1
|
Li J, Shen Z, Wang Z, Chao H, Xu Y, Zeng Z, Bian X, Zhang J, Pan J, Miao W, Wu W, Yao L, Chen S, Wen L. CTCF: A novel fusion partner of ETO2 in a multiple relapsed acute myeloid leukemia patient. J Leukoc Biol 2021; 111:981-987. [PMID: 34622967 DOI: 10.1002/jlb.2a0720-441rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
ETO2 is a nuclear co-repressor, which plays a critical role in the regulation of the cell cycle, self-renewal capacity, and differentiation of hematopoietic progenitor cells. We identified novel fusion transcripts involving ETO2 and CTCF by RNA-seq in a multiple relapsed AML case. The CTCF-ETO2 and ETO2-CTCF chimeric genes were validated by RT-PCR and Sanger sequencing. In addition, both transcripts apparently promoted cell proliferation via JAK/STAT3 pathway that is sensitive to STAT3 inhibitors. The novel fusions may have prognostic value and pathogenic mechanisms in acute myeloid leukemia.
Collapse
Affiliation(s)
- Jiao Li
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, P. R. China.,Hematology Department, Yixing People's Hospital of Jiangsu Province, Yixing, Wuxi, P. R. China
| | - Zhen Shen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, P. R. China
| | - Zheng Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, P. R. China.,Suzhou Jsuniwell Medical Laboratory, Suzhou, P. R. China
| | - Hongying Chao
- Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, P. R. China
| | - Yi Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, P. R. China
| | - Zhao Zeng
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, P. R. China
| | - Xiaosen Bian
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, P. R. China
| | - Jun Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, P. R. China
| | - Jinlan Pan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, P. R. China
| | - Weiwei Miao
- Changshu No.1 People's Hospital, Suzhou, P. R. China
| | - Wenzhong Wu
- Hematology Department, Yixing People's Hospital of Jiangsu Province, Yixing, Wuxi, P. R. China
| | - Li Yao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, P. R. China
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, P. R. China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, P. R. China
| | - Lijun Wen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, P. R. China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, P. R. China
| |
Collapse
|
5
|
López C, Kleinheinz K, Aukema SM, Rohde M, Bernhart SH, Hübschmann D, Wagener R, Toprak UH, Raimondi F, Kreuz M, Waszak SM, Huang Z, Sieverling L, Paramasivam N, Seufert J, Sungalee S, Russell RB, Bausinger J, Kretzmer H, Ammerpohl O, Bergmann AK, Binder H, Borkhardt A, Brors B, Claviez A, Doose G, Feuerbach L, Haake A, Hansmann ML, Hoell J, Hummel M, Korbel JO, Lawerenz C, Lenze D, Radlwimmer B, Richter J, Rosenstiel P, Rosenwald A, Schilhabel MB, Stein H, Stilgenbauer S, Stadler PF, Szczepanowski M, Weniger MA, Zapatka M, Eils R, Lichter P, Loeffler M, Möller P, Trümper L, Klapper W, Hoffmann S, Küppers R, Burkhardt B, Schlesner M, Siebert R. Genomic and transcriptomic changes complement each other in the pathogenesis of sporadic Burkitt lymphoma. Nat Commun 2019; 10:1459. [PMID: 30926794 PMCID: PMC6440956 DOI: 10.1038/s41467-019-08578-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 01/18/2019] [Indexed: 12/17/2022] Open
Abstract
Burkitt lymphoma (BL) is the most common B-cell lymphoma in children. Within the International Cancer Genome Consortium (ICGC), we performed whole genome and transcriptome sequencing of 39 sporadic BL. Here, we unravel interaction of structural, mutational, and transcriptional changes, which contribute to MYC oncogene dysregulation together with the pathognomonic IG-MYC translocation. Moreover, by mapping IGH translocation breakpoints, we provide evidence that the precursor of at least a subset of BL is a B-cell poised to express IGHA. We describe the landscape of mutations, structural variants, and mutational processes, and identified a series of driver genes in the pathogenesis of BL, which can be targeted by various mechanisms, including IG-non MYC translocations, germline and somatic mutations, fusion transcripts, and alternative splicing. Burkitt lymphoma (BL) is the most common pediatric B-cell lymphoma. Here, within the International Cancer Genome Consortium, the authors performed whole genome and transcriptome sequencing of 39 sporadic BL, describing the landscape of mutations, structural variants, and mutational processes that underpin this disease how alterations on different cellular levels cooperate in deregulating key pathways and complexes.
