, in both DNTCF sensitive and resistant tumor cells with MAPK and/or AKT pathway activation, the ability of small molecule antagonists directed against either pathway to inhibit tumor cell growth was enhanced by Wnt pathway inhibition. These findings support the concept that while certain Wnt activated tumors may escape c-Myc dependence for proliferation, disruption of other oncogenic pathways can unmask cooperative antiproliferative effects for Wnt pathway downregulation.
Collapse
Affiliation(s)
- S Asciutti
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | | | |
Collapse
|
16
|
Oguma K, Oshima H, Oshima M. Inflammation, tumor necrosis factor and Wnt promotion in gastric cancer development. Future Oncol 2010; 6:515-26. [PMID: 20373866 DOI: 10.2217/fon.10.13] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Infection-associated chronic inflammation plays an important role in tumorigenesis, and macrophages are a key player in both inflammation and tumorigenesis. Tumor-associated macrophages accelerate tumorigenesis through the enhancement of angiogenesis, remodeling and the suppression of antitumor immunity. Helicobacter pylori infection induces inflammatory responses, which are closely associated with gastric cancer development. Recent studies using mouse models indicate that activated macrophages in the infected and inflamed gastric mucosa express TNF-alpha, which stimulates the surrounding epithelial cells to promote Wnt signaling activity. Such a promotion of Wnt signaling activity beyond the threshold for tumorigenesis may, therefore contribute to gastric cancer development. Accordingly, it is possible that the TNF-alpha-induced promotion of Wnt signaling is a novel protumorigenic mechanism of inflammation in gastric carcinogenesis.
Collapse
Affiliation(s)
- Keisuke Oguma
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192 Japan.
| | | | | |
Collapse
|
17
|
DCB-3503, a tylophorine analog, inhibits protein synthesis through a novel mechanism. PLoS One 2010; 5:e11607. [PMID: 20657652 PMCID: PMC2904705 DOI: 10.1371/journal.pone.0011607] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Accepted: 06/22/2010] [Indexed: 12/11/2022] Open
Abstract
Background DCB-3503, a tylophorine analog, inhibits the growth of PANC-1 (human pancreatic ductal cancer cell line) and HepG2 (human hepatocellular cancer cell line) tumor xenografts in nude mice. The inhibition of growth leads to cancer cell differentiation instead of cell death. However, the mechanisms of action of tylophorine analogs is unknown. Methodology/Principal Findings In this study, we show that DCB-3503 suppresses the expression of pro-oncogenic or pro-survival proteins with short half-lives, including cyclin D1, survivin, β-catenin, p53, and p21, without decreasing their mRNA levels. Proteasome inhibitor reversed the inhibitory effect of DCB-3503 on expression of these proteins. DCB-3503 inhibited the incorporation of radiolabeled amino acid and thymidine, and to a much lesser degree of uridine, in a panel of cell lines. The mechanism of inhibition of protein synthesis is different from that of cycloheximide (CHX) as assayed in cell culture and HeLa in vitro translation system. Furthermore, in contrast to rapamycin, DCB-3503 does not affect protein synthesis through the mTOR pathway. DCB-3503 treatment shifts the sedimentation profiles of ribosomes and mRNAs towards the polysomal fractions while diminishing monosome abundance, indicative of the inhibition of the elongation step of protein synthesis. Preferential down regulation of several studied proteins under these conditions is likely due to the relative short half-lives of these proteins. Conclusion/Significance The inhibitory effect of DCB-3503 on translation is apparently distinct from any of the current anticancer compounds targeting protein synthesis. Translation inhibitors with novel mechanism could complement current chemotherapeutic agents for the treatment of human cancers and suppress the occurrence of drug resistance.
