1
|
Klubíčková N, Billings S, Dermawan JKT, Molligan JF, Fritchie K. Ossifying fibromyxoid tumours with lipomatous and cartilaginous differentiation: A diagnostic pitfall. Histopathology 2025; 86:891-899. [PMID: 39704199 PMCID: PMC11964580 DOI: 10.1111/his.15396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/25/2024] [Accepted: 11/30/2024] [Indexed: 12/21/2024]
Abstract
AIMS Ossifying fibromyxoid tumour is a rare mesenchymal neoplasm predominantly affecting adults characterised by a multinodular growth pattern and the presence of a fibrous pseudocapsule with areas of ossification. Prompted by the recognition of a non-ossifying ossifying fibromyxoid tumour with lipomatous differentiation which caused diagnostic difficulty, we sought to further explore cases of ossifying fibromyxoid tumour with non-osseous heterologous elements. METHODS AND RESULTS A search of our institutional and consultation archives revealed three additional cases that demonstrated lipomatous components and two cases with cartilaginous differentiation. RNA-sequencing revealed fusions involving PHF1 (n = 4) or EPC1 (n = 1) in all (five of five) cases tested, including EPC1::PHC1 and JAZF1::PHF1 fusions, which have not been reported before in ossifying fibromyxoid tumour. CONCLUSION These six cases expand the histomorphological spectrum of ossifying fibromyxoid tumour, introducing lipomatous differentiation as a hitherto undocumented feature. Awareness of these rare variants will ensure appropriate diagnosis and clinical management.
Collapse
Affiliation(s)
- Natálie Klubíčková
- Department of PathologyCharles University, Faculty of Medicine in PilsenPilsenCzech Republic
- Bioptical LaboratoryPilsenCzech Republic
| | - Steven Billings
- Department of Pathology and Laboratory MedicineCleveland ClinicClevelandOhioUSA
| | | | | | - Karen Fritchie
- Department of Pathology and Laboratory MedicineCleveland ClinicClevelandOhioUSA
| |
Collapse
|
2
|
Arora K, Rosenberg AE. Lipomatous Neoplasms of Soft Tissue: A Contemporary Review. Adv Anat Pathol 2025; 32:147-156. [PMID: 39434553 DOI: 10.1097/pap.0000000000000468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
This review summarizes the clinicopathologic features of various lipomatous tumors of soft tissue and addresses some recent conceptual issues relating to adipocytic neoplasms, such as atypical spindle cell/pleomorphic lipomatous tumor and myxoid pleomorphic liposarcoma, and provides an update on the molecular aspects of these tumors. Recent advances in cytogenetic characterization and classification of lipomatous tumors are reviewed, and the genetic importance of distinct chromosomal aberrations are briefly discussed.
Collapse
Affiliation(s)
- Kshitij Arora
- Department of Pathology, Louisiana State University Health, Shreveport, LA
| | | |
Collapse
|
3
|
Papke DJ, Chrisinger JSA, French CA, Crymes A, Krivak TC, Estape RE, Seetharam M, Patel RA, O'Connor WN, Chi AW, Gutman P, Singer S, Kim C, Bryant DA, Oberley MJ, Adeyelu T, Bridge JA, Evans MG. MAD::NUT-fusion sarcoma: A sarcoma class with NUTM1, NUTM2A and NUTM2G fusions and possibly distinctive subtypes. Mod Pathol 2025:100729. [PMID: 39921028 DOI: 10.1016/j.modpat.2025.100729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/31/2024] [Accepted: 01/27/2025] [Indexed: 02/10/2025]
Abstract
NUT-fusion-associated cancers are heterogeneous and include NUT carcinoma and an emerging group with non-BRD4/BRD3/NSD3 fusion partners. Here, we characterized 11 tumors harboring MAD::NUT-fusions (10/11 in females; median age: 48 yr; range: 1-67 yr), all histologically sarcomas. Eight cases were identified via sequencing database review and three were diagnosed prospectively. Eight patients (73%) presented with multifocal disease, including six with disseminated peritoneal tumors; three (27%) presented with solitary colonic, pulmonary, or orbital masses. Nine tumors (82%) harbored NUTM1 fusions, with MXI1 (5/9; 56%), MXD4 (2/9; 22%), and MGA (2/9; 22%). One tumor each harbored MXI1::NUTM2A and MXD4::NUTM2G. The nine MXD4/MXI1-rearranged sarcomas were high-grade, with epithelioid-to-spindle-cell cytomorphology, amphophilic cytoplasm, vesicular nuclei, and prominent nucleoli. Histologic features included infiltrative growth (7/7 assessable tumors), rhabdoid morphology (7/9; 78%), prominent collagen (3/9; 33%), multinucleated tumor cells (2/9; 22%), and myxoid stroma (1/9, 11%). MXD4/MXI1-rearranged sarcomas expressed desmin (3/7; 43%), and keratin(s) (3/7; 43%), and not p63 (6 tumors), CD34 (5), or S-100 (5). The adult MGA::NUTM1-fusion sarcoma exhibited some cytologic overlap with MXD4/MXI1-rearranged sarcomas but showed lower-grade myxoid spindle cell regions, microcystic spaces, and S-100 expression. The pediatric MGA::NUTM1-fusion sarcoma was low-grade with CD34/S-100 co-expression. Immunohistochemistry (IHC) demonstrated NUTM1 expression in NUTM1-rearranged sarcomas (5/5), and weak and no expression in NUTM2A- and NUTM2G-rearranged sarcomas, respectively. Gene expression profiling demonstrated sarcomas with MXD4/MXI1::NUTM1/NUTM2A/NUTM2G fusions clustered separately from NUT carcinoma. Follow-up was available for nine patients (82%; median: 1.8 yr; range: 2 mo-8.2 yr). Four of seven patients with MXD4/MXI-rearranged sarcomas died of disease (median: 1.3 yr; range: 5 mo-4.8 yr), one entered hospice at two months, and one was alive with pericardial masses at 2.8 years. The adult with the MGA::NUTM1-fusion sarcoma died of other causes at 4.5 years; the child was alive without disease at 11 months. We conclude that MAD::NUT-fusions define a sarcoma class distinct from NUT carcinoma. Among this group, MGA::NUTM1-fusion sarcomas might represent a distinctive subset. NUTM1 IHC does not reliably detect NUTM2A/NUTM2G-rearranged sarcomas.
Collapse
Affiliation(s)
- David J Papke
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - John S A Chrisinger
- Department of Pathology and Immunology, Division of Anatomic and Molecular Pathology, Washington University School of Medicine, St. Louis, MO, USA
| | - Christopher A French
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Anthony Crymes
- Department of Medicine, Keck School of Medicine of the University of Southern California, CA, USA
| | - Thomas C Krivak
- Division of Gynecologic Oncology, Allegheny Health Network Cancer Institute, Pittsburgh, PA, USA
| | - Ricardo E Estape
- HCA Florida Institute for Gynecologic Oncology, HCA Florida Healthcare, Miami, FL, USA
| | - Mahesh Seetharam
- Division of Hematology/Oncology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Reema A Patel
- Division of Medical Oncology, Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, KY, USA
| | - William N O'Connor
- Department of Pathology and Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Anthony W Chi
- Rockville Regional Lab, Kaiser Permanente Mid-Atlantic Medical Group, Rockville, MD
| | - Pablo Gutman
- Department of Pathology, Holy Cross Hospital, Silver Spring, MD
| | - Stephan Singer
- Institute of Pathology, University Hospital Tübingen, Tübingen, Germany
| | - Chul Kim
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | | | | | | | - Julia A Bridge
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE, USA; ProPath, Dallas, TX
| | | |
Collapse
|
4
|
Nishio J, Nakayama S, Aoki M. Recent Advances in the Diagnosis, Pathogenesis, and Management of Myxoinflammatory Fibroblastic Sarcoma. Int J Mol Sci 2024; 25:1127. [PMID: 38256198 PMCID: PMC10816835 DOI: 10.3390/ijms25021127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Myxoinflammatory fibroblastic sarcoma (MIFS) is an infiltrative, locally aggressive fibroblastic neoplasm of intermediate malignancy that typically arises in the distal extremities of middle-aged adults. It can histologically be confused with a number of benign and malignant conditions. Recently, high-grade examples of MIFS have been described. Immunohistochemistry plays a very limited role in the diagnosis of MIFS. Several genetic alterations have been identified in MIFS, including a t(1;10)(p22;q24) translocation with TGFBR3 and/or OGA rearrangements, BRAF rearrangement, and VGLL3 amplification. Although it appears that VGLL3 amplification is the most consistent alteration, the molecular pathogenesis of MIFS remains poorly understood. A wide resection is considered the standard treatment for MIFS. Radiotherapy may be a viable option in cases with inadequate surgical margins or cases where surgery is likely to cause significant functional impairment. The systemic treatment options for advanced or metastatic disease are very limited. This review provides an updated overview of the clinicoradiological features, pathogenesis, histopathology, and treatment of MIFS.
