1
|
Middlezong W, Stinnett V, Phan M, Phan B, Morsberger L, Klausner M, Ghabrial J, DeMetrick N, Zhu J, James T, Pallavajjala A, Gocke CD, Baer MR, Zou YS. Rapid Detection of PML::RARA Fusions in Acute Promyelocytic Leukemia: CRISPR/Cas9 Nanopore Sequencing with Adaptive Sampling. Biomolecules 2024; 14:1595. [PMID: 39766302 PMCID: PMC11674480 DOI: 10.3390/biom14121595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/30/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Acute promyelocytic leukemia (APL) accounts for approximately 10-15% of newly diagnosed acute myeloid leukemia cases and presents with coagulopathy and bleeding. Prompt diagnosis and treatment are required to minimize early mortality in APL as initiation of all-trans retinoic acid therapy rapidly reverses coagulopathy. The PML::RARA fusion is a hallmark of APL and its rapid identification is essential for rapid initiation of specific treatment to prevent early deaths from coagulopathy and bleeding and optimize patient outcomes. Given limitations and long turnaround time of current gene fusion diagnostic strategies, we have developed a novel amplification-free nanopore sequencing-based approach with low cost, easy setup, and fast turnaround time. We termed the approach CRISPR/Cas9-enriched nanopore sequencing with adaptive sampling (CENAS). Using CENAS, we successfully sequenced breakpoints of typical and atypical PML::RARA fusions in APL patients. Compared with the standard-of-care genetic diagnostic tests, CENAS achieved good concordance in detecting PML::RARA fusions in this study. CENAS allowed for the identification of sequence information of fusion breakpoints involved in typical and atypical PML::RARA fusions and identified additional genes (ANKFN1 and JOSD1) and genomic regions (13q14.13) involving the atypical fusions. To the best of our knowledge, involvements of the ANKFN1 gene, the JOSD1 gene, and the 13q14.13 genomic region flanking with the SIAH3 and ZC3H13 genes have not been reported in the atypical PML::RARA fusions. CENAS has great potential to develop as a point-of-care test enabling immediate, low-cost bedside diagnosis of APL patients with a PML::RARA fusion. Given the early death rate in APL patients still reaches 15%, and ~10% of APL patients are resistant to initial therapy or prone to relapse, further sequencing studies of typical and atypical PML::RARA fusion might shed light on the pathophysiology of the disease and its responsiveness to treatment. Understanding the involvement of additional genes and positional effects related to the PML and RARA genes could shed light on their role in APL and may aid in the development of novel targeted therapies.
Collapse
Affiliation(s)
- William Middlezong
- Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA; (W.M.); (M.P.)
| | - Victoria Stinnett
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (V.S.); (L.M.); (M.K.); (J.G.); (N.D.); (J.Z.); (T.J.); (A.P.); (C.D.G.)
| | - Michael Phan
- Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA; (W.M.); (M.P.)
| | - Brian Phan
- Department of Biology, The College of William and Mary, Williamsburg, VA 23186, USA;
| | - Laura Morsberger
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (V.S.); (L.M.); (M.K.); (J.G.); (N.D.); (J.Z.); (T.J.); (A.P.); (C.D.G.)
| | - Melanie Klausner
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (V.S.); (L.M.); (M.K.); (J.G.); (N.D.); (J.Z.); (T.J.); (A.P.); (C.D.G.)
| | - Jen Ghabrial
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (V.S.); (L.M.); (M.K.); (J.G.); (N.D.); (J.Z.); (T.J.); (A.P.); (C.D.G.)
| | - Natalie DeMetrick
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (V.S.); (L.M.); (M.K.); (J.G.); (N.D.); (J.Z.); (T.J.); (A.P.); (C.D.G.)
| | - Jing Zhu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (V.S.); (L.M.); (M.K.); (J.G.); (N.D.); (J.Z.); (T.J.); (A.P.); (C.D.G.)
| | - Trisha James
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (V.S.); (L.M.); (M.K.); (J.G.); (N.D.); (J.Z.); (T.J.); (A.P.); (C.D.G.)
| | - Aparna Pallavajjala
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (V.S.); (L.M.); (M.K.); (J.G.); (N.D.); (J.Z.); (T.J.); (A.P.); (C.D.G.)
| | - Christopher D. Gocke
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (V.S.); (L.M.); (M.K.); (J.G.); (N.D.); (J.Z.); (T.J.); (A.P.); (C.D.G.)
| | - Maria R. Baer
- Department of Medicine, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA;
| | - Ying S. Zou
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (V.S.); (L.M.); (M.K.); (J.G.); (N.D.); (J.Z.); (T.J.); (A.P.); (C.D.G.)
| |
Collapse
|
2
|
A novel RARA-SNX15 fusion in PML-RARA-positive acute promyelocytic leukemia with t(11;17;15)(q13;q21.2;q24.1). Int J Hematol 2022; 116:956-960. [PMID: 35854096 DOI: 10.1007/s12185-022-03421-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 10/17/2022]
Abstract
Acute promyelocytic leukemia (APL) is characterized by a series of retinoic acid receptor (RAR) fusion genes that lead to the dysregulation of RAR signaling and onset of APL. PML-RARA is the most common fusion generated from t(15;17)(q24;q21). In addition, the reciprocal fusion RARA-PML is present in over 80% of t(15;17) APL cases. The bcr3 types of RARA-PML and RARA-PLZF in particular are reciprocal fusions that contribute to leukemogenesis. Here, we report a variant APL case with t(11;17;15)(q13;q21.2;q24.1). Massive parallel sequencing of patient RNA detected the novel fusion transcripts RARA-SNX15 and SNX15-LINC02255 along with the bcr3 type of PML-RARA. Genetic analysis revealed that RARA-SNX15L is an in-frame fusion due to intron retention caused by RNA mis-splicing. RARA-SNX15L consisted mainly of SNX15 domains, including the Phox-homology domain, which has a critical role in protein-protein interactions among sorting nexins and with other partners. Co-immunoprecipitation analysis revealed that RARA-SNX15L is directly associated with SNX15 and with itself. Further studies are needed to evaluate the biological significance of RARA-SNX15L in APL. In conclusion, this is the first report of APL with a complex chromosomal rearrangement involving SNX15.