Collapse
|
18
|
Park SY, Kook MC, Kim YW, Cho NY, Kim TY, Kang GH. Mixed-type gastric cancer and its association with high-frequency CpG island hypermethylation. Virchows Arch 2010; 456:625-33. [PMID: 20422213 DOI: 10.1007/s00428-010-0916-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 03/26/2010] [Accepted: 03/29/2010] [Indexed: 12/21/2022]
Abstract
Gastric carcinoma (GC) is one of the human cancers in which promoter CpG island hypermethylation is frequently found. We used the MethyLight assay to evaluate the methylation status of 16 CpG island loci that are hypermethylated in GC. We analyzed the relationship between CpG island hypermethylation of these 16 genes and the clinicopathological features in 191 advanced GCs. A significant difference was observed between the number of methylated genes in Epstein-Barr virus (EBV)-negative and microsatellite instability (MSI)-negative GCs of different histological types (Lauren classification; P < 0.01). We found that mixed-type (MT) carcinomas, which have both diffuse-type (DT) and intestinal-type (IT) components, had more methylated genes (10.6) than either DT carcinomas (7.6 methylated genes) or IT carcinomas (6.7 methylated genes) (P < 0.001). This trend was also observed when EBV-positive or MSI-positive GCs were excluded from the analysis (9.2, 6.9, and 4.8; P < 0.001). When the IT and DT components were dissected from MT carcinomas and the methylation of these 16 genes was evaluated, both components had a number of methylated genes similar to MT carcinomas, (10.2 and 9.7, respectively), which was significantly higher than was found in IT and DT carcinomas (P < 0.05). These findings indicate that MT carcinoma is distinct from IT and DT carcinomas in its enhanced CpG island hypermethylation status and implicate the enhanced promoter CpG island hypermethylation in the histogenesis of MT carcinoma.
Collapse
Affiliation(s)
- Seog-Yun Park
- Department of Pathology, National Cancer Center, Goyang, Gyeonggi-do, South Korea
| | | | | | | | | | | |
Collapse
|
19
|
Yardy GW, Bicknell DC, Wilding JL, Bartlett S, Liu Y, Winney B, Turner GDH, Brewster SF, Bodmer WF. Mutations in the AXIN1 gene in advanced prostate cancer. Eur Urol 2009; 56:486-94. [PMID: 18514389 DOI: 10.1016/j.eururo.2008.05.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Accepted: 05/15/2008] [Indexed: 01/03/2023]
Abstract
BACKGROUND The Wnt signalling pathway directs aspects of embryogenesis and is thought to contribute to maintenance of certain stem cell populations. Disruption of the pathway has been observed in many different tumour types. In bowel, stomach, and endometrial cancer, this is usually due to mutation of genes encoding Wnt pathway components APC or beta-catenin. Such mutations are rare in hepatocellular carcinomas and medulloblastomas with Wnt pathway dysfunction, and there, mutation in genes for other Wnt molecules, such as Axin, is more frequently found. OBJECTIVE Although evidence of abnormal activation of the Wnt pathway in prostate cancer has been demonstrated by several groups, APC and beta-catenin mutations are infrequent. We sought mutations in genes encoding Wnt pathway participants in a panel of prostate cancer clinical specimens and cell lines. DESIGN, SETTING, AND PARTICIPANTS DNA was obtained from 49 advanced prostate cancer specimens using laser microdissection followed by whole genome amplification and 8 prostate cancer cell lines. MEASUREMENTS The DNA samples were screened for mutations in the genes encoding APC, beta-catenin, and Axin. The subcellular distribution of beta-catenin expression was assessed in the clinical specimens using immunohistochemistry. RESULTS AND LIMITATIONS Abnormal patterns of beta-catenin expression, suggesting Wnt pathway dysregulation, were observed in 71% of specimens. One APC mutation, two beta-catenin gene mutations, and 7 DNA sequence variations in the Axin gene were detected. Four different Axin polymorphisms were also found in the cell lines. The study does not provide definite evidence that the observed sequence changes alter protein function, promoting neoplasia, but the potential functional relevance of these variants is discussed. CONCLUSIONS These data contribute to our understanding of the role of Wnt dysregulation in prostatic tumourigenesis and support the current interest in the pathway as a therapeutic target. Of particular interest, we identified three new potentially functionally relevant AXIN1 mutations.