Collapse
Affiliation(s)
- Jun Nishio
- Section of Orthopaedic Surgery, Department of Medicine, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Shizuhide Nakayama
- Department of Orthopaedic Surgery, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan;
| | - Mikiko Aoki
- Department of Pathology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan;
| |
Collapse
|
5
|
Crowell C, Schollenberg E, Tran TH, Wilson D, Bezuhly M, Mata-Mbemba D, Antonescu CR, Erker C. An SRF-rearranged malignant cellular myoid neoplasm with a novel SRF-MKL2 fusion. Pediatr Blood Cancer 2023; 70:e30675. [PMID: 37715727 DOI: 10.1002/pbc.30675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/03/2023] [Indexed: 09/18/2023]
Affiliation(s)
- Cameron Crowell
- IWK Health Centre, Halifax, Nova Scotia, Canada
- Dalhousie University, Halifax, Nova Scotia, Canada
| | - Erica Schollenberg
- IWK Health Centre, Halifax, Nova Scotia, Canada
- Dalhousie University, Halifax, Nova Scotia, Canada
| | - Thai Hoa Tran
- Charles-Bruneau Cancer Centre, CHU Saint-Justine, Montreal, Québec, Canada
- Université de Montreal, Montreal, Québec, Canada
| | - David Wilson
- IWK Health Centre, Halifax, Nova Scotia, Canada
- Dalhousie University, Halifax, Nova Scotia, Canada
| | - Michael Bezuhly
- IWK Health Centre, Halifax, Nova Scotia, Canada
- Dalhousie University, Halifax, Nova Scotia, Canada
| | - Daddy Mata-Mbemba
- IWK Health Centre, Halifax, Nova Scotia, Canada
- Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Craig Erker
- IWK Health Centre, Halifax, Nova Scotia, Canada
- Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
6
|
Andrews JC, Mok JW, Kanca O, Jangam S, Tifft C, Macnamara EF, Russell BE, Wang LK, Nelson SF, Bellen HJ, Yamamoto S, Malicdan MCV, Wangler MF. De novo variants in MRTFB have gain-of-function activity in Drosophila and are associated with a novel neurodevelopmental phenotype with dysmorphic features. Genet Med 2023; 25:100833. [PMID: 37013900 PMCID: PMC11533975 DOI: 10.1016/j.gim.2023.100833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
PURPOSE Myocardin-related transcription factor B (MRTFB) is an important transcriptional regulator, which promotes the activity of an estimated 300 genes but is not known to underlie a Mendelian disorder. METHODS Probands were identified through the efforts of the Undiagnosed Disease Network. Because the MRTFB protein is highly conserved between vertebrate and invertebrate model organisms, we generated a humanized Drosophila model expressing the human MRTFB protein in the same spatial and temporal pattern as the fly gene. Actin binding assays were used to validate the effect of the variants on MRTFB. RESULTS Here, we report 2 pediatric probands with de novo variants in MRTFB (p.R104G and p.A91P) and mild dysmorphic features, intellectual disability, global developmental delays, speech apraxia, and impulse control issues. Expression of the variants within wing tissues of a fruit fly model resulted in changes in wing morphology. The MRTFBR104G and MRTFBA91P variants also display a decreased level of actin binding within critical RPEL domains, resulting in increased transcriptional activity and changes in the organization of the actin cytoskeleton. CONCLUSION The MRTFBR104G and MRTFBA91P variants affect the regulation of the protein and underlie a novel neurodevelopmental disorder. Overall, our data suggest that these variants act as a gain of function.
Collapse
Affiliation(s)
- Jonathan C Andrews
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Houston, TX
| | - Jung-Wan Mok
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Houston, TX
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Houston, TX
| | - Sharayu Jangam
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Houston, TX
| | - Cynthia Tifft
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Ellen F Macnamara
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Bianca E Russell
- Division of Genetics, Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA; Institute for Precision Health, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Lee-Kai Wang
- Institute for Precision Health, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Stanley F Nelson
- Institute for Precision Health, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Houston, TX; Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Houston, TX; Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | - May Christine V Malicdan
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD.
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Houston, TX.
| |
Collapse
|
7
|
Zilla ML, Marker DF, John I. Novel ZFTA::NCOA1 fusion in chondroid lipoma. Histopathology 2023; 82:956-958. [PMID: 36734585 DOI: 10.1111/his.14879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/04/2023]
Affiliation(s)
- Megan L Zilla
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Daniel F Marker
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Ivy John
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Sumida S, Toki SI, Mori T, Satomi K, Takao S, Nobusawa S, Kakimoto T, Nakagawa S, Ryo E, Matsushita Y, Ichimura K, Nishisho T, Bando Y, Yoshida A. ZFTA::RELA fusion in a distinct liposarcoma morphologically overlapping with chondroid lipoma. Genes Chromosomes Cancer 2023; 62:101-106. [PMID: 36201637 DOI: 10.1002/gcc.23098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 12/13/2022] Open
Abstract
Chondroid lipoma is a rare benign adipose tumor characterized by a recurrent ZFTA::MRTFB fusion. Herein, we report an unusual liposarcoma that partly exhibited overlapping features with those of chondroid lipoma and harbored a ZFTA::RELA fusion. A 59-year-old man presented with a shoulder mass that had existed for approximately 8 years and with increasing pain due to a pelvic mass. The 5.8-cm resected shoulder tumor partly consisted of nests and strands of variably lipogenic epithelioid cells within a hyalinized or focally chondromyxoid stroma, indistinguishable from chondroid lipoma. The histological pattern gradually transitioned to highly cellular, stroma-poor, diffuse sheets of cells with greater nuclear atypia and mitotic activity. Vascular invasion and necrosis were present. The metastatic pelvic tumor revealed a similar histology. Despite multimodal treatment, the patient developed multiple bone metastases and succumbed to the disease 14 months after presentation. Targeted RNA sequencing identified an in-frame ZFTA (exon 3)::RELA (exon 2) fusion, which was confirmed by reverse transcription-polymerase chain reaction, Sanger sequencing, and break-apart fluorescent in situ hybridization assays. The tumor showed a different histology from that of ependymoma, no brain involvement, and no match with any sarcoma types or ZFTA::RELA-positive ependymomas according to DNA methylation analysis. p65 and L1CAM were diffusely expressed, and a CDKN2A/B deletion was present. This is the first report of an extra-central nervous system tumor with a ZFTA::RELA fusion. The tumor partly displayed an overlapping histology with that of chondroid lipoma, suggesting that it may represent a hitherto undescribed malignant chondroid lipoma with an alternative ZFTA fusion.