Collapse
Affiliation(s)
- Cristina López
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, 89081, Ulm, Germany.,Institute of Human Genetics, Christian-Albrechts-University, 24105, Kiel, Germany
| | - Kortine Kleinheinz
- Division of Theoretical Bioinformatics (B080), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Department for Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology and Bioquant, University of Heidelberg, 69120, Heidelberg, Germany
| | - Sietse M Aukema
- Institute of Human Genetics, Christian-Albrechts-University, 24105, Kiel, Germany.,Hematopathology Section, Christian-Albrechts-University, 24105, Kiel, Germany
| | - Marius Rohde
- Pediatric Hematology and Oncology, University Hospital Giessen, 35392, Giessen, Germany
| | - Stephan H Bernhart
- Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107, Leipzig, Germany.,Bioinformatics Group, Department of Computer, University of Leipzig, 04107, Leipzig, Germany.,Transcriptome Bioinformatics, LIFE Research Center for Civilization Diseases, University of Leipzig, 04107, Leipzig, Germany
| | - Daniel Hübschmann
- Division of Theoretical Bioinformatics (B080), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Department of Pediatric Immunology, Hematology and Oncology, University Hospital, 69120, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Division of Stem Cells and Cancer, Heidelberg, Germany and Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany
| | - Rabea Wagener
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, 89081, Ulm, Germany.,Institute of Human Genetics, Christian-Albrechts-University, 24105, Kiel, Germany
| | - Umut H Toprak
- Division of Theoretical Bioinformatics (B080), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Bioinformatics and Omics Data Analytics (B240), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Francesco Raimondi
- Cell Networks, Bioquant and Biochemistry CenterBiochemie Zentrum Heidelberg (BZH), University of Heidelberg, 69120, Heidelberg, Germany
| | - Markus Kreuz
- Institute for Medical Informatics Statistics and Epidemiology, 04107, Leipzig, Germany
| | | | - Zhiqin Huang
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Lina Sieverling
- Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany.,Division of Applied Bioinformatics (G200), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Nagarajan Paramasivam
- Division of Theoretical Bioinformatics (B080), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Medical Faculty Heidelberg, Heidelberg University, 69120, Heidelber, Germany
| | - Julian Seufert
- Bioinformatics and Omics Data Analytics (B240), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | | | - Robert B Russell
- Cell Networks, Bioquant and Biochemistry CenterBiochemie Zentrum Heidelberg (BZH), University of Heidelberg, 69120, Heidelberg, Germany
| | - Julia Bausinger
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, 89081, Ulm, Germany
| | - Helene Kretzmer
- Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107, Leipzig, Germany.,Bioinformatics Group, Department of Computer, University of Leipzig, 04107, Leipzig, Germany.,Transcriptome Bioinformatics, LIFE Research Center for Civilization Diseases, University of Leipzig, 04107, Leipzig, Germany.,Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Ole Ammerpohl
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, 89081, Ulm, Germany
| | - Anke K Bergmann
- Institute of Human Genetics, Christian-Albrechts-University, 24105, Kiel, Germany.,Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Kiel, 24105, Kiel, Germany
| | - Hans Binder
- Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107, Leipzig, Germany.,Bioinformatics Group, Department of Computer, University of Leipzig, 04107, Leipzig, Germany
| | - Arndt Borkhardt
- Medical Faculty, Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Benedikt Brors
- Division of Applied Bioinformatics (G200), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Alexander Claviez
- Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Kiel, 24105, Kiel, Germany
| | - Gero Doose
- Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107, Leipzig, Germany.,Bioinformatics Group, Department of Computer, University of Leipzig, 04107, Leipzig, Germany.,Transcriptome Bioinformatics, LIFE Research Center for Civilization Diseases, University of Leipzig, 04107, Leipzig, Germany
| | - Lars Feuerbach
- Division of Applied Bioinformatics (G200), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Andrea Haake
- Institute of Human Genetics, Christian-Albrechts-University, 24105, Kiel, Germany
| | - Martin-Leo Hansmann
- Senckenberg Institute of Pathology, University of Frankfurt Medical School, 60590, Frankfurt am Main, Germany
| | - Jessica Hoell
- Medical Faculty, Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Michael Hummel
- Institute of Pathology, Charité - University Medicine Berlin, 10117, Berlin, Germany
| | - Jan O Korbel
- Genome Biology Unit, EMBL Heidelberg, 69117, Heidelberg, Germany
| | - Chris Lawerenz
- Division of Theoretical Bioinformatics (B080), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Dido Lenze
- Institute of Pathology, Charité - University Medicine Berlin, 10117, Berlin, Germany
| | - Bernhard Radlwimmer
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Julia Richter