Collapse
Affiliation(s)
- George W Yardy
- Cancer Research UK, Cancer & Immunogenetics Laboratory, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK .
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ganesan K, Ivanova T, Wu Y, Rajasegaran V, Wu J, Lee MH, Yu K, Rha SY, Chung HC, Ylstra B, Meijer G, Lian KO, Grabsch H, Tan P. Inhibition of gastric cancer invasion and metastasis by PLA2G2A, a novel beta-catenin/TCF target gene. Cancer Res 2008; 68:4277-86. [PMID: 18519687 DOI: 10.1158/0008-5472.can-07-6517] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Elevated expression of the PLA2G2A phospholipase in gastric cancer (GC) is associated with improved patient survival. To elucidate function and regulation of PLA2G2A in GC, we analyzed a panel of GC cell lines. PLA2G2A was specifically expressed in lines with constitutive Wnt activity, implicating beta-catenin-dependent Wnt signaling as a major upstream regulator of PLA2G2A expression. The invasive ability of PLA2G2A-expressing AGS cells was enhanced by PLA2G2A silencing, whereas cellular migration in non-PLA2G2A-expressing N87 cells was inhibited by enforced PLA2G2A expression, indicating that PLA2G2A is both necessary and sufficient to function as an inhibitor of GC invasion in vitro. We provide evidence that antiinvasive effect of PLA2G2A occurs, at least in part, through its ability to inhibit the S100A4 metastasis mediator gene. Consistent with its invasion inhibitor role, PLA2G2A expression was elevated in primary gastric, colon, and prostrate early-stage tumors, but was decreased in metastatic and late-stage tumors. There was a strong association between PLA2G2A promoter methylation status and PLA2G2A expression, suggesting that the loss of PLA2G2A expression in late-stage cancers may be due to epigenetic silencing. Supporting this, among the non-PLA2G2A-expressing lines, pharmacologic inhibition of epigenetic silencing reactivated PLA2G2A in Wnt-active lines, but in non-Wnt-active lines, a combination of Wnt hyperactivation and inhibition of epigenetic silencing were both required for PLA2G2A reactivation. Our results highlight the complexity of PLA2G2A regulation and provide functional evidence for PLA2G2A as an important regulator of invasion and metastasis in GC.
Collapse
Affiliation(s)
- Kumaresan Ganesan
- Cellular and Molecular Research, National Cancer Center, Genome Institute of Singapore, Singapore, Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Oguma K, Oshima H, Aoki M, Uchio R, Naka K, Nakamura S, Hirao A, Saya H, Taketo MM, Oshima M. Activated macrophages promote Wnt signalling through tumour necrosis factor-alpha in gastric tumour cells. EMBO J 2008; 27:1671-81. [PMID: 18511911 PMCID: PMC2413189 DOI: 10.1038/emboj.2008.105] [Citation(s) in RCA: 237] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 04/29/2008] [Indexed: 12/16/2022] Open
Abstract
The activation of Wnt/β-catenin signalling has an important function in gastrointestinal tumorigenesis. It has been suggested that the promotion of Wnt/β-catenin activity beyond the threshold is important for carcinogenesis. We herein investigated the role of macrophages in the promotion of Wnt/β-catenin activity in gastric tumorigenesis. We found β-catenin nuclear accumulation in macrophage-infiltrated dysplastic mucosa of the K19-Wnt1 mouse stomach. Moreover, macrophage depletion in ApcΔ716 mice resulted in the suppression of intestinal tumorigenesis. These results suggested the role of macrophages in the activation of Wnt/β-catenin signalling, which thus leads to tumour development. Importantly, the conditioned medium of activated macrophages promoted Wnt/β-catenin signalling in gastric cancer cells, which was suppressed by the inhibition of tumour necrosis factor (TNF)-α. Furthermore, treatment with TNF-α induced glycogen synthase kinase 3β (GSK3β) phosphorylation, which resulted in the stabilization of β-catenin. We also found that Helicobacter infection in the K19-Wnt1 mouse stomach caused mucosal macrophage infiltration and nuclear β-catenin accumulation. These results suggest that macrophage-derived TNF-α promotes Wnt/β-catenin signalling through inhibition of GSK3β, which may contribute to tumour development in the gastric mucosa.