Collapse
Affiliation(s)
- Satoshi Sumida
- Division of Pathology, Tokushima University Hospital, Tokushima, Japan
| | - Shun-Ichi Toki
- Department of Orthopedics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Taisuke Mori
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan.,Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Kaishi Satomi
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan.,Department of Pathology, Kyorin University School of Medicine, Tokyo, Japan
| | - Shoichiro Takao
- Department of Diagnostic Radiology, Graduate School of Health Sciences, Tokushima University, Tokushima, Japan
| | | | - Takumi Kakimoto
- Division of Pathology, Tokushima University Hospital, Tokushima, Japan
| | - Shinya Nakagawa
- Department of Orthopedics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Eijitsu Ryo
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Yuko Matsushita
- Department of Brain Disease Translational Research, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Koichi Ichimura
- Department of Brain Disease Translational Research, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Toshihiko Nishisho
- Department of Orthopedics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yoshimi Bando
- Division of Pathology, Tokushima University Hospital, Tokushima, Japan
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan.,Rare Cancer Center, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
9
|
Agaimy A, Din NU, Dermawan JK, Haller F, Melzer K, Denz A, Baumhoer D, Stoehr R, Grützmann R, Antonescu CR. RREB1::MRTFB fusion-positive extra-glossal mesenchymal neoplasms: A series of five cases expanding their anatomic distribution and highlighting significant morphological and phenotypic diversity. Genes Chromosomes Cancer 2023; 62:5-16. [PMID: 35763541 DOI: 10.1002/gcc.23082] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 11/09/2022] Open
Abstract
The RREB1::MRTFB (former RREB1::MKL2) fusion characterizes ectomesenchymal chondromyxoid tumors (EMCMT) of the tongue. Only five molecularly confirmed extra-glossal EMCMT cases have been reported recently; all occurring at head and neck or mediastinal sites. We herein describe five new cases including the first two extracranial/extrathoracic cases. The tumors occurred in three male and two female patients with an age ranging from 18 to 61 years (median, 28). Three tumors were located in the head and neck (jaw, parapharyngeal space, and nasopharyngeal wall) and two in the soft tissue (inguinal and presacral). The tumor size ranged from 3.3 to 20 cm (median, 7). Treatment was surgical without adjuvant treatment in all cases. Two cases were disease-free at 5 and 17 months; other cases were lost to follow-up. Histologically, the soft tissue cases shared a predominant fibromyxoid appearance, but with variable cytoarchitectural pattern (cellular perineurioma-like whorls and storiform pattern in one case and large polygonal granular cells embedded within a chondromyxoid stroma in the other). Two tumors (inguinal and parapharyngeal) showed spindled to ovoid and round cells with a moderately to highly cellular nondescript pattern. One sinonasal tumor closely mimicked nasal chondromesenchymal hamartoma (NCMH). Mitotic activity was low (0-5 mitoses/10 hpfs). Immunohistochemical findings were heterogeneous with variable expression of S100 (2/5), EMA (2/3), CD34 (1/4), desmin (1/4), and GFAP (1/3). Targeted RNA sequencing revealed the same RREB1::MRTFB fusion in all cases, with exon 8 of RREB1 being fused to exon 11 of MRTFB. This study expands the topographic spectrum of RREB1::MRTFB fusion-positive mesenchymal neoplasms, highlighting a significant morphological and phenotypic diversity. Overall, RREB1::MRTFB-rearranged neoplasms seem to fall into two subcategories: tumors with lobulated, chondroid, or myxochondroid epithelioid morphology (Cases 2 and 3) and those with more undifferentiated hypercellular spindle cell phenotype (Cases 1, 4, and 5). Involvement of extracranial/extrathoracic sites and the NCMH-like pattern are novel. The biology of these likely indolent or benign tumors remains to be verified in the future.