Collapse
|
3
|
Andrade FG, Feliciano SVM, Sardou-Cezar I, Brisson GD, dos Santos-Bueno FV, Vianna DT, Marques LVC, Terra-Granado E, Zalcberg I, Santos MDO, Costa JT, Noronha EP, Thuler LCS, Wiemels JL, Pombo-de-Oliveira MS. Pediatric Acute Promyelocytic Leukemia: Epidemiology, Molecular Features, and Importance of GST-Theta 1 in Chemotherapy Response and Outcome. Front Oncol 2021; 11:642744. [PMID: 33816294 PMCID: PMC8017304 DOI: 10.3389/fonc.2021.642744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/08/2021] [Indexed: 11/23/2022] Open
Abstract
Previous studies have suggested a variation in the incidence of acute promyelocytic leukemia (APL) among the geographic regions with relatively higher percentages in the Latin American population. We aimed to explore the population burden of pediatric APL, gathering information from the population-based cancer registry (PBCR) and the diagnosis of APL obtained through incident cases from a hospital-based cohort. The homozygous deletion in glutathione S-transferases (GSTs) leads to a loss of enzyme detoxification activity, possibly affecting the treatment response. Mutations in the RAS pathway genes are also considered to be a key component of the disease both in the pathogenesis and in the outcomes. We have assessed mutations in a RAS-MAP kinase pathway (FLT3, PTPN11, and K-/NRAS) and GST variant predisposition risk in the outcome. Out of the 805 children and adolescents with acute myeloid leukemia (AML) who are registered in the PBCR, 35 (4.3%) were APL cases. The age-adjusted incidence rate (AAIR) was 0.03 per 100,000 person-years. One-hundred and sixty-three patients with APL were studied out of 931 AML cases (17.5%) from a hospital-based cohort. Mutations in FLT3, KRAS, and NRAS accounted for 52.1% of the cases. Patients with APL presented a 5-year probability of the overall survival (OS) of 67.3 ± 5.8%. A GST-theta 1 (GSTT1) null genotype conferred adverse prognosis, with an estimated hazard ratio of 2.8, 95% confidence interval (CI) 1.2-6.9. We speculate that the GSTT1 polymorphism is associated with therapeutics and would allow better OS of patients with APL with a GSTT1 null genotype.
Collapse
Affiliation(s)
- Francianne G. Andrade
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Suellen V. M. Feliciano
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Ingrid Sardou-Cezar
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Gisele D. Brisson
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Filipe V. dos Santos-Bueno
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Danielle T. Vianna
- Laboratory of Molecular Biology, Bone Marrow Transplantation Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Luísa V. C. Marques
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Eugênia Terra-Granado
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Ilana Zalcberg
- Laboratory of Molecular Biology, Bone Marrow Transplantation Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Marceli de O. Santos
- Surveillance and Prevention, Instituto Nacional de Cancer, Rio de Janeiro, Brazil
| | - Juliana T. Costa
- Department of Pediatric Hematology-Oncology, Hospital Martagão Gesteira, Salvador, Brazil
| | - Elda P. Noronha
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Luiz C. S. Thuler
- Clinical Research Department, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Joseph L. Wiemels
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Maria S. Pombo-de-Oliveira
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Ali MS, Panuzzo C, Calabrese C, Maglione A, Piazza R, Cilloni D, Saglio G, Pergolizzi B, Bracco E. The Giant HECT E3 Ubiquitin Ligase HERC1 Is Aberrantly Expressed in Myeloid Related Disorders and It Is a Novel BCR-ABL1 Binding Partner. Cancers (Basel) 2021; 13:cancers13020341. [PMID: 33477751 PMCID: PMC7832311 DOI: 10.3390/cancers13020341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The pathological role/s of the HERC family members has recently been initiated to be explored in few solid tumors and the assessment of their transcript amount reveals that they might act as effective prognostic factors. However, evidence concerning the non-solid tumors, and especially myeloid related neoplasms, is currently lacking. In the present article for the first time we provide original data for a clear and well-defined association between the gene expression level of a giant HERC E3 ubiquitin ligase family member, HERC1, and some myeloid related disorders, namely Acute Myeloid Leukemia, Myeloproliferative neoplasms and Chronic Myeloid Leukemia. Furthermore, our findings unveil that the HERC1 protein physically interacts, likely forming a very large supramolecular complex, and it is a putative BCR-ABL1 tyrosine kinase substrate. We hope that this work will contribute to the advance of our understanding of the roles played by the giant HERCs in myeloid related neoplasms. Abstract HERC E3 subfamily members are parts of the E3 ubiquitin ligases and key players for a wide range of cellular functions. Though the involvement of the Ubiquitin Proteasome System in blood disorders has been broadly studied, so far the role of large HERCs in this context remains unexplored. In the present study we examined the expression of the large HECT E3 Ubiquitin Ligase, HERC1, in blood disorders. Our findings revealed that HERC1 gene expression was severely downregulated both in acute and in chronic myelogenous leukemia at diagnosis, while it is restored after complete remission achievement. Instead, in Philadelphia the negative myeloproliferative neoplasm HERC1 level was peculiarly controlled, being very low in Primary Myelofibrosis and significantly upregulated in those Essential Thrombocytemia specimens harboring the mutation in the calreticulin gene. Remarkably, in CML cells HERC1 mRNA level was associated with the BCR-ABL1 kinase activity and the HERC1 protein physically interacted with BCR-ABL1. Furthermore, we found that HERC1 was directly tyrosine phosphorylated by the ABL kinase. Overall and for the first time, we provide original evidence on the potential tumor-suppressing or -promoting properties, depending on the context, of HERC1 in myeloid related blood disorders.