- Institute of Human Genetics, Christian-Albrechts-University, 24105, Kiel, Germany.,Hematopathology Section, Christian-Albrechts-University, 24105, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, 24105, Kiel, Germany
| | - Andreas Rosenwald
- Institute of Pathology, Comprehensive Cancer Center Mainfranken, University of Würzburg, 97080, Würzburg, Germany
| | - Markus B Schilhabel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, 24105, Kiel, Germany
| | | | | | - Peter F Stadler
- Bioinformatics Group, Department of Computer, University of Leipzig, 04107, Leipzig, Germany
| | | | - Marc A Weniger
- Institute of Cell Biology (Cancer Research), Medical School, University of Duisburg-Essen, 45147, Essen, Germany
| | - Marc Zapatka
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Roland Eils
- Division of Theoretical Bioinformatics (B080), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Department for Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology and Bioquant, University of Heidelberg, 69120, Heidelberg, Germany
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Markus Loeffler
- Institute for Medical Informatics Statistics and Epidemiology, 04107, Leipzig, Germany
| | - Peter Möller
- Institute of Pathology, University of Ulm and University Hospital of Ulm, 89081, Ulm, Germany
| | - Lorenz Trümper
- Department of Hematology and Oncology, Georg-August-University of Göttingen, 37075, Göttingen, Germany
| | - Wolfram Klapper
- Hematopathology Section, Christian-Albrechts-University, 24105, Kiel, Germany
| | | | - Steve Hoffmann
- Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107, Leipzig, Germany.,Bioinformatics Group, Department of Computer, University of Leipzig, 04107, Leipzig, Germany.,Transcriptome Bioinformatics, LIFE Research Center for Civilization Diseases, University of Leipzig, 04107, Leipzig, Germany.,Computational Biology, Leibniz Institute on Ageing-Fritz Lipmann Institut (FLI), 07745, Jena, Germany
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), Medical School, University of Duisburg-Essen, 45147, Essen, Germany
| | - Birgit Burkhardt
- University Hospital Münster - Pediatric Hematology and Oncology, 48149, Münster, Germany
| | - Matthias Schlesner
- Division of Theoretical Bioinformatics (B080), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany. .,Bioinformatics and Omics Data Analytics (B240), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, 89081, Ulm, Germany. .,Institute of Human Genetics, Christian-Albrechts-University, 24105, Kiel, Germany.
| |
Collapse
|
8
|
Yu X, Davenport JW, Urtishak KA, Carillo ML, Gosai SJ, Kolaris CP, Byl JAW, Rappaport EF, Osheroff N, Gregory BD, Felix CA. Genome-wide TOP2A DNA cleavage is biased toward translocated and highly transcribed loci. Genome Res 2017; 27:1238-1249. [PMID: 28385713 PMCID: PMC5495075 DOI: 10.1101/gr.211615.116] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 04/05/2017] [Indexed: 01/22/2023]
Abstract
Type II topoisomerases orchestrate proper DNA topology, and they are the targets of anti-cancer drugs that cause treatment-related leukemias with balanced translocations. Here, we develop a high-throughput sequencing technology to define TOP2 cleavage sites at single-base precision, and use the technology to characterize TOP2A cleavage genome-wide in the human K562 leukemia cell line. We find that TOP2A cleavage has functionally conserved local sequence preferences, occurs in cleavage cluster regions (CCRs), and is enriched in introns and lincRNA loci. TOP2A CCRs are biased toward the distal regions of gene bodies, and TOP2 poisons cause a proximal shift in their distribution. We find high TOP2A cleavage levels in genes involved in translocations in TOP2 poison–related leukemia. In addition, we find that a large proportion of genes involved in oncogenic translocations overall contain TOP2A CCRs. The TOP2A cleavage of coding and lincRNA genes is independently associated with both length and transcript abundance. Comparisons to ENCODE data reveal distinct TOP2A CCR clusters that overlap with marks of transcription, open chromatin, and enhancers. Our findings implicate TOP2A cleavage as a broad DNA damage mechanism in oncogenic translocations as well as a functional role of TOP2A cleavage in regulating transcription elongation and gene activation.
Collapse
Affiliation(s)
- Xiang Yu
- Biology Department, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - James W Davenport
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Karen A Urtishak
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Marie L Carillo
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Sager J Gosai
- Biology Department, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Christos P Kolaris
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Jo Ann W Byl
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Eric F Rappaport
- NAPCore, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Neil Osheroff
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, USA.,Department of Medicine (Hematology/Oncology), Vanderbilt University, Nashville, Tennessee 37232, USA.,VA Tennessee Valley Healthcare System, Nashville, Tennessee 37212, USA
| | - Brian D Gregory
- Biology Department, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Carolyn A Felix
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|