Collapse
Affiliation(s)
- Abbas Agaimy
- Institute of Pathology, Friedrich Alexander University Erlangen-Nürnberg, University Hospital, Erlangen, Germany
| | - Nasir Ud Din
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Josephine K Dermawan
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Florian Haller
- Institute of Pathology, Friedrich Alexander University Erlangen-Nürnberg, University Hospital, Erlangen, Germany
| | - Katja Melzer
- Institute of Radiology, Friedrich Alexander University Erlangen-Nürnberg, University Hospital, Erlangen, Germany
| | - Axel Denz
- Department of Surgery, Friedrich Alexander University Erlangen-Nürnberg, University Hospital, Erlangen, Germany
| | - Daniel Baumhoer
- Institute of Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Robert Stoehr
- Institute of Pathology, Friedrich Alexander University Erlangen-Nürnberg, University Hospital, Erlangen, Germany
| | - Robert Grützmann
- Department of Surgery, Friedrich Alexander University Erlangen-Nürnberg, University Hospital, Erlangen, Germany
| | - Cristina R Antonescu
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
10
|
Herranz-Pérez V, Nakatani J, Ishii M, Katada T, García-Verdugo JM, Ohata S. Ependymoma associated protein Zfta is expressed in immature ependymal cells but is not essential for ependymal development in mice. Sci Rep 2022; 12:1493. [PMID: 35087169 PMCID: PMC8795269 DOI: 10.1038/s41598-022-05526-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/14/2022] [Indexed: 12/14/2022] Open
Abstract
The fusion protein of uncharacterised zinc finger translocation associated (ZFTA) and effector transcription factor of tumorigenic NF-κB signalling, RELA (ZFTA-RELA), is expressed in more than two-thirds of supratentorial ependymoma (ST-EPN-RELA), but ZFTA's expression profile and functional analysis in multiciliated ependymal (E1) cells have not been examined. Here, we showed the mRNA expression of mouse Zfta peaks on embryonic day (E) 17.5 in the wholemount of the lateral walls of the lateral ventricle. Zfta was expressed in the nuclei of FoxJ1-positive immature E1 (pre-E1) cells in E18.5 mouse embryonic brain. Interestingly, the transcription factors promoting ciliogenesis (ciliary TFs) (e.g., multicilin) and ZFTA-RELA upregulated luciferase activity using a 5' upstream sequence of ZFTA in cultured cells. Zftatm1/tm1 knock-in mice did not show developmental defects or abnormal fertility. In the Zftatm1/tm1 E1 cells, morphology, gene expression, ciliary beating frequency and ependymal flow were unaffected. These results suggest that Zfta is expressed in pre-E1 cells, possibly under the control of ciliary TFs, but is not essential for ependymal development or flow. This study sheds light on the mechanism of the ZFTA-RELA expression in the pathogenesis of ST-EPN-RELA: Ciliary TFs initiate ZFTA-RELA expression in pre-E1 cells, and ZFTA-RELA enhances its own expression using positive feedback.
Collapse
Affiliation(s)
- Vicente Herranz-Pérez
- Laboratory of Comparative Neurobiology, Institute Cavanilles of Biodiversity and Evolutionary Biology, CIBERNED, University of Valencia, 46980, Paterna, Spain
- Department of Cell Biology, Functional Biology and Physical Anthropology, University of Valencia, 46100, Burjassot, Spain
| | - Jin Nakatani
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Masaki Ishii
- Molecular Cell Biology Laboratory, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo, 202-8585, Japan
| | - Toshiaki Katada
- Molecular Cell Biology Laboratory, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo, 202-8585, Japan
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, 113-0033, Japan
| | - Jose Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Institute Cavanilles of Biodiversity and Evolutionary Biology, CIBERNED, University of Valencia, 46980, Paterna, Spain
- Department of Cell Biology, Functional Biology and Physical Anthropology, University of Valencia, 46100, Burjassot, Spain
| | - Shinya Ohata
- Molecular Cell Biology Laboratory, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo, 202-8585, Japan.