Collapse
Affiliation(s)
- Muhammad Shahzad Ali
- Department of Clinical and Biological Science, Medical School, University of Torino, 10043 Orbassano, Italy; (M.S.A.); (C.P.); (C.C.); (A.M.); (D.C.); (G.S.)
| | - Cristina Panuzzo
- Department of Clinical and Biological Science, Medical School, University of Torino, 10043 Orbassano, Italy; (M.S.A.); (C.P.); (C.C.); (A.M.); (D.C.); (G.S.)
| | - Chiara Calabrese
- Department of Clinical and Biological Science, Medical School, University of Torino, 10043 Orbassano, Italy; (M.S.A.); (C.P.); (C.C.); (A.M.); (D.C.); (G.S.)
| | - Alessandro Maglione
- Department of Clinical and Biological Science, Medical School, University of Torino, 10043 Orbassano, Italy; (M.S.A.); (C.P.); (C.C.); (A.M.); (D.C.); (G.S.)
| | - Rocco Piazza
- Department of Health Sciences, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Daniela Cilloni
- Department of Clinical and Biological Science, Medical School, University of Torino, 10043 Orbassano, Italy; (M.S.A.); (C.P.); (C.C.); (A.M.); (D.C.); (G.S.)
| | - Giuseppe Saglio
- Department of Clinical and Biological Science, Medical School, University of Torino, 10043 Orbassano, Italy; (M.S.A.); (C.P.); (C.C.); (A.M.); (D.C.); (G.S.)
| | - Barbara Pergolizzi
- Department of Clinical and Biological Science, Medical School, University of Torino, 10043 Orbassano, Italy; (M.S.A.); (C.P.); (C.C.); (A.M.); (D.C.); (G.S.)
- Correspondence: (B.P.); (E.B.)
| | - Enrico Bracco
- Department of Oncology, Medical School, University of Torino, 10043 Orbassano, Italy
- Correspondence: (B.P.); (E.B.)
| |
Collapse
|
5
|
Stengel A, Shahswar R, Haferlach T, Walter W, Hutter S, Meggendorfer M, Kern W, Haferlach C. Whole transcriptome sequencing detects a large number of novel fusion transcripts in patients with AML and MDS. Blood Adv 2020; 4:5393-5401. [PMID: 33147338 PMCID: PMC7656918 DOI: 10.1182/bloodadvances.2020003007] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/30/2020] [Indexed: 12/31/2022] Open
Abstract
Fusion transcripts are frequent genetic abnormalities in myeloid malignancies and are often the basis for risk stratification, minimal residual disease (MRD) monitoring, and targeted therapy. We comprehensively analyzed the fusion transcript landscape in 572 acute myeloid leukemia (AML) and 630 myelodysplastic syndrome (MDS) patients by whole transcriptome sequencing (WTS). Totally, 274 fusion events (131 unique fusions) were identified in 210/572 AML patients (37%). In 16/630 MDS patients, 16 fusion events (15 unique fusions) were detected (3%). In AML, 141 cases comprised entity-defining rearrangements (51% of all detected fusions) and 21 (8%) additional well-known fusions, all detected by WTS (control group). In MDS, only 1 fusion was described previously (NRIP1-MECOM, n = 2). Interestingly, a high number of so-far unreported fusions were found (41% [112/274] in AML, 88% [14/16] in MDS), all validated by cytogenetic and/or whole genome sequencing data. With 1 exception (CTDSP1-CFLAR, n = 2), all novel fusions were observed in 1 patient each. In AML, cases with novel fusions showed concomitantly a high frequency of TP53 mutations (67%) and of a complex karyotype (71%), which was also observed in MDS, but less pronounced (TP53, 26%; complex karyotype, 21%). A functional annotation of genes involved in novel fusions revealed many functional relevant genes (eg, transcription factors; n = 28 in AML, n = 2 in MDS) or enzymes (n = 42 in AML, n = 9 in MDS). Taken together, new genomic alterations leading to fusion transcripts were much more common in AML than in MDS. Any novel fusions might be of use for developing markers (eg, for MRD monitoring), particularly in cases without an entity-defining abnormality.
Collapse
Affiliation(s)
- Anna Stengel
- MLL Munich Leukemia Laboratory, Munich, Germany; and
| | - Rabia Shahswar
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | | | - Wencke Walter
- MLL Munich Leukemia Laboratory, Munich, Germany; and
| | | | | | - Wolfgang Kern
- MLL Munich Leukemia Laboratory, Munich, Germany; and
| | | |
Collapse
|
6
|
Sala-Gaston J, Martinez-Martinez A, Pedrazza L, Lorenzo-Martín LF, Caloto R, Bustelo XR, Ventura F, Rosa JL. HERC Ubiquitin Ligases in Cancer. Cancers (Basel) 2020; 12:cancers12061653. [PMID: 32580485 PMCID: PMC7352365 DOI: 10.3390/cancers12061653] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/12/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022] Open
Abstract
HERC proteins are ubiquitin E3 ligases of the HECT family. The HERC subfamily is composed of six members classified by size into large (HERC1 and HERC2) and small (HERC3-HERC6). HERC family ubiquitin ligases regulate important cellular processes, such as neurodevelopment, DNA damage response, cell proliferation, cell migration, and immune responses. Accumulating evidence also shows that this family plays critical roles in cancer. In this review, we provide an integrated view of the role of these ligases in cancer, highlighting their bivalent functions as either oncogenes or tumor suppressors, depending on the tumor type. We include a discussion of both the molecular mechanisms involved and the potential therapeutic strategies.
