1
|
Wang H, Wang X, Xu L. Chromosome 1p36 candidate gene ZNF436 predicts the prognosis of neuroblastoma: a bioinformatic analysis. Ital J Pediatr 2023; 49:145. [PMID: 37904225 PMCID: PMC10617224 DOI: 10.1186/s13052-023-01549-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/16/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Genetic 1p deletion is reported in 30% of all neuroblastoma and is associated with the unfavorable prognosis of neuroblastoma. The expressions and prognosis of 1p candidate genes in neuroblastoma are unclear. METHODS Public neuroblastoma cohorts were obtained for secondary analysis. The prognosis of 1p candidate genes in neuroblastoma was determined using Kaplan-Meier and cox regression analysis. The prediction of the nomogram model was determined using timeROC. RESULTS First, we confirmed the bad prognosis of 1p deletion in neuroblastoma. Moreover, zinc finger protein 436 (ZNF436) located at 1p36 region was down-regulated in 1p deleted neuroblastoma and higher ZNF436 expression was associated with the longer event free survival and overall survival of neuroblastoma. The expression levels of ZNF436 were lower in neuroblastoma patients with MYCN amplification or age at diagnosis ≥ 18months, or with stage 4 neuroblastoma. ZNF436 had robust predictive values of MYCN amplification and overall survival of neuroblastoma. Furthermore, the prognostic significance of ZNF436 in neuroblastoma was independent of MYCN amplification and age of diagnosis. Combinations of ZNF436 with MYCN amplification or age of diagnosis achieved better prognosis. At last, we constructed a nomogram risk model based on age, MYCN amplification and ZNF436. The nomogram model could predict the overall survival of neuroblastoma with high specificity and sensitivity. CONCLUSIONS Chromosome 1p36 candidate gene ZNF436 was a prognostic maker of neuroblastoma.
Collapse
Affiliation(s)
- Haiwei Wang
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China.
| | - Xinrui Wang
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Liangpu Xu
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Candido MF, Medeiros M, Veronez LC, Bastos D, Oliveira KL, Pezuk JA, Valera ET, Brassesco MS. Drugging Hijacked Kinase Pathways in Pediatric Oncology: Opportunities and Current Scenario. Pharmaceutics 2023; 15:pharmaceutics15020664. [PMID: 36839989 PMCID: PMC9966033 DOI: 10.3390/pharmaceutics15020664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Childhood cancer is considered rare, corresponding to ~3% of all malignant neoplasms in the human population. The World Health Organization (WHO) reports a universal occurrence of more than 15 cases per 100,000 inhabitants around the globe, and despite improvements in diagnosis, treatment and supportive care, one child dies of cancer every 3 min. Consequently, more efficient, selective and affordable therapeutics are still needed in order to improve outcomes and avoid long-term sequelae. Alterations in kinases' functionality is a trademark of cancer and the concept of exploiting them as drug targets has burgeoned in academia and in the pharmaceutical industry of the 21st century. Consequently, an increasing plethora of inhibitors has emerged. In the present study, the expression patterns of a selected group of kinases (including tyrosine receptors, members of the PI3K/AKT/mTOR and MAPK pathways, coordinators of cell cycle progression, and chromosome segregation) and their correlation with clinical outcomes in pediatric solid tumors were accessed through the R2: Genomics Analysis and Visualization Platform and by a thorough search of published literature. To further illustrate the importance of kinase dysregulation in the pathophysiology of pediatric cancer, we analyzed the vulnerability of different cancer cell lines against their inhibition through the Cancer Dependency Map portal, and performed a search for kinase-targeted compounds with approval and clinical applicability through the CanSAR knowledgebase. Finally, we provide a detailed literature review of a considerable set of small molecules that mitigate kinase activity under experimental testing and clinical trials for the treatment of pediatric tumors, while discuss critical challenges that must be overcome before translation into clinical options, including the absence of compounds designed specifically for childhood tumors which often show differential mutational burdens, intrinsic and acquired resistance, lack of selectivity and adverse effects on a growing organism.
Collapse
Affiliation(s)
- Marina Ferreira Candido
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Mariana Medeiros
- Regional Blood Center, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Luciana Chain Veronez
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - David Bastos
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Karla Laissa Oliveira
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Julia Alejandra Pezuk
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - María Sol Brassesco
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
- Correspondence: ; Tel.: +55-16-3315-9144; Fax: +55-16-3315-4886
| |
Collapse
|
3
|
Kuick CH, Tan JY, Jasmine D, Sumanty T, Ng AYJ, Venkatesh B, Chen H, Loh E, Jain S, Seow WY, Ng EHQ, Lian DWQ, Soh SY, Chang KTE, Chen ZX, Loh AHP. Mutations of 1p genes do not consistently abrogate tumor suppressor functions in 1p-intact neuroblastoma. BMC Cancer 2022; 22:717. [PMID: 35768791 PMCID: PMC9245282 DOI: 10.1186/s12885-022-09800-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/21/2022] [Indexed: 11/26/2022] Open
Abstract
Background Deletion of 1p is associated with poor prognosis in neuroblastoma, however selected 1p-intact patients still experience poor outcomes. Since mutations of 1p genes may mimic the deleterious effects of chromosomal loss, we studied the incidence, spectrum and effects of mutational variants in 1p-intact neuroblastoma. Methods We characterized the 1p status of 325 neuroblastoma patients, and correlated the mutational status of 1p tumor suppressors and neuroblastoma candidate genes with survival outcomes among 100 1p-intact cases, then performed functional validation of selected novel variants of 1p36 genes identified from our patient cohort. Results Among patients with adverse disease characteristics, those who additionally had 1p deletion had significantly worse overall survival. Among 100 tumor-normal pairs sequenced, somatic mutations of 1p tumor suppressors KIF1Bβ and CHD5 were most frequent (2%) after ALK and ATRX (8%), and BARD1 (3%). Mutations of neuroblastoma candidate genes were associated with other synchronous mutations and concurrent 11q deletion (P = 0.045). In total, 24 of 38 variants identified were novel and predicted to be deleterious or pathogenic. Functional validation identified novel KIF1Bβ I1355M variant as a gain-of-function mutation with increased expression and tumor suppressive activity, correlating with indolent clinical behavior; another novel variant CHD5 E43Q was a loss-of-function mutation with decreased expression and increased long-term cell viability, corresponding with aggressive disease characteristics. Conclusions Our study showed that chromosome 1 gene mutations occurred frequently in 1p-intact neuroblastoma, but may not consistently abrogate the function of bonafide 1p tumor suppressors. These findings may augment the evolving model of compounding contributions of 1p gene aberrations toward tumor suppressor inactivation in neuroblastoma. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09800-0.
