1
|
Bastidas Torres AN, Cats D, Mei H, Szuhai K, Willemze R, Vermeer MH, Tensen CP. Genomic analysis reveals recurrent deletion of JAK-STAT signaling inhibitors HNRNPK and SOCS1 in mycosis fungoides. Genes Chromosomes Cancer 2018; 57:653-664. [PMID: 30144205 PMCID: PMC6282857 DOI: 10.1002/gcc.22679] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 01/31/2023] Open
Abstract
Mycosis fungoides (MF) is the most common cutaneous T-cell lymphoma (CTCL). Causative genetic alterations in MF are unknown. The low recurrence of pathogenic small-scale mutations (ie, nucleotide substitutions, indels) in the disease, calls for the study of additional aspects of MF genetics. Here, we investigated structural genomic alterations in tumor-stage MF by integrating whole-genome sequencing and RNA-sequencing. Multiple genes with roles in cell physiology (n = 113) and metabolism (n = 92) were found to be impacted by genomic rearrangements, including 47 genes currently implicated in cancer. Fusion transcripts involving genes of interest such as DOT1L, KDM6A, LIFR, TP53, and TP63 were also observed. Additionally, we identified recurrent deletions of genes involved in cell cycle control, chromatin regulation, the JAK-STAT pathway, and the PI-3-K pathway. Remarkably, many of these deletions result from genomic rearrangements. Deletion of tumor suppressors HNRNPK and SOCS1 were the most frequent genetic alterations in MF after deletion of CDKN2A. Notably, SOCS1 deletion could be detected in early-stage MF. In agreement with the observed genomic alterations, transcriptome analysis revealed up-regulation of the cell cycle, JAK-STAT, PI-3-K and developmental pathways. Our results position inactivation of HNRNPK and SOCS1 as potential driver events in MF development.
Collapse
Affiliation(s)
| | - Davy Cats
- Sequencing Analysis Support Core, Leiden University Medical Center, Leiden, The Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Leiden University Medical Center, Leiden, The Netherlands
| | - Karoly Szuhai
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rein Willemze
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maarten H Vermeer
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Cornelis P Tensen
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
2
|
Sorrells S, Nik S, Casey MJ, Cameron RC, Truong H, Toruno C, Gulfo M, Lowe A, Jette C, Stewart RA, Bowman TV. Spliceosomal components protect embryonic neurons from R-loop-mediated DNA damage and apoptosis. Dis Model Mech 2018; 11:dmm.031583. [PMID: 29419415 PMCID: PMC5894942 DOI: 10.1242/dmm.031583] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 01/18/2018] [Indexed: 02/02/2023] Open
Abstract
RNA splicing factors are essential for the viability of all eukaryotic cells; however, in metazoans some cell types are exquisitely sensitive to disruption of splicing factors. Neuronal cells represent one such cell type, and defects in RNA splicing factors can lead to neurodegenerative diseases. The basis for this tissue selectivity is not well understood owing to difficulties in analyzing the consequences of splicing factor defects in whole-animal systems. Here, we use zebrafish mutants to show that loss of spliceosomal components, including splicing factor 3b, subunit 1 (sf3b1), causes increased DNA double-strand breaks and apoptosis in embryonic neurons. Moreover, these mutants show a concomitant accumulation of R-loops, which are non-canonical nucleic acid structures that promote genomic instability. Dampening R-loop formation by conditional induction of ribonuclease H1 in sf3b1 mutants reduced neuronal DNA damage and apoptosis. These findings show that splicing factor dysfunction leads to R-loop accumulation and DNA damage that sensitizes embryonic neurons to apoptosis. Our results suggest that diseases associated with splicing factor mutations could be susceptible to treatments that modulate R-loop levels. Summary: Loss of RNA splicing factors causes R-loop accumulation and DNA damage in embryonic neurons, sensitizing them to radiation-induced cell death. These findings suggest that diseased cells with mutations in splicing factors are vulnerable to radiotherapy.