Collapse
Affiliation(s)
- Joan Sala-Gaston
- Departament de Ciències Fisiològiques, Institut d’Investigació de Bellvitge (IDIBELL), Universitat de Barcelona, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.S.-G.); (A.M.-M.); (L.P.); (F.V.)
| | - Arturo Martinez-Martinez
- Departament de Ciències Fisiològiques, Institut d’Investigació de Bellvitge (IDIBELL), Universitat de Barcelona, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.S.-G.); (A.M.-M.); (L.P.); (F.V.)
| | - Leonardo Pedrazza
- Departament de Ciències Fisiològiques, Institut d’Investigació de Bellvitge (IDIBELL), Universitat de Barcelona, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.S.-G.); (A.M.-M.); (L.P.); (F.V.)
| | - L. Francisco Lorenzo-Martín
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer and CIBERONC, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain; (L.F.L.-M.); (R.C.); (X.R.B.)
| | - Rubén Caloto
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer and CIBERONC, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain; (L.F.L.-M.); (R.C.); (X.R.B.)
| | - Xosé R. Bustelo
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer and CIBERONC, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain; (L.F.L.-M.); (R.C.); (X.R.B.)
| | - Francesc Ventura
- Departament de Ciències Fisiològiques, Institut d’Investigació de Bellvitge (IDIBELL), Universitat de Barcelona, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.S.-G.); (A.M.-M.); (L.P.); (F.V.)
| | - Jose Luis Rosa
- Departament de Ciències Fisiològiques, Institut d’Investigació de Bellvitge (IDIBELL), Universitat de Barcelona, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.S.-G.); (A.M.-M.); (L.P.); (F.V.)
- Correspondence:
| |
Collapse
|
7
|
Zhang Z, Xu Y, Jiang M, Kong F, Chen Z, Liu S, Li F. Identification of a new cryptic PML-RARα fusion gene without t(15;17) and biallelic CEBPA mutation in a case of acute promyelocytic leukemia: a case detected only by RT-PCR but not cytogenetics and FISH. Cancer Biol Ther 2020; 21:309-314. [PMID: 31959056 DOI: 10.1080/15384047.2019.1702398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Acute promyelocytic leukemia (APL) is characterized by the presence of promyelocytic leukemia-retinoic acid receptor α (PML-RARα) fusion gene, which is formed following the specific chromosomal translocation t(15;17)(q22;q21). However, cases with PML-RARα generated by occult t(15;17) which are negative by both cytogenetics and fluorescence in situ hybridization (FISH), are difficult to diagnose, leading to impaired treatment effectiveness. In the present study, we reported a case of a 66-year-old male patient, and bone marrow morphology, flow cytometry and cytogenetics did not support the diagnosis of APL. Molecular techniques, such as reverse-transcription polymerase chain reaction (RT-PCR), showed the existence of a cryptic PML-RARα fusion gene, and sequence analysis revealed a new variable isoform. Hotspot gene mutation analysis showed a biallelic CEBPA mutation. He received IA chemotherapy and all-trans retinoic acid (ATRA) treatment, and finally achieved complete remission. This case report provided valuable insights into the relevance of the correct identification of atypical PML-RARα fusion gene and biallelic CEBPA mutation. Moreover, combination of IA chemotherapy and ATRA treatment suggested a good clinical effect in this atypical PML-RARα.
Collapse
Affiliation(s)
- Zhanglin Zhang
- Department of Clinical Laboratory, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yawen Xu
- Department of Hematology, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Mei Jiang
- Department of Clinical Laboratory, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fancong Kong
- Department of Hematology, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhiwei Chen
- Department of Hematology, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shuyuan Liu
- Department of Clinical Laboratory, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fei Li
- Department of Hematology, the First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
8
|
Zhou J, Zhao JW, Zheng YC, Xiao J, Li CW. [Cytogenetic test and clinical study on cryptic acute promyelocytic leukemia with ins (15; 17)]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2019; 40:843-847. [PMID: 31775484 PMCID: PMC7364981 DOI: 10.3760/cma.j.issn.0253-2727.2019.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Indexed: 11/05/2022]
Abstract
Objective: To investigate the genetic screening methods for cryptic acute promyelocytic leukemia (APL) to further explore its clinical prognosis. Methods: From June 2016 to November 2018, we collected 373 newly diagnosed APL cases. The patients were retrospected by the results of PML-RARα detections both by RT-PCR and i-FISH, those who harbored positive PML-RARα detection by RT-PCR and negative by i-FISH were chosen. Metaphase FISH and Sanger sequencing were further performed to verify these results. Results: A total of 7 cryptic APL cases were discovered. These cases had tiny fragment of RARα inserted into PML in chromosome 15, formed ins (15;17) . The 7 cryptic APL cases had no PML-RARα gene subtype specificity, involving 5 cases in L subtype, 1 case in S subtype and 1 case in V subtype respectively. After the treatment of retinoic acid and arsenic or anthracyclines, 6 cases achieved complete remission, 1 case died of intracranial hemorrhage on the 6th day of therapy. Conclusion: The size and covering position of PML-RARα probe should be taken into account when PML-RARα was performed by FISH on APL patients. Furthermore, combination with Metaphase FISH could improve the recognition of cryptic APL. There were no differences between the cryptic and common APL patients in terms of clinical features and treatment choices. Cryptic APL patients also had a good response to the therapy of retinoic acid and arsenic or anthracyclines.