Collapse
Affiliation(s)
- Chik Hong Kuick
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, 229899, Singapore
| | - Jia Ying Tan
- Neurodevelopment and Cancer Laboratory, NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Deborah Jasmine
- Neurodevelopment and Cancer Laboratory, NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Tohari Sumanty
- Comparative and Medical Genomics Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore, 138673, Singapore
| | - Alvin Y J Ng
- Comparative and Medical Genomics Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore, 138673, Singapore
| | - Byrrappa Venkatesh
- Comparative and Medical Genomics Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore, 138673, Singapore
| | - Huiyi Chen
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, 229899, Singapore
| | - Eva Loh
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, 229899, Singapore
| | - Sudhanshi Jain
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, 229899, Singapore
| | - Wan Yi Seow
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, 229899, Singapore
| | - Eileen H Q Ng
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, 229899, Singapore
| | - Derrick W Q Lian
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, 229899, Singapore
| | - Shui Yen Soh
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, 229899, Singapore.,Department of Paediatric Subspecialties Haematology Oncology Service, KK Women's and Children's Hospital, Singapore, 229899, Singapore.,Duke NUS Medical School, Singapore, 169857, Singapore
| | - Kenneth T E Chang
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, 229899, Singapore.,VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, 229899, Singapore.,Duke NUS Medical School, Singapore, 169857, Singapore
| | - Zhi Xiong Chen
- Neurodevelopment and Cancer Laboratory, NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore. .,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore. .,VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, 229899, Singapore. .,National University Cancer Institute, Singapore, 119074, Singapore.
| | - Amos H P Loh
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, 229899, Singapore. .,Duke NUS Medical School, Singapore, 169857, Singapore. .,Department of Paediatric Surgery, KK Women's and Children's Hospital, Singapore, 229899, Singapore.
| |
Collapse
|
4
|
Liu S, Liu D, Liu J, Liu J, Zhong M. miR-29a-3p promotes migration and invasion in ameloblastoma via Wnt/β-catenin signaling by targeting catenin beta interacting protein 1. Head Neck 2021; 43:3911-3921. [PMID: 34636093 DOI: 10.1002/hed.26888] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/08/2021] [Accepted: 09/21/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Ameloblastoma (AB) is a common epithelial odontogenic tumor. The Wnt/β-catenin pathway has been found to be related to AB invasion. METHODS The alteration expression of microRNAs (miRNAs) and messenger RNAs (mRNAs) was performed by miRNA and mRNA microarray analysis and validated by quantitative real-time polymerase chain reaction (RT-PCR). The effects of miR-29a-3p on migration and invasion in AB cells were evaluated by a transwell assay. Bioinformatic prediction was conducted using the miRSystem and validated by quantitative RT-PCR, western blot, and a luciferase reporter assay. RESULTS miR-29a-3p was overexpressed in AB tissues, which promoted the migration and invasion of AB cells in vitro. Catenin beta interacting protein 1 (CTNNBIP1), a negative regulator of the Wnt/β-catenin pathway, was predicted to be a target of miR-29a-3p. miR-29a-3p inhibited the expression of CTNNBIP1 and promoted the expression of the downstream molecules of the Wnt/β-catenin pathway. CONCLUSIONS miR-29a-3p promoted migration and invasion in AB via Wnt/β-catenin signaling by targeting CTNNBIP1.
Collapse
Affiliation(s)
- Sai Liu
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Dongjuan Liu
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Jinwen Liu
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Jiayi Liu
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Ming Zhong
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China.,Department of Stomatology, Xiang'an Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
5
|
Skalka G, Hall H, Somers J, Bushell M, Willis A, Malewicz M. Leucine zipper and ICAT domain containing (LZIC) protein regulates cell cycle transitions in response to ionizing radiation. Cell Cycle 2019; 18:963-975. [PMID: 30973299 PMCID: PMC6527300 DOI: 10.1080/15384101.2019.1601476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 03/11/2019] [Accepted: 03/25/2019] [Indexed: 01/18/2023] Open
Abstract
Common hallmarks of cancer include the dysregulation of cell cycle progression and the acquisition of genome instability. In tumors, G1 cell cycle checkpoint induction is often lost. This increases the reliance on a functional G2/M checkpoint to prevent progression through mitosis with damaged DNA, avoiding the introduction of potentially aberrant genetic alterations. Treatment of tumors with ionizing radiation (IR) utilizes this dependence on the G2/M checkpoint. Therefore, identification of factors which regulate this process could yield important biomarkers for refining this widely used cancer therapy. Leucine zipper and ICAT domain containing (LZIC) downregulation has been associated with the development of IR-induced tumors. However, despite LZIC being highly conserved, it has no known molecular function. We demonstrate that LZIC knockout (KO) cell lines show a dysregulated G2/M cell cycle checkpoint following IR treatment. In addition, we show that LZIC deficient cells competently activate the G1 and early G2/M checkpoint but fail to maintain the late G2/M checkpoint after IR exposure. Specifically, this defect was found to occur downstream of PIKK signaling. The LZIC KO cells demonstrated severe aneuploidy indicative of genomic instability. In addition, analysis of data from cancer patient databases uncovered a strong correlation between LZIC expression and poor prognosis in several cancers. Our findings suggest that LZIC is functionally involved in cellular response to IR, and its expression level could serve as a biomarker for patient stratification in clinical cancer practice.