Collapse
Affiliation(s)
- Shelly Sorrells
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Sara Nik
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Mattie J Casey
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Rosannah C Cameron
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Harold Truong
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Cristhian Toruno
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Michelle Gulfo
- Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Albert Lowe
- Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Cicely Jette
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Rodney A Stewart
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Teresa V Bowman
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA .,Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
3
|
Vecchio L, Seke Etet PF, Kipanyula MJ, Krampera M, Nwabo Kamdje AH. Importance of epigenetic changes in cancer etiology, pathogenesis, clinical profiling, and treatment: what can be learned from hematologic malignancies? BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1836:90-104. [PMID: 23603458 DOI: 10.1016/j.bbcan.2013.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/25/2013] [Accepted: 04/10/2013] [Indexed: 02/06/2023]
Abstract
Epigenetic alterations represent a key cancer hallmark, even in hematologic malignancies (HMs) or blood cancers, whose clinical features display a high inter-individual variability. Evidence accumulated in recent years indicates that inactivating DNA hypermethylation preferentially targets the subset of polycomb group (PcG) genes that are regulators of developmental processes. Conversely, activating DNA hypomethylation targets oncogenic signaling pathway genes, but outcomes of both events lead in the overexpression of oncogenic signaling pathways that contribute to the stem-like state of cancer cells. On the basis of recent evidence from population-based, clinical and experimental studies, we hypothesize that factors associated with risk for developing a HM, such as metabolic syndrome and chronic inflammation, trigger epigenetic mechanisms to increase the transcriptional expression of oncogenes and activate oncogenic signaling pathways. Among others, signaling pathways associated with such risk factors include pro-inflammatory nuclear factor κB (NF-κB), and mitogenic, growth, and survival Janus kinase (JAK) intracellular non-receptor tyrosine kinase-triggered pathways, which include signaling pathways such as transducer and activator of transcription (STAT), Ras GTPases/mitogen-activated protein kinases (MAPKs)/extracellular signal-related kinases (ERKs), phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), and β-catenin pathways. Recent findings on epigenetic mechanisms at work in HMs and their importance in the etiology and pathogenesis of these diseases are herein summarized and discussed. Furthermore, the role of epigenetic processes in the determination of biological identity, the consequences for interindividual variability in disease clinical profile, and the potential of epigenetic drugs in HMs are also considered.
Collapse
Affiliation(s)
- Lorella Vecchio
- Laboratory of Cytometry, Institute of Molecular Genetics, CNR, University of Pavia, 27100 Pavia, Italy
| | | | | | | | | |
Collapse
|
4
|
De Braekeleer E, Meyer C, Douet-Guilbert N, Morel F, Le Bris MJ, Berthou C, Arnaud B, Marschalek R, Férec C, De Braekeleer M. Complex and cryptic chromosomal rearrangements involving the MLL gene in acute leukemia: A study of 7 patients and review of the literature. Blood Cells Mol Dis 2010; 44:268-74. [DOI: 10.1016/j.bcmd.2010.02.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 02/03/2010] [Indexed: 11/30/2022]
|
5
|
Cryptic insertion into 11q23 of MLLT10 not involved in t(1;15;11;10)(p36;q11;q23;q24) in infant acute biphenotypic leukemia. ACTA ACUST UNITED AC 2009; 190:113-20. [DOI: 10.1016/j.cancergencyto.2008.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 12/13/2008] [Accepted: 12/29/2008] [Indexed: 01/05/2023]
|
6
|
de Jesus Marques-Salles T, Liehr T, Mkrtchyan H, Raimondi SC, Tavares de Souza M, de Figueiredo AF, Rouxinol S, Jordy Macedo FC, Abdelhay E, Santos N, Macedo Silva ML. A new chromosomal three-way rearrangement involving MLL masked by a t(9;19)(p11;p13) in an infant with acute myeloid leukemia. ACTA ACUST UNITED AC 2009; 189:59-62. [PMID: 19167614 DOI: 10.1016/j.cancergencyto.2008.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 10/06/2008] [Indexed: 01/13/2023]
Abstract
Infants diagnosed with acute myelogenous leukemia (AML) are likely to have subtypes M4 or M5 characterized by 11q23 abnormalities like a t(9;11)(p22;q23). Detection of all possible types of chromosomal abnormalities, including mixed lineage leukemia (MLL) gene rearrangements at 11q23, is of importance for the identification of biological subgroups, which might differ in drug resistance and/or clinical outcome. Here, we report the clinical, conventional banding and molecular cytogenetics data of a 6-month-old boy with an AML-M5 presenting with a unique cryptic rearrangement involving the MLL gene: a three-way t(9;19;11)(p11.2;p13.1;q23).