Collapse
Affiliation(s)
- J Zhou
- Institute of Hematology and Blood Diseases Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin 300020, China
| | | | | | | | | |
Collapse
|
9
|
García-Cano J, Martinez-Martinez A, Sala-Gaston J, Pedrazza L, Rosa JL. HERCing: Structural and Functional Relevance of the Large HERC Ubiquitin Ligases. Front Physiol 2019; 10:1014. [PMID: 31447701 PMCID: PMC6692442 DOI: 10.3389/fphys.2019.01014] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 07/23/2019] [Indexed: 12/12/2022] Open
Abstract
Homologous to the E6AP carboxyl terminus (HECT) and regulator of chromosome condensation 1 (RCC1)-like domain-containing proteins (HERCs) belong to the superfamily of ubiquitin ligases. HERC proteins are divided into two subfamilies, Large and Small HERCs. Despite their similarities in terms of both structure and domains, these subfamilies are evolutionarily very distant and result from a convergence phenomenon rather than from a common origin. Large HERC genes, HERC1 and HERC2, are present in most metazoan taxa. They encode very large proteins (approximately 5,000 amino acid residues in a single polypeptide chain) that contain more than one RCC1-like domain as a structural characteristic. Accumulating evidences show that these unusually large proteins play key roles in a wide range of cellular functions which include neurodevelopment, DNA damage repair, and cell proliferation. To better understand the origin, evolution, and function of the Large HERC family, this minireview provides with an integrated overview of their structure and function and details their physiological implications. This study also highlights and discusses how dysregulation of these proteins is associated with severe human diseases such as neurological disorders and cancer.
Collapse
Affiliation(s)
- Jesús García-Cano
- Ubiquitylation and Cell Signalling Lab, IDIBELL, Departament de Ciències Fisiològiques, Universitat de Barcelona, Barcelona, Spain
| | - Arturo Martinez-Martinez
- Ubiquitylation and Cell Signalling Lab, IDIBELL, Departament de Ciències Fisiològiques, Universitat de Barcelona, Barcelona, Spain
| | - Joan Sala-Gaston
- Ubiquitylation and Cell Signalling Lab, IDIBELL, Departament de Ciències Fisiològiques, Universitat de Barcelona, Barcelona, Spain
| | - Leonardo Pedrazza
- Ubiquitylation and Cell Signalling Lab, IDIBELL, Departament de Ciències Fisiològiques, Universitat de Barcelona, Barcelona, Spain
| | - Jose Luis Rosa
- Ubiquitylation and Cell Signalling Lab, IDIBELL, Departament de Ciències Fisiològiques, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
10
|
Singh ZN, Duong VH, Koka R, Zou Y, Sawhney S, Tang L, Baer MR, Ambulos N, El Chaer F, Emadi A. High-Risk Acute Promyelocytic Leukemia with Unusual T/Myeloid Immunophenotype Successfully Treated with ATRA and Arsenic Trioxide-Based Regimen. J Hematop 2018; 11:67-74. [PMID: 30294391 DOI: 10.1007/s12308-018-0329-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We describe two patients with acute promyelocytic leukemia (APL) with an unusual immunophenotype with co-expression of myeloperoxidase (MPO) with cytoplasmic CD3 (cCD3) representing myeloid and T-lineage differentiation. Both harbored FLT3-ITD mutations. One additionally had a deletion in the PML gene affecting the primer binding site, thus limiting measurable residual disease (MRD) analysis during follow-up. Both patients achieved durable remission with all-trans retinoic acid (ATRA) and arsenic trioxide (ATO)-based therapy, thus mitigating the need for repetitive conventional chemotherapy cycles and allogeneic stem cell transplantation. Our report highlights the complexity and challenge of diagnosis and management of APL due to the variant immunophenotype and genetics, and underscores the importance of synthesizing information from all testing modalities. The association of the unusual immunophenotype and FLT3-ITD mutation illustrates the plasticity of the hematopoietic stem cell and the pathobiology of leukemia with mixed lineage or lineage infidelity.