Collapse
Affiliation(s)
- George Skalka
- MRC Toxicology Unit, University of Cambridge, Leicester, UK
| | - Holly Hall
- MRC Toxicology Unit, University of Cambridge, Leicester, UK
- Beatson Institute for Cancer Research, Glasgow, UK
| | - Joanna Somers
- MRC Toxicology Unit, University of Cambridge, Leicester, UK
| | - Martin Bushell
- MRC Toxicology Unit, University of Cambridge, Leicester, UK
- Beatson Institute for Cancer Research, Glasgow, UK
| | - Anne Willis
- MRC Toxicology Unit, University of Cambridge, Leicester, UK
| | | |
Collapse
|
6
|
Kosari‐Monfared M, Nikbakhsh N, Fattahi S, Ghadami E, Ranaei M, Taheri H, Amjadi‐Moheb F, Godazandeh GA, Shafaei S, Pilehchian‐Langroudi M, Samadani AA, Akhavan‐Niaki H. CTNNBIP1
downregulation is associated with tumor grade and viral infections in gastric adenocarcinoma. J Cell Physiol 2018; 234:2895-2904. [DOI: 10.1002/jcp.27106] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/29/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Mohadeseh Kosari‐Monfared
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical SciencesBabol Iran
- Department of GeneticsFaculty of Medicine, Babol University of Medical SciencesBabol Iran
| | - Novin Nikbakhsh
- Cancer Research Center, Health Research Institute, Babol University of Medical SciencesBabol Iran
| | - Sadegh Fattahi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical SciencesBabol Iran
- Molecular Biology Laboratory, North Research Center of Pasteur InstituteAmol Iran
| | - Elham Ghadami
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical SciencesBabol Iran
- Department of GeneticsFaculty of Medicine, Babol University of Medical SciencesBabol Iran
| | - Mohammad Ranaei
- Department of PathologyRouhani Hospital, Babol University of Medical SciencesBabol Iran
| | - Hassan Taheri
- Department of Internal MedicineRouhani Hospital, Babol University of Medical SciencesBabol Iran
| | - Fatemeh Amjadi‐Moheb
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical SciencesBabol Iran
- Department of GeneticsFaculty of Medicine, Babol University of Medical SciencesBabol Iran
| | - Gholam A. Godazandeh
- Department of SurgeryImam Hospital, Mazandaran University of Medical SciencesSari Iran
| | - Shahryar Shafaei
- Department of PathologyRouhani Hospital, Babol University of Medical SciencesBabol Iran
| | - Maryam Pilehchian‐Langroudi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical SciencesBabol Iran
- Department of GeneticsFaculty of Medicine, Babol University of Medical SciencesBabol Iran
| | - Ali Akbar Samadani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical SciencesBabol Iran
- Gastrointestinal and Liver Diseases Research Center (GLDRC)Guilan University of Medical SciencesRasht Iran
| | - Haleh Akhavan‐Niaki
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical SciencesBabol Iran
- Department of GeneticsFaculty of Medicine, Babol University of Medical SciencesBabol Iran
- Cancer Research Center, Health Research Institute, Babol University of Medical SciencesBabol Iran
| |
Collapse
|
7
|
Lee B, Sahoo A, Marchica J, Holzhauser E, Chen X, Li JL, Seki T, Govindarajan SS, Markey FB, Batish M, Lokhande SJ, Zhang S, Ray A, Perera RJ. The long noncoding RNA SPRIGHTLY acts as an intranuclear organizing hub for pre-mRNA molecules. SCIENCE ADVANCES 2017; 3:e1602505. [PMID: 28508063 PMCID: PMC5415337 DOI: 10.1126/sciadv.1602505] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 03/03/2017] [Indexed: 05/13/2023]
Abstract
Molecular mechanisms by which long noncoding RNA (lncRNA) molecules may influence cancerous condition are poorly understood. The aberrant expression of SPRIGHTLY lncRNA, encoded within the drosophila gene homolog Sprouty-4 intron, is correlated with a variety of cancers, including human melanomas. We demonstrate by SHAPE-seq and dChIRP that SPRIGHTLY RNA secondary structure has a core pseudoknotted domain. This lncRNA interacts with the intronic regions of six pre-mRNAs: SOX5, SMYD3, SND1, MEOX2, DCTN6, and RASAL2, all of which have cancer-related functions. Hemizygous knockout of SPRIGHTLY by CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 in melanoma cells significantly decreases SPRIGHTLY lncRNA levels, simultaneously decreases the levels of its interacting pre-mRNA molecules, and decreases anchorage-independent growth rate of cells and the rate of in vivo tumor growth in mouse xenografts. These results provide the first demonstration of an lncRNA's three-dimensional coordinating role in facilitating cancer-related gene expression in human melanomas.
Collapse
Affiliation(s)
- Bongyong Lee
- Sanford Burnham Prebys Medical Discovery Institute, 6400 Sanger Road, Orlando, FL 32827, USA
| | - Anupama Sahoo
- Sanford Burnham Prebys Medical Discovery Institute, 6400 Sanger Road, Orlando, FL 32827, USA
| | - John Marchica
- Sanford Burnham Prebys Medical Discovery Institute, 6400 Sanger Road, Orlando, FL 32827, USA
| | - Erwin Holzhauser
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Xiaoli Chen
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Jian-Liang Li
- Sanford Burnham Prebys Medical Discovery Institute, 6400 Sanger Road, Orlando, FL 32827, USA
| | - Tatsuya Seki
- Sanford Burnham Prebys Medical Discovery Institute, 6400 Sanger Road, Orlando, FL 32827, USA
- Medical and Biological Laboratories, Nagoya 460-0008, Japan
| | | | - Fatu Badiane Markey
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers Biomedical and Health Sciences, Rutgers University, Newark, NJ 07103, USA
| | - Mona Batish
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers Biomedical and Health Sciences, Rutgers University, Newark, NJ 07103, USA
| | | | - Shaojie Zhang
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Animesh Ray
- Keck Graduate Institute, 535 Watson Drive, Claremont, CA 91711, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ranjan J. Perera
- Sanford Burnham Prebys Medical Discovery Institute, 6400 Sanger Road, Orlando, FL 32827, USA
- Corresponding author.