Collapse
Affiliation(s)
- Terezinha de Jesus Marques-Salles
- Genetic Department of University Federal of Pernambuco, Av. Prof. Moraes Rego, 1235-Cidade Universitária, Recife-PE-CEP: 50670-901 Brasil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Hidaka E, Tanaka M, Matsuda K, Ishikawa-Matsumura M, Yamauchi K, Sano K, Honda T, Wakui K, Yanagisawa R, Nakazawa Y, Sakashita K, Shiohara M, Ishii E, Koike K. A complex karyotype, including a three-way translocation generating a NUP98-HOXD13 transcript, in an infant with acute myeloid leukemia. ACTA ACUST UNITED AC 2007; 176:137-43. [PMID: 17656257 DOI: 10.1016/j.cancergencyto.2007.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 04/02/2007] [Accepted: 04/09/2007] [Indexed: 10/23/2022]
Abstract
We report the case of an infant with acute myeloblastic leukemia who had the abnormal karyotype 46,XX,t(2;11;9)(q31;p15;q22),t(6;11;15)(q21;q23;q22),t(8;10)(q13;q22). At relapse, a different three-way translocation emerged. Fluorescence in situ hybridization and a reverse transcription-polymerase chain reaction assay detected the NUP98-HOXD13 fusion gene in bone marrow cells of the patient at diagnosis and at relapse. Sequence analysis showed that exon 12 of NUP98 was fused in-frame with exon 2 of HOXD13. The patient had neither a rearrangement of the MLL gene nor aberrations for FLT3, KIT, NRAS, KRAS, or PTPN11. The NUP98-HOXD13 fusion transcript created by t(2;11;9)(q31;p15;q22) may play an important role in the leukemogenesis in this case.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Chromosomes, Human, Pair 10
- Chromosomes, Human, Pair 11
- Chromosomes, Human, Pair 15
- Chromosomes, Human, Pair 2
- Chromosomes, Human, Pair 6
- Chromosomes, Human, Pair 8
- Chromosomes, Human, Pair 9
- Female
- Homeodomain Proteins/genetics
- Humans
- Infant
- Karyotyping
- Leukemia, Myeloid, Acute/genetics
- Molecular Sequence Data
- Nuclear Pore Complex Proteins/genetics
- Oncogene Proteins, Fusion/genetics
- Translocation, Genetic
Collapse
Affiliation(s)
- Eiko Hidaka
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Meyer C, Kowarz E, Schneider B, Oehm C, Klingebiel T, Dingermann T, Marschalek R. Genomic DNA of leukemic patients: Target for clinical diagnosis ofMLL rearrangements. Biotechnol J 2006; 1:656-63. [PMID: 16892314 DOI: 10.1002/biot.200600037] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Genomic DNA is the optimal resource to analyze questions concerning genetic changes that are related to oncogenesis. This article tries to summarize recent efforts to analyze chromosomal changes that trigger the development of human acute myeloid and lymphoblastic leukemias. The aim of this study was to establish an universal method that enables the identification and characterization of chromosomal translocations of the human MLL gene at the genomic nucleotide level. Chromosomal translocations of the MLL gene are the result of illegitimate recombination events in hematopoietic stem or precursor cells, strictly associated with the onset of highly malignant leukemic diseases. The applied technology was able to identify specific fusion alleles that were generated by chromosomal translocations, chromosomal deletions, chromosomal inversions and partial tandem duplications. Moreover, it allowed us to investigate even highly complex genetic changes by applying systematic breakpoint analyses. On the basis of these analyses, patient-specific molecular markers were established that turned out to be a very good source for monitoring minimal residual disease (MRD). MRD analyses control the efficiency and efficacy of current treatment protocols and have become a very sensitive molecular tool to monitor therapeutic success or failure in individual leukemia patients.
Collapse
Affiliation(s)
- Claus Meyer
- Institute of Pharmaceutical Biology, ZAFES, Diagnostic Center of Acute Leukemia, JWG-University of Frankfurt, Biocenter, Frankfurt/Main, Germany
| | | | | | | | | | | | | |
Collapse
|