Collapse
Affiliation(s)
- Zeba N Singh
- Department of Pathology, University of Maryland School of Medicine
| | - Vu H Duong
- Department of Medicine, University of Maryland School of Medicine.,University of Maryland Greenebaum Comprehensive Cancer Center Baltimore, MD, USA
| | - Rima Koka
- Department of Pathology, University of Maryland School of Medicine
| | - Ying Zou
- Department of Pathology, University of Maryland School of Medicine
| | - Sameer Sawhney
- Department of Pathology, University of Maryland School of Medicine
| | - Li Tang
- University of Maryland Greenebaum Comprehensive Cancer Center Baltimore, MD, USA
| | - Maria R Baer
- Department of Medicine, University of Maryland School of Medicine.,University of Maryland Greenebaum Comprehensive Cancer Center Baltimore, MD, USA
| | - Nicholas Ambulos
- University of Maryland Greenebaum Comprehensive Cancer Center Baltimore, MD, USA
| | - Firas El Chaer
- Department of Medicine, University of Maryland School of Medicine.,University of Maryland Greenebaum Comprehensive Cancer Center Baltimore, MD, USA
| | - Ashkan Emadi
- Department of Medicine, University of Maryland School of Medicine.,Department of Pharmacology, University of Maryland School of Medicine.,University of Maryland Greenebaum Comprehensive Cancer Center Baltimore, MD, USA
| |
Collapse
|
11
|
Schneider T, Martinez-Martinez A, Cubillos-Rojas M, Bartrons R, Ventura F, Rosa JL. The E3 ubiquitin ligase HERC1 controls the ERK signaling pathway targeting C-RAF for degradation. Oncotarget 2018; 9:31531-31548. [PMID: 30140388 PMCID: PMC6101136 DOI: 10.18632/oncotarget.25847] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 07/12/2018] [Indexed: 12/14/2022] Open
Abstract
The RAF/MEK/ERK cascade is a conserved intracellular signaling pathway that controls fundamental cellular processes including growth, proliferation, differentiation, survival and migration. Aberrant regulation of this signaling pathway has long been associated with human cancers. A major point of regulation of this pathway occurs at the level of the serine/threonine protein kinase C-RAF. Here, we show how the E3 ubiquitin ligase HERC1 regulates ERK signaling. HERC1 knockdown induced cellular proliferation, which is associated with an increase in ERK phosphorylation and in C-RAF protein levels. We demonstrate that overexpression of wild-type C-RAF is sufficient to increase ERK phosphorylation. Experiments with pharmacological inhibitors of RAF activity, or with interference RNA, show that the regulation of ERK phosphorylation by HERC1 is RAF-dependent. Immunoprecipitation, pull-down and confocal fluorescence microscopy experiments demonstrate an interaction between HERC1 and C-RAF proteins. Mechanistically, HERC1 controls C-RAF stability by regulating its polyubiquitylation in a lysine 48-linked chain. In vitro ubiquitylation assays indicate that C-RAF is a substrate of the E3 ubiquitin ligase HERC1. Altogether, we show how HERC1 can regulate cell proliferation through the activation of ERK signaling by a mechanism that affects C-RAF’s stability.
Collapse
Affiliation(s)
- Taiane Schneider
- Departament de Ciències Fisiològiques, IDIBELL, Campus Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Arturo Martinez-Martinez
- Departament de Ciències Fisiològiques, IDIBELL, Campus Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Monica Cubillos-Rojas
- Departament de Ciències Fisiològiques, IDIBELL, Campus Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ramon Bartrons
- Departament de Ciències Fisiològiques, IDIBELL, Campus Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques, IDIBELL, Campus Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jose Luis Rosa
- Departament de Ciències Fisiològiques, IDIBELL, Campus Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
12
|
Rufflé F, Audoux J, Boureux A, Beaumeunier S, Gaillard JB, Bou Samra E, Megarbane A, Cassinat B, Chomienne C, Alves R, Riquier S, Gilbert N, Lemaitre JM, Bacq-Daian D, Bougé AL, Philippe N, Commes T. New chimeric RNAs in acute myeloid leukemia. F1000Res 2017; 6. [PMID: 29623188 PMCID: PMC5861515 DOI: 10.12688/f1000research.11352.2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/05/2017] [Indexed: 12/24/2022] Open
Abstract
Background: High-throughput next generation sequencing (NGS) technologies enable the detection of biomarkers used for tumor classification, disease monitoring and cancer therapy. Whole-transcriptome analysis using RNA-seq is important, not only as a means of understanding the mechanisms responsible for complex diseases but also to efficiently identify novel genes/exons, splice isoforms, RNA editing, allele-specific mutations, differential gene expression and fusion-transcripts or chimeric RNA (chRNA). Methods: We used
Crac, a tool that uses genomic locations and local coverage to classify biological events and directly infer splice and chimeric junctions within a single read. Crac’s algorithm extracts transcriptional chimeric events irrespective of annotation with a high sensitivity, and
CracTools was used to aggregate, annotate and filter the chRNA reads. The selected chRNA candidates were validated by real time PCR and sequencing. In order to check the tumor specific expression of chRNA, we analyzed a publicly available dataset using a new tag search approach. Results: We present data related to acute myeloid leukemia (AML) RNA-seq analysis. We highlight novel biological cases of chRNA, in addition to previously well characterized leukemia chRNA. We have identified and validated 17 chRNAs among 3 AML patients: 10 from an AML patient with a translocation between chromosomes 15 and 17 (AML-t(15;17), 4 from patient with normal karyotype (AML-NK) 3 from a patient with chromosomal 16 inversion (AML-inv16). The new fusion transcripts can be classified into four groups according to the exon organization. Conclusions: All groups suggest complex but distinct synthesis mechanisms involving either collinear exons of different genes, non-collinear exons, or exons of different chromosomes. Finally, we check tumor-specific expression in a larger RNA-seq AML cohort and identify new AML biomarkers that could improve diagnosis and prognosis of AML.