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
11
|
Arabzade A, Zhao Y, Varadharajan S, Chen HC, Jessa S, Rivas B, Stuckert AJ, Solis M, Kardian A, Tlais D, Golbourn BJ, Stanton ACJ, Chan YS, Olson C, Karlin KL, Kong K, Kupp R, Hu B, Injac SG, Ngo M, Wang PR, De León LA, Sahm F, Kawauchi D, Pfister SM, Lin CY, Hodges HC, Singh I, Westbrook TF, Chintagumpala MM, Blaney SM, Parsons DW, Pajtler KW, Agnihotri S, Gilbertson RJ, Yi J, Jabado N, Kleinman CL, Bertrand KC, Deneen B, Mack SC. ZFTA-RELA Dictates Oncogenic Transcriptional Programs to Drive Aggressive Supratentorial Ependymoma. Cancer Discov 2021; 11:2200-2215. [PMID: 33741710 PMCID: PMC8418998 DOI: 10.1158/2159-8290.cd-20-1066] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/05/2021] [Accepted: 03/16/2021] [Indexed: 01/10/2023]
Abstract
More than 60% of supratentorial ependymomas harbor a ZFTA-RELA (ZRfus) gene fusion (formerly C11orf95-RELA). To study the biology of ZRfus, we developed an autochthonous mouse tumor model using in utero electroporation (IUE) of the embryonic mouse brain. Integrative epigenomic and transcriptomic mapping was performed on IUE-driven ZRfus tumors by CUT&RUN, chromatin immunoprecipitation sequencing, assay for transposase-accessible chromatin sequencing, and RNA sequencing and compared with human ZRfus-driven ependymoma. In addition to direct canonical NFκB pathway activation, ZRfus dictates a neoplastic transcriptional program and binds to thousands of unique sites across the genome that are enriched with PLAGL family transcription factor (TF) motifs. ZRfus activates gene expression programs through recruitment of transcriptional coactivators (Brd4, Ep300, Cbp, Pol2) that are amenable to pharmacologic inhibition. Downstream ZRfus target genes converge on developmental programs marked by PLAGL TF proteins, and activate neoplastic programs enriched in Mapk, focal adhesion, and gene imprinting networks. SIGNIFICANCE: Ependymomas are aggressive brain tumors. Although drivers of supratentorial ependymoma (ZFTA- and YAP1-associated gene fusions) have been discovered, their functions remain unclear. Our study investigates the biology of ZFTA-RELA-driven ependymoma, specifically mechanisms of transcriptional deregulation and direct downstream gene networks that may be leveraged for potential therapeutic testing.This article is highlighted in the In This Issue feature, p. 2113.
Collapse
Affiliation(s)
- Amir Arabzade
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Texas Children's Cancer and Hematology Centers, Dan L. Duncan Cancer Center, Houston, Texas
- Therapeutic Innovation Center at Baylor College of Medicine, Houston, Texas
| | - Yanhua Zhao
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Texas Children's Cancer and Hematology Centers, Dan L. Duncan Cancer Center, Houston, Texas
- Therapeutic Innovation Center at Baylor College of Medicine, Houston, Texas
| | - Srinidhi Varadharajan
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Texas Children's Cancer and Hematology Centers, Dan L. Duncan Cancer Center, Houston, Texas
- Therapeutic Innovation Center at Baylor College of Medicine, Houston, Texas
| | - Hsiao-Chi Chen
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Texas Children's Cancer and Hematology Centers, Dan L. Duncan Cancer Center, Houston, Texas
- Therapeutic Innovation Center at Baylor College of Medicine, Houston, Texas
- Cancer and Cell Biology Program, Baylor College of Medicine, Dan L. Duncan Cancer Center, Houston, Texas
| | - Selin Jessa
- Quantitative Life Sciences, McGill University, Montreal, Quebec, Canada
| | - Bryan Rivas
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Texas Children's Cancer and Hematology Centers, Dan L. Duncan Cancer Center, Houston, Texas
- Therapeutic Innovation Center at Baylor College of Medicine, Houston, Texas
| | - Austin J Stuckert
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Texas Children's Cancer and Hematology Centers, Dan L. Duncan Cancer Center, Houston, Texas
- Therapeutic Innovation Center at Baylor College of Medicine, Houston, Texas
| | - Minerva Solis
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Texas Children's Cancer and Hematology Centers, Dan L. Duncan Cancer Center, Houston, Texas
- Therapeutic Innovation Center at Baylor College of Medicine, Houston, Texas
- Cancer and Cell Biology Program, Baylor College of Medicine, Dan L. Duncan Cancer Center, Houston, Texas
| | - Alisha Kardian
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Texas Children's Cancer and Hematology Centers, Dan L. Duncan Cancer Center, Houston, Texas
- Therapeutic Innovation Center at Baylor College of Medicine, Houston, Texas
- Cancer and Cell Biology Program, Baylor College of Medicine, Dan L. Duncan Cancer Center, Houston, Texas
| | - Dana Tlais
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Texas Children's Cancer and Hematology Centers, Dan L. Duncan Cancer Center, Houston, Texas
- Therapeutic Innovation Center at Baylor College of Medicine, Houston, Texas
| | - Brian J Golbourn
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ann-Catherine J Stanton
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yuen San Chan
- Therapeutic Innovation Center at Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology and Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas
- Department of Bioengineering, Rice University, Houston, Texas
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Calla Olson
- Therapeutic Innovation Center at Baylor College of Medicine, Houston, Texas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Department of Biochemistry and Molecular Biology, Houston, Texas
| | - Kristen L Karlin
- Therapeutic Innovation Center at Baylor College of Medicine, Houston, Texas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Department of Biochemistry and Molecular Biology, Houston, Texas
| | - Kathleen Kong
- Therapeutic Innovation Center at Baylor College of Medicine, Houston, Texas
| | - Robert Kupp
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, England
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge, England
| | - Baoli Hu
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sarah G Injac