| |
Collapse
|
8
|
Enriquez-Barreto L, Morales M. The PI3K signaling pathway as a pharmacological target in Autism related disorders and Schizophrenia. MOLECULAR AND CELLULAR THERAPIES 2016; 4:2. [PMID: 26877878 PMCID: PMC4751644 DOI: 10.1186/s40591-016-0047-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 01/25/2016] [Indexed: 01/01/2023]
Abstract
This review is focused in PI3K’s involvement in two widespread mental disorders: Autism and Schizophrenia. A large body of evidence points to synaptic dysfunction as a cause of these diseases, either during the initial phases of brain synaptic circuit’s development or later modulating synaptic function and plasticity. Autism related disorders and Schizophrenia are complex genetic conditions in which the identification of gene markers has proved difficult, although the existence of single-gene mutations with a high prevalence in both diseases offers insight into the role of the PI3K signaling pathway. In the brain, components of the PI3K pathway regulate synaptic formation and plasticity; thus, disruption of this pathway leads to synapse dysfunction and pathological behaviors. Here, we recapitulate recent evidences that demonstrate the imbalance of several PI3K elements as leading causes of Autism and Schizophrenia, together with the plausible new pharmacological paths targeting this signaling pathway.
Collapse
Affiliation(s)
- Lilian Enriquez-Barreto
- Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Miguel Morales
- Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
9
|
Ejeskär K, Vickes O, Kuchipudi A, Wettergren Y, Uv A, Rotter Sopasakis V. The Unique Non-Catalytic C-Terminus of P37delta-PI3K Adds Proliferative Properties In Vitro and In Vivo. PLoS One 2015; 10:e0127497. [PMID: 26024481 PMCID: PMC4449119 DOI: 10.1371/journal.pone.0127497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/16/2015] [Indexed: 12/22/2022] Open
Abstract
The PI3K/Akt pathway is central for numerous cellular functions and is frequently deregulated in human cancers. The catalytic subunits of PI3K, p110, are thought to have a potential oncogenic function, and the regulatory subunit p85 exerts tumor suppressor properties. The fruit fly, Drosophila melanogaster, is a highly suitable system to investigate PI3K signaling, expressing one catalytic, Dp110, and one regulatory subunit, Dp60, and both show strong homology with the human PI3K proteins p110 and p85. We recently showed that p37δ, an alternatively spliced product of human PI3K p110δ, displayed strong proliferation-promoting properties despite lacking the catalytic domain completely. Here we functionally evaluate the different domains of human p37δ in Drosophila. The N-terminal region of Dp110 alone promotes cell proliferation, and we show that the unique C-terminal region of human p37δ further enhances these proliferative properties, both when expressed in Drosophila, and in human HEK-293 cells. Surprisingly, although the N-terminal region of Dp110 and the C-terminal region of p37δ both display proliferative effects, over-expression of full length Dp110 or the N-terminal part of Dp110 decreases survival in Drosophila, whereas the unique C-terminal region of p37δ prevents this effect. Furthermore, we found that the N-terminal region of the catalytic subunit of PI3K p110, including only the Dp60 (p85)-binding domain and a minor part of the Ras binding domain, rescues phenotypes with severely impaired development caused by Dp60 over-expression in Drosophila, possibly by regulating the levels of Dp60, and also by increasing the levels of phosphorylated Akt. Our results indicate a novel kinase-independent function of the PI3K catalytic subunit.
Collapse
Affiliation(s)
- Katarina Ejeskär
- Systems Biology Research Center, School of Bioscience, University of Skövde, Skövde, Sweden
- Department of Medical and Clinical Genetics, Gothenburg University, Gothenburg, Sweden
- * E-mail:
| | - Oscar Vickes
- Systems Biology Research Center, School of Bioscience, University of Skövde, Skövde, Sweden
| | - Arunakar Kuchipudi
- Systems Biology Research Center, School of Bioscience, University of Skövde, Skövde, Sweden
| | - Yvonne Wettergren
- Department of General Surgery, Gothenburg University, Gothenburg, Sweden
| | - Anne Uv
- Department of Medical and Clinical Genetics, Gothenburg University, Gothenburg, Sweden
| | - Victoria Rotter Sopasakis
- Department of Molecular and Clinical Medicine, Institute of Medicine, Wallenberg Laboratory, Gothenburg University, Gothenburg, Sweden
| |
Collapse
|
10
|
Guo M, Zhang X, Wang G, Sun J, Jiang Z, Khadarian K, Yu S, Zhao Y, Xie C, Zhang K, Zhu M, Shen H, Lin Z, Jiang C, Shen J, Zheng Y. miR-603 promotes glioma cell growth via Wnt/β-catenin pathway by inhibiting WIF1 and CTNNBIP1. Cancer Lett 2015; 360:76-86. [PMID: 25681036 DOI: 10.1016/j.canlet.2015.02.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/21/2015] [Accepted: 02/03/2015] [Indexed: 12/20/2022]
Abstract
Gliomas are the most common and deadly type of brain tumor. In spite of progressive treatments, patient prognosis has not improved significantly. MicroRNAs are considered promising candidates for glioma therapy. MiR-603 was found overexpressed in both glioma tissues and cell lines. MiR-603 promoted cell proliferation, cell cycle progression and neurosphere formation. Conversely, inhibition of miR-603 remarkably reduced these effects. We confirmed that WIF1 and CTNNBIP1 are bona fide targets of miR-603. The negative correlation between miR-603 and these molecules' expression was shown by Pearson correlation in 50 primary glioma tissue samples. Furthermore, overexpression of miR-603 promoted nuclear β-catenin levels and TOPflash luciferase activity, indicating that miR-603 activates the Wnt/β-catenin signaling pathway. Our in vivo results confirmed the positive role of miR-603 in glioma development. We demonstrate that miR-603 regulates glioma development via its WIF1 and CTNNBIP1 targets, which suggests that miR-603 may be a promising candidate for therapeutic applications in glioma treatment.