Collapse
Affiliation(s)
- Florence Rufflé
- Institut de Biologie Computationnelle, Université Montpellier, Montpellier, France.,Institut de Médecine Régénératrice et de Biothérapie, INSERM U1183, CHU Montpellier, Montpellier, France
| | - Jerome Audoux
- Institut de Biologie Computationnelle, Université Montpellier, Montpellier, France.,Institut de Médecine Régénératrice et de Biothérapie, INSERM U1183, CHU Montpellier, Montpellier, France
| | - Anthony Boureux
- Institut de Biologie Computationnelle, Université Montpellier, Montpellier, France.,Institut de Médecine Régénératrice et de Biothérapie, INSERM U1183, CHU Montpellier, Montpellier, France
| | - Sacha Beaumeunier
- Institut de Biologie Computationnelle, Université Montpellier, Montpellier, France.,Institut de Médecine Régénératrice et de Biothérapie, INSERM U1183, CHU Montpellier, Montpellier, France
| | | | - Elias Bou Samra
- Université Paris Sud, Université Paris-Saclay, Orsay, France.,Institut Curie, PSL Research University, Paris, France
| | | | - Bruno Cassinat
- Laboratoire de Biologie Cellulaire, Hôpital Saint-Louis, Assistance publique - Hôpitaux de Paris (AP-HP), Paris, France
| | - Christine Chomienne
- Laboratoire de Biologie Cellulaire, Hôpital Saint-Louis, Assistance publique - Hôpitaux de Paris (AP-HP), Paris, France.,Hôpital Saint-Louis, Université Paris Diderot, INSERM UMRS 1131, Paris, France
| | - Ronnie Alves
- Institut de Biologie Computationnelle, Université Montpellier, Montpellier, France.,Instituto Tecnológico Vale, Nazaré, Belém, PA, Brazil
| | - Sebastien Riquier
- Institut de Biologie Computationnelle, Université Montpellier, Montpellier, France.,Institut de Médecine Régénératrice et de Biothérapie, INSERM U1183, CHU Montpellier, Montpellier, France
| | - Nicolas Gilbert
- Institut de Médecine Régénératrice et de Biothérapie, INSERM U1183, CHU Montpellier, Montpellier, France
| | - Jean-Marc Lemaitre
- Institut de Médecine Régénératrice et de Biothérapie, INSERM U1183, CHU Montpellier, Montpellier, France
| | | | - Anne Laure Bougé
- Institut de Biologie Computationnelle, Université Montpellier, Montpellier, France.,Institut de Médecine Régénératrice et de Biothérapie, INSERM U1183, CHU Montpellier, Montpellier, France
| | - Nicolas Philippe
- Institut de Biologie Computationnelle, Université Montpellier, Montpellier, France.,Institut de Médecine Régénératrice et de Biothérapie, INSERM U1183, CHU Montpellier, Montpellier, France
| | - Therese Commes
- Institut de Biologie Computationnelle, Université Montpellier, Montpellier, France.,Institut de Médecine Régénératrice et de Biothérapie, INSERM U1183, CHU Montpellier, Montpellier, France
| |
Collapse
|
13
|
Wertheim GBW, Hexner E, Bagg A. Molecular-based classification of acute myeloid leukemia and its role in directing rational therapy: personalized medicine for profoundly promiscuous proliferations. Mol Diagn Ther 2013. [PMID: 23184342 DOI: 10.1007/s40291-012-0009-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Acute myeloid leukemia (AML) is not a single pathologic entity but represents a heterogeneous group of malignancies. This heterogeneity is exemplified by the variable clinical outcomes that are observed in patients with AML, and it is largely the result of diverse mutations within the leukemic cells. These mutations range from relatively large genetic alterations, such as gains, losses, and translocations of chromosomes, to single nucleotide changes. Detection of many of these mutations is required for accurate diagnosis, prognosis, and treatment of patients with AML. As such, many testing modalities have been developed and are currently employed in clinical laboratories to ascertain mutational status at prognostically and therapeutically critical loci. The assays include those that specifically identify large chromosomal alterations, such as conventional metaphase analysis and fluorescence in situ hybridization, and methods that are geared more toward analysis of small mutations, such as PCR with allele-specific oligonucleotide primers. Furthermore, newer tests, including array analysis and next-generation sequencing, which can simultaneously probe numerous molecular aberrancies within tumor cells, are likely to become commonplace in AML diagnostics. Each testing method clearly has advantages and disadvantages, an understanding of which should influence the choice of test in various clinical circumstances. To aid such understanding, this review discusses both genetic mutations in AML and the clinical tests-including their pros and cons-that may be used to probe these abnormalities. Additionally, we highlight the significance of genetic testing by describing cases in which results of genetic testing significantly influence clinical management of patients with AML.
Collapse
Affiliation(s)
- Gerald B W Wertheim
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
14
|
Fernández-Morales B, Pavón L, Calés C. CDC6 expression is regulated by lineage-specific transcription factor GATA1. Cell Cycle 2012; 11:3055-66. [PMID: 22871742 DOI: 10.4161/cc.21471] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
GATA1 is a hematopoietic transcription factor essential for expression of most genes encoding erythro-megakaryocytic proteins, i.e., globins and platelet glycoproteins. A role for GATA1 as a cell proliferation regulator has been proposed, as some of its bona fide targets comprise global regulators, such as c-KIT or c-MYC, or cell cycle factors, i.e., CYCLIN D or p21CIP1. In this study, we describe that GATA1 directly regulates the expression of replication licensing factor CDC6. Using reporter transactivation, electrophoretic mobility shift and chromatin immunoprecipitation assays, we show that GATA1 stimulates CDC6 transcription by binding to a canonical binding site located within a 166bp enhancer region upstream CDC6 promoter. This evolutionary conserved GATA binding site conforms to recently described chromatin occupancy rules, i.e., preferred bases within core WGATAR (TGATAA), 5' and 3' flanking bases (GGTGATAAGG) and distance to the transcription initiation site. We also found adjacent conserved binding sites for ubiquitously expressed transcription factor CP2, needed for GATA activity on CDC6 enhancer. Our results add to the growing evidence for GATA1 acting as a direct transcriptional regulator of the cell cycle machinery, thus linking cell proliferation control and specific gene expression programs during lineage differentiation.