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Texas Children's Cancer and Hematology Centers, Dan L. Duncan Cancer Center, Houston, Texas
- Therapeutic Innovation Center at Baylor College of Medicine, Houston, Texas
| | - Madeline Ngo
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas
| | - Peter R Wang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas
| | - Luz A De León
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Texas Children's Cancer and Hematology Centers, Dan L. Duncan Cancer Center, Houston, Texas
| | - Felix Sahm
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Daisuke Kawauchi
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Stefan M Pfister
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Charles Y Lin
- Therapeutic Innovation Center at Baylor College of Medicine, Houston, Texas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - H Courtney Hodges
- Therapeutic Innovation Center at Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology and Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas
- Department of Bioengineering, Rice University, Houston, Texas
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Irtisha Singh
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Thomas F Westbrook
- Therapeutic Innovation Center at Baylor College of Medicine, Houston, Texas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Department of Biochemistry and Molecular Biology, Houston, Texas
| | - Murali M Chintagumpala
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Texas Children's Cancer and Hematology Centers, Dan L. Duncan Cancer Center, Houston, Texas
| | - Susan M Blaney
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Texas Children's Cancer and Hematology Centers, Dan L. Duncan Cancer Center, Houston, Texas
| | - Donald W Parsons
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Texas Children's Cancer and Hematology Centers, Dan L. Duncan Cancer Center, Houston, Texas
| | - Kristian W Pajtler
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sameer Agnihotri
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Richard J Gilbertson
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, England
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge, England
| | - Joanna Yi
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Texas Children's Cancer and Hematology Centers, Dan L. Duncan Cancer Center, Houston, Texas
- Therapeutic Innovation Center at Baylor College of Medicine, Houston, Texas
| | - Nada Jabado
- Quantitative Life Sciences, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Claudia L Kleinman
- Quantitative Life Sciences, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Lady Davis Research Institute, Jewish General Hospital, Quebec, Canada
| | - Kelsey C Bertrand
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Texas Children's Cancer and Hematology Centers, Dan L. Duncan Cancer Center, Houston, Texas.
- Therapeutic Innovation Center at Baylor College of Medicine, Houston, Texas
| | - Benjamin Deneen
- Cancer and Cell Biology Program, Baylor College of Medicine, Dan L. Duncan Cancer Center, Houston, Texas.
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Stephen C Mack
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Texas Children's Cancer and Hematology Centers, Dan L. Duncan Cancer Center, Houston, Texas.
- Therapeutic Innovation Center at Baylor College of Medicine, Houston, Texas
- Cancer and Cell Biology Program, Baylor College of Medicine, Dan L. Duncan Cancer Center, Houston, Texas
| |
Collapse
|
12
|
Tomomasa R, Arai Y, Kawabata-Iwakawa R, Fukuoka K, Nakano Y, Hama N, Nakata S, Suzuki N, Ishi Y, Tanaka S, Takahashi JA, Yuba Y, Shiota M, Natsume A, Kurimoto M, Shiba Y, Aoki M, Nabeshima K, Enomoto T, Inoue T, Fujimura J, Kondo A, Yao T, Okura N, Hirose T, Sasaki A, Nishiyama M, Ichimura K, Shibata T, Hirato J, Yokoo H, Nobusawa S. Ependymoma-like tumor with mesenchymal differentiation harboring C11orf95-NCOA1/2 or -RELA fusion: A hitherto unclassified tumor related to ependymoma. Brain Pathol 2021; 31:e12943. [PMID: 33576087 PMCID: PMC8412126 DOI: 10.1111/bpa.12943] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/14/2022] Open
Abstract
Recurrent fusion genes involving C11orf95, C11orf95‐RELA, have been identified only in supratentorial ependymomas among primary CNS tumors. Here, we report hitherto histopathologically unclassifiable high‐grade tumors, under the tentative label of “ependymoma‐like tumors with mesenchymal differentiation (ELTMDs),” harboring C11orf95‐NCOA1/2 or ‐RELA fusion. We examined the clinicopathological and molecular features in five cases of ELTMDs. Except for one adult case (50 years old), all cases were in children ranging from 1 to 2.5 years old. All patients presented with a mass lesion in the cerebral hemisphere. Histologically, all cases demonstrated a similar histology with a mixture of components. The major components were embryonal‐appearing components forming well‐delineated tumor cell nests composed of small uniform cells with high proliferative activity, and spindle‐cell mesenchymal components with a low‐ to high‐grade sarcoma‐like appearance. The embryonal‐appearing components exhibited minimal ependymal differentiation including a characteristic EMA positivity and tubular structures, but histologically did not fit with ependymoma because they lacked perivascular pseudorosettes, a histological hallmark of ependymoma, formed well‐delineated nests, and had diffuse and strong staining for CAM5.2. Molecular analysis identified C11orf95‐NCOA1, ‐NCOA2, and ‐RELA in two, one, and two cases, respectively. t‐distributed stochastic neighbor embedding analysis of DNA methylation data from two cases with C11orf95‐NCOA1 or ‐NCOA2 and a reference set of 380 CNS tumors revealed that these two cases were clustered together and were distinct from all subgroups of ependymomas. In conclusion, although ELTMDs exhibited morphological and genetic associations with supratentorial ependymoma with C11orf95‐RELA, they cannot be regarded as ependymoma. Further analyses of more cases are needed to clarify their differences and similarities.