Collapse
Affiliation(s)
- Mian Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Xiaoming Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Guangzhi Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; Department of Medical Service Management, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Jiahang Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Zhenfeng Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Kevork Khadarian
- Dental School, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shan Yu
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Yan Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Chuncheng Xie
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Kelvin Zhang
- Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095, USA
| | - Minwei Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Hong Shen
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Zhiguo Lin
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Jia Shen
- Dental School, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Yongri Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China.
| |
Collapse
|
11
|
High level of p37δ-mRNA relative to p110δ-mRNA in neuroblastoma tumors correlates with poor patient survival. Med Oncol 2013; 30:724. [PMID: 24026661 DOI: 10.1007/s12032-013-0724-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/29/2013] [Indexed: 01/31/2023]
Abstract
Alterations in the PI3K/Akt pathway, a pathway that promotes proliferation and oncogenic transformation, are common in various cancers. In neuroblastoma, activation of Akt is correlated with aggressive disease although mutations in genes of this pathway are rare. Previous findings include a few mutations in PIK3CD, the gene encoding PI3K catalytic subunit delta, p110δ. We recently reported that an alternatively spliced form of p110δ, called p37δ, had cell proliferative properties and was over-expressed in ovarian and colorectal tumors. Here, we investigated p37δ in neuroblastoma primary tumors of different stages using qPCR (TaqMan) for gene expression analysis (46 samples) and Western blot for protein analysis (22 samples). Elevated levels of both p37δ-mRNA and p110δ-mRNA were detected in metastasizing neuroblastoma tumors compared to normal adrenal gland (P < 0.05), and higher expression of p37δ-mRNA relative to p110δ-mRNA in neuroblastoma non-survivor patients compared to survivors (P < 0.01). p37δ-Protein levels but not p110δ levels correlated with increased pAKT(T308) and pERK levels. The p37δ-mRNA levels did not correlate with the protein levels, indicating major regulation at the translational/protein level. Deregulation of signaling pathways is a hallmark of cancer development. Here, we show that p37δ, a kinase-dead isoform of the PI3K catalytic subunit p110δ, is over-expressed in neuroblastoma tumors, and that it correlates with the activation of both PI3K/Akt- and RAS-signaling pathways.
Collapse
|
12
|
Fransson S, Kogner P, Martinsson T, Ejeskär K. Aggressive neuroblastomas have high p110alpha but low p110delta and p55alpha/p50alpha protein levels compared to low stage neuroblastomas. J Mol Signal 2013; 8:4. [PMID: 23597230 PMCID: PMC3639884 DOI: 10.1186/1750-2187-8-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 04/05/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The phosphoinositide 3-kinase (PI3K)/Akt pathway is involved in neuroblastoma development where Akt/PKB activation is associated with poor prognosis. PI3K activity subsequently activates Akt/PKB, and as mutations of PI3K are rare in neuroblastoma and high levels of PI3K subunit p110delta is associated with favorable disease with low p-Akt/PKB, the levels of other PI3K subunits could be important for Akt activation. METHODS Protein levels of Type IA PI3K catalytic and regulatory subunits were investigated together with levels of phosphorylated Akt/PKB and the PI3K negative regulator PTEN in primary neuroblastoma tumors. Relation between clinical markers and protein levels were evaluated through t-tests. RESULTS We found high levels of p-Akt/PKB correlating to aggressive disease and p-Akt/PKB (T308) showed inverse correlation to PTEN levels. The regulatory isomers p55alpha/p50alpha showed higher levels in favorable neuroblastoma as compared with aggressive neuroblastoma. The PI3K-subunit p110alpha was found mainly in advanced tumors while p110delta showed higher levels in favorable neuroblastoma. CONCLUSIONS Activation of the PI3K/Akt pathway is seen in neuroblastoma tumors, however the contribution of the different PI3K isoforms is unknown. Here we show that p110alpha is preferentially expressed in aggressive neuroblastomas, with high p-Akt/PKB and p110delta is mainly detected in favorable neuroblastomas, with low p-Akt/PKB. This is an important finding as PI3K-specific inhibitors are suggested for enrollment in treatment of neuroblastoma patients.
Collapse
Affiliation(s)
- Susanne Fransson
- Department of Medical and Clinical Genetics, Sahlgrenska Cancer Center, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, SE-405 30, Gothenburg, Sweden.
| | | | | | | |
Collapse
|
13
|
Fransson S, Abel F, Kogner P, Martinsson T, Ejeskär K. Stage-dependent expression of PI3K/Akt‑pathway genes in neuroblastoma. Int J Oncol 2012; 42:609-16. [PMID: 23232578 DOI: 10.3892/ijo.2012.1732] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/05/2012] [Indexed: 11/06/2022] Open
Abstract
The phosphoinositide-3 kinase (PI3K) pathway plays a critical role in cancer cell growth and survival and has also been implicated in the development of the childhood cancer neuroblastoma. In neuroblastoma high mRNA expression of the PI3K catalytic isoform PIK3CD is associated to favorable disease. Yet, activation of Akt is associated with poor prognosis. Since the contribution of the numerous members of this pathway to neuroblastoma pathogenesis is mainly unknown, genes of the PI3K/Akt pathway were analyzed at the mRNA level through microarrays and quantitative real-time RT-PCR (TaqMan) and at the protein level using western blot analysis. Five genes showed lower mRNA expression in aggressive compared to more favorable neuroblastomas (PRKCZ, PRKCB1, EIF4EBP1, PIK3RI and PIK3CD) while the opposite was seen for PDGFRA. Clustering analysis shows that the expression levels of these six genes can predict aggressive disease. At the protein level, p110δ (encoded by PIK3CD) and p85α isomers (encoded by PIK3R1) were more highly expressed in favorable compared to aggressive neuroblastoma. Evaluation of the expression of these PI3K genes can predict aggressive disease, and indicates stage-dependent involvement of PI3K-pathway members in neuroblastoma.