Collapse
Affiliation(s)
- Keisuke Oguma
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Takasu S, Tsukamoto T, Ushijima T, Yamashita S, Ogasawara N, Ban H, Yanai T, Masegi T, Tatematsu M. Cyclin D1 overexpression in N-methyl-N'-nitro-N-nitrosoguanidine-induced rat gastric adenocarcinomas. ACTA ACUST UNITED AC 2007; 59:171-5. [PMID: 17855062 DOI: 10.1016/j.etp.2007.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Accepted: 06/08/2007] [Indexed: 11/24/2022]
Abstract
Changes in cell cycle regulation are involved in many human cancers, including gastric cancer. In the present study, cyclin D1 expression and localization were immunohistochemically analyzed in 23 N-methyl-N'-nitro-N-nitrosoguanidine-induced rat gastric adenocarcinomas and compared with findings for beta-catenin. Cyclin D1 nuclear overexpression was more frequently observed in tumors displaying nuclear (4/4=100%) and cytoplasmic (3/4=75%) beta-catenin accumulation than those with membranous (3/15=20%) localization (nuclear vs. membranous, P<0.02). In the former cases it was considered that cyclin D1 was induced with beta-catenin activation; in the latter, a direct or indirect pathway for cyclin D1 accumulation bypassing Wnt pathway might be involved. Cyclin D1 was also found to be accumulated in gastric glands within normal-looking mucosa, these perhaps representing preneoplastic lesions for cancers with membranous beta-catenin accumulation.
Collapse
Affiliation(s)
- Shinji Takasu
- Division of Oncological Pathology, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Nojima M, Suzuki H, Toyota M, Watanabe Y, Maruyama R, Sasaki S, Sasaki Y, Mita H, Nishikawa N, Yamaguchi K, Hirata K, Itoh F, Tokino T, Mori M, Imai K, Shinomura Y. Frequent epigenetic inactivation of SFRP genes and constitutive activation of Wnt signaling in gastric cancer. Oncogene 2007; 26:4699-713. [PMID: 17297461 DOI: 10.1038/sj.onc.1210259] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Activation of Wnt signaling has been implicated in gastric tumorigenesis, although mutations in APC (adenomatous polyposis coli), CTNNB1 (beta-catenin) and AXIN are seen much less frequently in gastric cancer (GC) than in colorectal cancer. In the present study, we investigated the relationship between activation of Wnt signaling and changes in the expression of secreted frizzled-related protein (SFRP) family genes in GC. We frequently observed nuclear beta-catenin accumulation (13/15; 87%) and detected the active form of beta-catenin in most (12/16; 75%) GC cell lines. CpG methylation-dependent silencing of SFRP1, SFRP2 and SFRP5 was frequently seen among GC cell lines (SFRP1, 16/16, 100%; SFRP2, 16/16, 100%; SFRP5, 13/16, 81%) and primary GC specimens (SFRP1, 42/46, 91%; SFRP2, 44/46, 96%; SFRP5, 30/46, 65%), and treatment with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine rapidly restored SFRP expression. Ectopic expression of SFRPs downregulated T-cell factor/lymphocyte enhancer factor transcriptional activity, suppressed cell growth and induced apoptosis in GC cells. Analysis of global expression revealed that overexpression of SFRP2 repressed Wnt target genes and induced changes in the expression of numerous genes related to proliferation, growth and apoptosis in GC cells. It thus appears that aberrant SFRP methylation is one of the major mechanisms by which Wnt signaling is activated in GC.