Collapse
Affiliation(s)
- Bárbara Fernández-Morales
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid-IdiPAZ, Madrid, Spain
| | | | | |
Collapse
|
15
|
Flow cytometric immunobead assay for fast and easy detection of PML-RARA fusion proteins for the diagnosis of acute promyelocytic leukemia. Leukemia 2012; 26:1976-85. [PMID: 22948489 PMCID: PMC3437408 DOI: 10.1038/leu.2012.125] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The PML–RARA fusion protein is found in approximately 97% of patients with acute promyelocytic leukemia (APL). APL can be associated with life-threatening bleeding complications when undiagnosed and not treated expeditiously. The PML–RARA fusion protein arrests maturation of myeloid cells at the promyelocytic stage, leading to the accumulation of neoplastic promyelocytes. Complete remission can be obtained by treatment with all-trans-retinoic acid (ATRA) in combination with chemotherapy. Diagnosis of APL is based on the detection of t(15;17) by karyotyping, fluorescence in situ hybridization or PCR. These techniques are laborious and demand specialized laboratories. We developed a fast (performed within 4–5 h) and sensitive (detection of at least 10% malignant cells in normal background) flow cytometric immunobead assay for the detection of PML–RARA fusion proteins in cell lysates using a bead-bound anti-RARA capture antibody and a phycoerythrin-conjugated anti-PML detection antibody. Testing of 163 newly diagnosed patients (including 46 APL cases) with the PML–RARA immunobead assay showed full concordance with the PML–RARA PCR results. As the applied antibodies recognize outer domains of the fusion protein, the assay appeared to work independently of the PML gene break point region. Importantly, the assay can be used in parallel with routine immunophenotyping for fast and easy diagnosis of APL.
Collapse
|
16
|
Welch JS, Westervelt P, Ding L, Larson DE, Klco JM, Kulkarni S, Wallis J, Chen K, Payton JE, Fulton RS, Veizer J, Schmidt H, Vickery TL, Heath S, Watson MA, Tomasson MH, Link DC, Graubert TA, DiPersio JF, Mardis ER, Ley TJ, Wilson RK. Use of whole-genome sequencing to diagnose a cryptic fusion oncogene. JAMA 2011; 305:1577-84. [PMID: 21505136 PMCID: PMC3156695 DOI: 10.1001/jama.2011.497] [Citation(s) in RCA: 211] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
CONTEXT Whole-genome sequencing is becoming increasingly available for research purposes, but it has not yet been routinely used for clinical diagnosis. OBJECTIVE To determine whether whole-genome sequencing can identify cryptic, actionable mutations in a clinically relevant time frame. DESIGN, SETTING, AND PATIENT We were referred a difficult diagnostic case of acute promyelocytic leukemia with no pathogenic X-RARA fusion identified by routine metaphase cytogenetics or interphase fluorescence in situ hybridization (FISH). The case patient was enrolled in an institutional review board-approved protocol, with consent specifically tailored to the implications of whole-genome sequencing. The protocol uses a "movable firewall" that maintains patient anonymity within the entire research team but allows the research team to communicate medically relevant information to the treating physician. MAIN OUTCOME MEASURES Clinical relevance of whole-genome sequencing and time to communicate validated results to the treating physician. RESULTS Massively parallel paired-end sequencing allowed identification of a cytogenetically cryptic event: a 77-kilobase segment from chromosome 15 was inserted en bloc into the second intron of the RARA gene on chromosome 17, resulting in a classic bcr3 PML-RARA fusion gene. Reverse transcription polymerase chain reaction sequencing subsequently validated the expression of the fusion transcript. Novel FISH probes identified 2 additional cases of t(15;17)-negative acute promyelocytic leukemia that had cytogenetically invisible insertions. Whole-genome sequencing and validation were completed in 7 weeks and changed the treatment plan for the patient. CONCLUSION Whole-genome sequencing can identify cytogenetically invisible oncogenes in a clinically relevant time frame.
Collapse
MESH Headings
- Adult
- Chromosome Breakpoints
- Chromosomes, Human, Pair 15/genetics
- Chromosomes, Human, Pair 17/genetics
- Gene Fusion
- Genome, Human
- Humans
- Introns
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/therapy
- Male
- Nuclear Proteins/genetics
- Oncogene Proteins, Fusion/genetics
- Promyelocytic Leukemia Protein
- Receptors, Retinoic Acid/genetics
- Retinoic Acid Receptor alpha
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
- Transcription Factors/genetics
- Tumor Suppressor Proteins/genetics
Collapse
Affiliation(s)
- John S. Welch
- Department of Medicine, Washington University, St. Louis, MO
| | | | - Li Ding
- The Genome Institute, Washington University, St. Louis, MO
| | | | - Jeffery M. Klco
- Department of Pathology and Immunology, Washington University, St. Louis, MO
| | - Shashikant Kulkarni
- Department of Pathology and Immunology, Washington University, St. Louis, MO
- Department of Genetics, Washington University, St. Louis, MO
- Department of Pediatrics, Washington University, St. Louis, MO
| | - John Wallis
- The Genome Institute, Washington University, St. Louis, MO
| | - Ken Chen
- The Genome Institute, Washington University, St. Louis, MO
| | | | | | - Joelle Veizer
- The Genome Institute, Washington University, St. Louis, MO
| | | | | | - Sharon Heath
- Department of Medicine, Washington University, St. Louis, MO
| | - Mark A. Watson
- The Genome Institute, Washington University, St. Louis, MO
- Department of Pathology and Immunology, Washington University, St. Louis, MO
| | | | - Daniel C. Link
- Department of Medicine, Washington University, St. Louis, MO
| | | | | | - Elaine R. Mardis
- The Genome Institute, Washington University, St. Louis, MO
- Department of Genetics, Washington University, St. Louis, MO
| | - Timothy J. Ley
- Department of Medicine, Washington University, St. Louis, MO
- The Genome Institute, Washington University, St. Louis, MO
- Department of Genetics, Washington University, St. Louis, MO
| | - Richard K. Wilson
- The Genome Institute, Washington University, St. Louis, MO
- Department of Genetics, Washington University, St. Louis, MO
| |
Collapse
|