Collapse
Affiliation(s)
- Susanne Fransson
- Department of Medical and Clinical Genetics, Sahlgrenska Cancer Center, Gothenburg University, Gothenburg, Sweden.
| | | | | | | | | |
Collapse
|
14
|
|
15
|
Neuregulin 1-ErbB4-PI3K signaling in schizophrenia and phosphoinositide 3-kinase-p110δ inhibition as a potential therapeutic strategy. Proc Natl Acad Sci U S A 2012; 109:12165-70. [PMID: 22689948 DOI: 10.1073/pnas.1206118109] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Neuregulin 1 (NRG1) and ErbB4, critical neurodevelopmental genes, are implicated in schizophrenia, but the mediating mechanisms are unknown. Here we identify a genetically regulated, pharmacologically targetable, risk pathway associated with schizophrenia and with ErbB4 genetic variation involving increased expression of a PI3K-linked ErbB4 receptor (CYT-1) and the phosphoinositide 3-kinase subunit, p110δ (PIK3CD). In human lymphoblasts, NRG1-mediated phosphatidyl-inositol,3,4,5 triphosphate [PI(3,4,5)P3] signaling is predicted by schizophrenia-associated ErbB4 genotype and PIK3CD levels and is impaired in patients with schizophrenia. In human brain, the same ErbB4 genotype again predicts increased PIK3CD expression. Pharmacological inhibition of p110δ using the small molecule inhibitor, IC87114, blocks the effects of amphetamine in a mouse pharmacological model of psychosis and reverses schizophrenia-related phenotypes in a rat neonatal ventral hippocampal lesion model. Consistent with these antipsychotic-like properties, IC87114 increases AKT phosphorylation in brains of treated mice, implicating a mechanism of action. Finally, in two family-based genetic studies, PIK3CD shows evidence of association with schizophrenia. Our data provide insight into a mechanism of ErbB4 association with schizophrenia; reveal a previously unidentified biological and disease link between NRG1-ErbB4, p110δ, and AKT; and suggest that p110δ is a previously undescribed therapeutic target for the treatment of psychiatric disorders.
Collapse
|
16
|
Cornero A, Acquaviva M, Fardin P, Versteeg R, Schramm A, Eva A, Bosco MC, Blengio F, Barzaghi S, Varesio L. Design of a multi-signature ensemble classifier predicting neuroblastoma patients' outcome. BMC Bioinformatics 2012; 13 Suppl 4:S13. [PMID: 22536959 PMCID: PMC3314564 DOI: 10.1186/1471-2105-13-s4-s13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background Neuroblastoma is the most common pediatric solid tumor of the sympathetic nervous system. Development of improved predictive tools for patients stratification is a crucial requirement for neuroblastoma therapy. Several studies utilized gene expression-based signatures to stratify neuroblastoma patients and demonstrated a clear advantage of adding genomic analysis to risk assessment. There is little overlapping among signatures and merging their prognostic potential would be advantageous. Here, we describe a new strategy to merge published neuroblastoma related gene signatures into a single, highly accurate, Multi-Signature Ensemble (MuSE)-classifier of neuroblastoma (NB) patients outcome. Methods Gene expression profiles of 182 neuroblastoma tumors, subdivided into three independent datasets, were used in the various phases of development and validation of neuroblastoma NB-MuSE-classifier. Thirty three signatures were evaluated for patients' outcome prediction using 22 classification algorithms each and generating 726 classifiers and prediction results. The best-performing algorithm for each signature was selected, validated on an independent dataset and the 20 signatures performing with an accuracy > = 80% were retained. Results We combined the 20 predictions associated to the corresponding signatures through the selection of the best performing algorithm into a single outcome predictor. The best performance was obtained by the Decision Table algorithm that produced the NB-MuSE-classifier characterized by an external validation accuracy of 94%. Kaplan-Meier curves and log-rank test demonstrated that patients with good and poor outcome prediction by the NB-MuSE-classifier have a significantly different survival (p < 0.0001). Survival curves constructed on subgroups of patients divided on the bases of known prognostic marker suggested an excellent stratification of localized and stage 4s tumors but more data are needed to prove this point. Conclusions The NB-MuSE-classifier is based on an ensemble approach that merges twenty heterogeneous, neuroblastoma-related gene signatures to blend their discriminating power, rather than numeric values, into a single, highly accurate patients' outcome predictor. The novelty of our approach derives from the way to integrate the gene expression signatures, by optimally associating them with a single paradigm ultimately integrated into a single classifier. This model can be exported to other types of cancer and to diseases for which dedicated databases exist.
Collapse
Affiliation(s)
- Andrea Cornero
- Laboratory of Molecular Biology, G. Gaslini Institute, Genoa 16147, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wang C, Liu Z, Woo CW, Li Z, Wang L, Wei JS, Marquez VE, Bates SE, Jin Q, Khan J, Ge K, Thiele CJ. EZH2 Mediates epigenetic silencing of neuroblastoma suppressor genes CASZ1, CLU, RUNX3, and NGFR. Cancer Res 2011; 72:315-24. [PMID: 22068036 DOI: 10.1158/0008-5472.can-11-0961] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Neuroblastoma (NB) is the most common extracranial pediatric solid tumor with an undifferentiated status and generally poor prognosis, but the basis for these characteristics remains unknown. In this study, we show that upregulation of the Polycomb protein histone methyltransferase EZH2, which limits differentiation in many tissues, is critical to maintain the undifferentiated state and poor prognostic status of NB by epigenetic repression of multiple tumor suppressor genes. We identified this role for EZH2 by examining the regulation of CASZ1, a recently identified NB tumor suppressor gene whose ectopic restoration inhibits NB cell growth and induces differentiation. Reducing EZH2 expression by RNA interference-mediated knockdown or pharmacologic inhibiton with 3-deazaneplanocin A increased CASZ1 expression, inhibited NB cell growth, and induced neurite extension. Similarly, EZH2(-/-) mouse embryonic fibroblasts (MEF) displayed 3-fold higher levels of CASZ1 mRNA compared with EZH2(+/+) MEFs. In cells with increased expression of CASZ1, treatment with histone deacetylase (HDAC) inhibitor decreased expression of EZH2 and the Polycomb Repressor complex component SUZ12. Under steady-state conditions, H3K27me3 and PRC2 components bound to the CASZ1 gene were enriched, but this enrichment was decreased after HDAC inhibitor treatment. We determined that the tumor suppressors CLU, NGFR, and RUNX3 were also directly repressed by EZH2 like CASZ1 in NB cells. Together, our findings establish that aberrant upregulation of EZH2 in NB cells silences several tumor suppressors, which contribute to the genesis and maintenance of the undifferentiated phenotype of NB tumors.