Collapse
Affiliation(s)
- M Nojima
- First Department of Internal Medicine, Sapporo Medical University, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Yang S, Jeung HC, Jeong HJ, Choi YH, Kim JE, Jung JJ, Rha SY, Yang WI, Chung HC. Identification of genes with correlated patterns of variations in DNA copy number and gene expression level in gastric cancer. Genomics 2007; 89:451-9. [PMID: 17229543 DOI: 10.1016/j.ygeno.2006.12.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 11/08/2006] [Accepted: 12/04/2006] [Indexed: 01/02/2023]
Abstract
To identify DNA copy number changes that had a direct influence on mRNA expression in gastric cancer, cDNA microarray-based comparative genomic hybridization (aCGH) and gene expression profiling were performed using 17 K cDNA microarrays. A set of 158 genes showing Pearson correlation coefficients over 0.6 between DNA copy number changes and mRNA expression level variations was selected. In an independent gene expression profiling of 60 tissue samples, the 158 genes were able to distinguish most of the normal and tumor tissues in an unsupervised hierarchical clustering, suggesting that the differential expression patterns displayed by this specific group of genes are most likely based on the gene copy number changes. Furthermore, 43 statistically significant (P<0.01) genes were selected that correctly distinguished all of the tissue samples. The copy number changes detected by aCGH can be verified by fluorescence in situ hybridization and real-time polymerase chain reaction. The selected genes include those that were previously identified as being tumor suppressors or deleted in various tumors, including GATA binding protein 4 (GATA4), monoamine oxidase A (MAOA), cyclin C (CCNC), and oncogenes including malignant fibrous histiocytoma amplified sequence 1 (MFHAS1/MASL1), high mobility group AT-hook 2 (HMGA2), PPAR binding protein (PPARBP), growth factor receptor-bound protein 7 (GRB7), and TBC1 (tre-2, BUB2, cdc16) domain family, member 1 (TBC1D1).
Collapse
Affiliation(s)
- Sanghwa Yang
- Cancer Metastasis Research Center (CMRC), Yonsei University College of Medicine, Seoul 120-752, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Suriano G, Ferreira P, Mateus AR, Correia J, Henriques L, Seruca R. Genetics of hereditary diffuse gastric cancer: progress and future challenges. Future Oncol 2006; 2:363-70. [PMID: 16787116 DOI: 10.2217/14796694.2.3.363] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Hereditary diffuse gastric cancer (HDGC) is a rare cancer susceptibility syndrome. One third of HDGC syndrome families carry germline mutations of the E-cadherin gene. Owing to the limitation of the current endoscopic screening techniques and since no chemoprevention is yet available, total prophylactic gastrectomy is the only option offered to carriers of inactivating mutations in genetic counseling. In this regard, 30% of the E-cadherin germline mutations reported to date are of the missense type, and since their pathogenic significance is not straightforward, the management of carriers of such mutations is suboptimal. In the absence of definitive clinical evidence, functional in vitro studies together with in silico analysis have been used to infer the pathogenic significance of germline missense mutations. Since most of the HDGC families reported to date are negative for E-cadherin germline mutations, the identification of alternative genes underlying the tumorigenesis of diffuse gastric has become an important target for research.
Collapse
Affiliation(s)
- Gianpaolo Suriano
- Institute of Molecular Pathology & Immunology of the University of Porto, Rua Dr Roberto Frias S/N 4200-465, Porto, Portugal.