Collapse
Affiliation(s)
- Chunxi Wang
- Cell & Molecular Biology Section, National Cancer Institute, NIH, Bethesda, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Fransson S, Uv A, Eriksson H, Andersson MK, Wettergren Y, Bergo M, Ejeskär K. p37δ is a new isoform of PI3K p110δ that increases cell proliferation and is overexpressed in tumors. Oncogene 2011; 31:3277-86. [PMID: 22020336 DOI: 10.1038/onc.2011.492] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The phosphatidylinositol 3-kinases (PI3Ks) regulate cell growth, proliferation and survival, and are frequently affected in human cancer. PI3K is composed of a catalytic subunit, p110, and a regulatory subunit, p85. The PI3K catalytic subunit p110δ is encoded by PIK3CD and contains p85- and RAS-binding domains, and a kinase domain. Here we present an alternatively spliced PIK3CD transcript encoding a previously unknown protein, p37δ, and demonstrate that this protein is expressed in human ovarian and colorectal tumors. p37δ retains the p85-binding domain and a fraction of the RAS-binding domain, lacks the catalytic domain, and has a unique carboxyl-terminal region. In contrast to p110δ, which stabilizes p85, p37δ promoted p85 sequestering. Despite the truncated RAS-binding domain, p37δ bound to RAS and we found a strong positive correlation between the protein levels of p37δ and RAS. Overexpressing p37δ, but not p110δ, increased the proliferation and invasive properties of HEK-293 cells and mouse embryonic fibroblasts. Cells overexpressing p37δ showed a quicker phosphorylation response of AKT and ERK1/2 following serum stimulation. Ubiquitous expression of human p37δ in the fruit fly increased body size, DNA content and phosphorylated ERK1/2 levels. Thus, p37δ appears to be a new tumor-specific isoform of p110δ with growth-promoting properties.
Collapse
Affiliation(s)
- S Fransson
- Department of Medical and Clinical Genetics, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | | |
Collapse
|
19
|
Piqueras M, Navarro S, Castel V, Cañete A, Llombart-Bosch A, Noguera R. Analysis of biological prognostic factors using tissue microarrays in neuroblastic tumors. Pediatr Blood Cancer 2009; 52:209-14. [PMID: 19006223 DOI: 10.1002/pbc.21833] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Neuroblastic tumors (NT) are pediatric neoplasms with a heterogeneous genetic profile. They present genotypic alterations of prognostic value, the study of which is mandatory in designing therapeutic management. Tissue microarrays (TMA) from paraffin material allow the analysis of a large number of cases with minimal costs. The main purpose of the present study is to analyze specific genetic markers of neuroblastic tumors included in TMAs and determine their prognostic value. We compare the results obtained by different molecular techniques at different substrates to evaluate the feasibility of these assays. PROCEDURE One hundred thirty-nine samples were included in four different TMAs. We performed FISH assays to determine the status of MYCN gene, 1p36 region and 17q23 arm. The prognostic value of the genetic markers as well as the statistical correlation among clinical variables and outcome were analyzed by SPSS. RESULTS MYCN amplification was detected in 35.3% of the cases, whereas 1p36 deletion and 17q23 gain was observed in 46.8% and 58.3% of the cases, respectively. An adverse prognosis was noted among these patients. Other adverse factors were age (>18 months) as well as high stage of disease (stage 4). Phenotypic signs of differentiation correlated with good outcome. CONCLUSION Retrospective studies using paraffin-embedded tissues assembled in TMA are a useful tool for the analysis of prognostic factors in NT.
Collapse
Affiliation(s)
- Marta Piqueras
- Department of Pathology, Medical School, University of Valencia, Valencia, Spain
| | | | | | | | | | | |
Collapse
|
20
|
Igarashi J, Muroi S, Kawashima H, Wang X, Shinojima Y, Kitamura E, Oinuma T, Nemoto N, Song F, Ghosh S, Held WA, Nagase H. Quantitative analysis of human tissue-specific differences in methylation. Biochem Biophys Res Commun 2008; 376:658-64. [PMID: 18805397 PMCID: PMC2613005 DOI: 10.1016/j.bbrc.2008.09.044] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 09/06/2008] [Indexed: 02/08/2023]
Abstract
Tissue-specific differentially methylated regions (tDMRs) have been identified and implicated for their indispensable involvement in mammalian development and tissue differentiation. In this report, a quantitative DNA methylation analysis was performed for 13 human orthologous regions of recently confirmed mouse tDMRs by using Sequenom Mass Array, by which bisulfite-treated fragments are quantitatively detected using time of flight mass spectroscopy analysis. Eight regions were shown as tDMRs in various tissues from three independent individuals. Testis DNA samples from eight individuals were also analyzed for methylation. Interestingly, there is evidence that the DNA methylation level is divergent among individuals. DNA methylation levels of five testis-specific DMRs were significantly inversely correlated with the number of spermatocytes. However, a positive correlation was seen at tDMRs located near the TRIM38 and CASZ1 genes. Our results indicate that tDMRs are conserved between mouse and human and may have an important role in regulating tissue function, differentiation, and aging.