| | | | | | | | | | | |
Collapse
|
26
|
Ferreira P, Oliveira MJ, Beraldi E, Mateus AR, Nakajima T, Gleave M, Yokota J, Carneiro F, Huntsman D, Seruca R, Suriano G. Loss of functional E-cadherin renders cells more resistant to the apoptotic agent taxol in vitro. Exp Cell Res 2005; 310:99-104. [PMID: 16112667 DOI: 10.1016/j.yexcr.2005.07.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Revised: 07/08/2005] [Accepted: 07/10/2005] [Indexed: 01/07/2023]
Abstract
Experimental evidence supports a role for E-cadherin in suppressing invasion, metastasis, and proliferation. Germline mutations of the E-cadherin represent the genetic cause of hereditary diffuse gastric cancer (HDGC). In this type of tumor, isolated cancer cells permeate the basal membrane and paradoxically survive in the gastric wall in the absence of contact with neighbor epithelial cells or with the extracellular matrix. This suggests that upon E-cadherin deregulation, cells acquired resistance to apoptosis. To test this hypothesis, CHO cells stably expressing either wild-type E-cadherin or the HDGC-related germline mutations T340A and V832M were seeded either on a thin layer of collagen type I or on plastic and then subjected to the apoptotic agent taxol. We found that in vitro functional E-cadherin renders cells more sensitive to the effect of taxol. Our results also indicate that this effect is associated to decreased level of the anti-apoptotic bcl-2 protein.
Collapse
Affiliation(s)
- Paulo Ferreira
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200 Porto, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lynch HT, Grady W, Suriano G, Huntsman D. Gastric cancer: new genetic developments. J Surg Oncol 2005; 90:114-33; discussion 133. [PMID: 15895459 DOI: 10.1002/jso.20214] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gastric cancer's (GC) incidence shows large geographic differences worldwide with the lowest rates occurring in most Western industrialized countries including the United States and the United Kingdom; in contrast, relatively high rates of GC occur in Japan, Korea, China, and South America, particularly Chile. The Laurén classification system classifies GC under two major histopathological variants: 1) an intestinal type and 2) a diffuse type. The intestinal type is more common in the general population, more likely to be sporadic and related to environmental factors such as diet, particularly salted fish and meat as well as smoked foods, cigarette smoking, and alcohol use. It exhibits components of glandular, solid, or intestinal architecture, as well as tubular structures. On the other hand, the diffuse type is more likely to have a primary genetic etiology, a subset of which, known as hereditary diffuse gastric cancer (HDGC), is due to the E-cadherin (CDH1) germline mutation. The diffuse type pathology is characterized by poorly cohesive clusters of cells which infiltrate the gastric wall, leading to its widespread thickening and rigidity of the gastric wall, known as linitis plastica. Helicobacter pylori infection is associated with risk for both the intestinal and diffuse varieties of gastric cancer. Germline truncating mutations of the CDH1 gene, which codes for the E-cadherin protein, were initially identified in three Maori families from New Zealand that were predisposed to diffuse GC. Since then, similar mutations have been described in more than 40 additional HDGC families of diverse ethnic backgrounds. It is noteworthy that two-thirds of HDGC families reported to date have proved negative for the CDH1 germline mutation. A number of candidate genes have been identified through analysis of the molecular biology of E-cadherin. Patients with evidence of the CDH1 germline mutation in the context of a family history of HDGC must be considered as candidates for prophylactic gastrectomy, given the extreme difficulty in its early diagnosis and its exceedingly poor prognosis when there is regional or distant spread. Specifically, the E-cadherin cytoplasmic tail interacts with catenins, assembling the cell-adhesion complex involved with E-cadherin mediated cell:cell adhesion. Beta-catenin and gamma-catenin compete for the same binding site on the E-cadherin cytoplasmic tail, directly linking the adhesion complex to the cytoskeleton through alpha-catenin. Beta-catenin gene (CTNNB1) mutations have been described predominantly in intestinal-type gastric cancers and CTNNB1 gene amplification and overexpression have recently been described in a mixed-type gastric cancer. This paper reviews the genetics of both intestinal and diffuse types of gastric carcinoma, their differential diagnosis, molecular genetics, pathology, and, when known, their mode of genetic transmission within families.
Collapse
Affiliation(s)
- Henry T Lynch
- Department of Preventive Medicine, Creighton University School of Medicine, Omaha, Nebraska 68178, USA.
| | | | | | | |
Collapse
|
28
|
|