Collapse
Affiliation(s)
- Jun Igarashi
- Life Science, Advanced Research Institute for Sciences and Humanities, Nihon University, 12-5, Goban-cho, Chiyoda-ku, Tokyo 102-8251
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Boller D, Schramm A, Doepfner KT, Shalaby T, von Bueren AO, Eggert A, Grotzer MA, Arcaro A. Targeting the phosphoinositide 3-kinase isoform p110delta impairs growth and survival in neuroblastoma cells. Clin Cancer Res 2008; 14:1172-81. [PMID: 18281552 DOI: 10.1158/1078-0432.ccr-07-0737] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The phosphoinositide 3-kinase (PI3K)/Akt pathway is frequently activated in human cancer and plays a crucial role in neuroblastoma biology. We were interested in gaining further insight into the potential of targeting PI3K/Akt signaling as a novel antiproliferative approach in neuroblastoma. EXPERIMENTAL DESIGN The expression pattern and functions of class I(A) PI3K isoforms were investigated in tumor samples and cell lines. Effects on cell survival and downstream signaling were analyzed following down-regulation of p110alpha or p110delta in SH-SY5Y and LA-N-1 cells by means of RNA interference. RESULTS Overexpression of the catalytic p110delta and regulatory p85alpha isoforms was detected in a panel of primary neuroblastoma samples and cell lines, compared with normal adrenal gland tissue. Although down-regulation of either p110alpha or p110delta led to impaired cell growth, reduced expression of p110delta also had a selective effect on the survival of SH-SY5Y cells. Decreased levels of p110delta were found to induce apoptosis and lead to lower expression levels of antiapoptotic Bcl-2 family proteins. SH-SY5Y cells with decreased p110delta levels also displayed reduced activation of ribosomal protein S6 kinase in response to stimulation with epidermal growth factor and insulin-like growth factor-I. CONCLUSIONS Together, our data reveal a novel function of p110delta in neuroblastoma growth and survival.
Collapse
Affiliation(s)
- Danielle Boller
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Vandepoele K, Andries V, Van Roy N, Staes K, Vandesompele J, Laureys G, De Smet E, Berx G, Speleman F, van Roy F. A constitutional translocation t(1;17)(p36.2;q11.2) in a neuroblastoma patient disrupts the human NBPF1 and ACCN1 genes. PLoS One 2008; 3:e2207. [PMID: 18493581 PMCID: PMC2386287 DOI: 10.1371/journal.pone.0002207] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 04/11/2008] [Indexed: 11/18/2022] Open
Abstract
The human 1p36 region is deleted in many different types of tumors, and so it probably harbors one or more tumor suppressor genes. In a Belgian neuroblastoma patient, a constitutional balanced translocation t(1;17)(p36.2;q11.2) may have led to the development of the tumor by disrupting or activating a gene. Here, we report the cloning of both translocation breakpoints and the identification of a novel gene that is disrupted by this translocation. This gene, named NBPF1 for Neuroblastoma BreakPoint Family member 1, belongs to a recently described gene family encoding highly similar proteins, the functions of which are unknown. The translocation truncates NBPF1 and gives rise to two chimeric transcripts of NBPF1 sequences fused to sequences derived from chromosome 17. On chromosome 17, the translocation disrupts one of the isoforms of ACCN1, a potential glioma tumor suppressor gene. Expression of the NBPF family in neuroblastoma cell lines is highly variable, but it is decreased in cell lines that have a deletion of chromosome 1p. More importantly, expression profiling of the NBPF1 gene showed that its expression is significantly lower in cell lines with heterozygous NBPF1 loss than in cell lines with a normal 1p chromosome. Meta-analysis of the expression of NBPF and ACCN1 in neuroblastoma tumors indicates a role for the NBPF genes and for ACCN1 in tumor aggressiveness. Additionally, DLD1 cells with inducible NBPF1 expression showed a marked decrease of clonal growth in a soft agar assay. The disruption of both NBPF1 and ACCN1 genes in this neuroblastoma patient indicates that these genes might suppress development of neuroblastoma and possibly other tumor types.
Collapse
Affiliation(s)
- Karl Vandepoele
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Molecular Biology, Ghent University, Ghent, Belgium
| | - Vanessa Andries
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Molecular Biology, Ghent University, Ghent, Belgium
| | - Nadine Van Roy
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Katrien Staes
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
| | - Jo Vandesompele
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Geneviève Laureys
- Department of Pediatric Hematology and Oncology, Ghent University Hospital, Ghent, Belgium
| | - Els De Smet
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Geert Berx
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Molecular Biology, Ghent University, Ghent, Belgium
| | - Frank Speleman
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Frans van Roy
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
23
|
Carén H, Fransson S, Ejeskär K, Kogner P, Martinsson T. Genetic and epigenetic changes in the common 1p36 deletion in neuroblastoma tumours. Br J Cancer 2007; 97:1416-24. [PMID: 17940511 PMCID: PMC2360241 DOI: 10.1038/sj.bjc.6604032] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Chromosome 1p is frequently deleted in neuroblastoma (NB) tumours. The commonly deleted region has been narrowed down by loss of heterozygosity studies undertaken by different groups. Based on earlier mapping data, we have focused on a region on 1p36 (chr1: 7 765 595–11 019 814) and performed an analysis of 30 genes by exploring features such as epigenetic regulation, that is DNA methylation and histone deacetylation, mutations at the DNA level and mRNA expression. Treatment of NB cell lines with the histone deacetylase inhibitor trichostatin A led to increased gene transcription of four of the 30 genes, ERRFI1 (MIG-6), PIK3CD, RBP7 (CRBPIV) and CASZ1, indicating that these genes could be affected by epigenetic downregulation in NBs. Two patients with nonsynonymous mutations in the PIK3CD gene were detected. One patient harboured three variations in the same exon, and p.R188W. The other patient had the variation p.M655I. In addition, synonymous variations and one variation in an intronic sequence were also found. The mRNA expression of this gene is downregulated in unfavourable, compared to favourable, NBs. One nonsynonymous mutation was also identified in the ERRFI1 gene, p.N343S, and one synonymous. None of the variations above were found in healthy control individuals. In conclusion, of the 30 genes analysed, the PIK3CD gene stands out as one of the most interesting for further studies of NB development and progression.
Collapse
Affiliation(s)
- H Carén
- Department of Clinical Genetics, Institute of Biomedicine, Göteborg University, Sahlgrenska University Hospital, Göteborg SE-41345, Sweden
| | | | | | | | | |
Collapse
|