Collapse
Affiliation(s)
- Ran Tomomasa
- Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yasuhito Arai
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Maebashi, Japan
| | - Kohei Fukuoka
- Department of Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan
| | - Yoshiko Nakano
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Natsuko Hama
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Satoshi Nakata
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nozomi Suzuki
- Department of Neurosurgery, Kitami Red Cross Hospital, Kitami, Japan
| | - Yukitomo Ishi
- Department of Neurosurgery, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, and WPI-ICReDD, Hokkaido University, Sapporo, Japan
| | - Jun A Takahashi
- Department of Rehabilitation Medicine, Rakusai Shimizu Hospital, Kyoto, Japan
| | - Yoshiaki Yuba
- Department of Pathology, Kitano Hospital, the Tazuke Kofukai Medical Research Institute, Osaka, Japan
| | - Mitsutaka Shiota
- Department of Pediatrics, Kitano Hospital, the Tazuke Kofukai Medical Research Institute, Osaka, Japan
| | - Atsushi Natsume
- Department of Neurosurgery, Nagoya University School of Medicine, Nagoya, Japan
| | - Michihiro Kurimoto
- Department of Neurosurgery, Nagoya University School of Medicine, Nagoya, Japan
| | - Yoshiki Shiba
- Department of Neurosurgery, Nagoya University School of Medicine, Nagoya, Japan
| | - Mikiko Aoki
- Department of Pathology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Kazuki Nabeshima
- Department of Pathology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Toshiyuki Enomoto
- Department of Neurosurgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Tooru Inoue
- Department of Neurosurgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Junya Fujimura
- Department of Pediatrics and Adolescent Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Akihide Kondo
- Department of Neurosurgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Takashi Yao
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Naoki Okura
- Department of Radiology, School of Medicine, International University of Health and Welfare, Narita, Japan
| | - Takanori Hirose
- Pathology for Regional Communication, Kobe University School of Medicine, Kobe, Japan.,Department of Diagnostic Pathology, Hyogo Cancer Center, Akashi, Japan
| | - Atsushi Sasaki
- Department of Pathology, Saitama Medical University School of Medicine, Moroyama, Japan
| | - Masahiko Nishiyama
- Higashi Sapporo Hospital, Sapporo, Japan.,Gunma University, Maebashi, Gunma, Japan
| | - Koichi Ichimura
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Junko Hirato
- Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi, Japan.,Department of Pathology, Public Tomioka General Hospital, Tomioka, Japan
| | - Hideaki Yokoo
- Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sumihito Nobusawa
- Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
13
|
Bedwell GJ, Engelman AN. Factors that mold the nuclear landscape of HIV-1 integration. Nucleic Acids Res 2021; 49:621-635. [PMID: 33337475 PMCID: PMC7826272 DOI: 10.1093/nar/gkaa1207] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 11/26/2020] [Indexed: 12/17/2022] Open
Abstract
The integration of retroviral reverse transcripts into the chromatin of the cells that they infect is required for virus replication. Retroviral integration has far-reaching consequences, from perpetuating deadly human diseases to molding metazoan evolution. The lentivirus human immunodeficiency virus 1 (HIV-1), which is the causative agent of the AIDS pandemic, efficiently infects interphase cells due to the active nuclear import of its preintegration complex (PIC). To enable integration, the PIC must navigate the densely-packed nuclear environment where the genome is organized into different chromatin states of varying accessibility in accordance with cellular needs. The HIV-1 capsid protein interacts with specific host factors to facilitate PIC nuclear import, while additional interactions of viral integrase, the enzyme responsible for viral DNA integration, with cellular nuclear proteins and nucleobases guide integration to specific chromosomal sites. HIV-1 integration favors transcriptionally active chromatin such as speckle-associated domains and disfavors heterochromatin including lamina-associated domains. In this review, we describe virus-host interactions that facilitate HIV-1 PIC nuclear import and integration site targeting, highlighting commonalities among factors that participate in both of these steps. We moreover discuss how the nuclear landscape influences HIV-1 integration site selection as well as the establishment of active versus latent virus infection.
Collapse
Affiliation(s)
- Gregory J Bedwell
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
14
|
Linos K, Kerr DA, Baker M, Wong S, Henderson E, Sumegi J, Bridge JA. Superficial malignant ossifying fibromyxoid tumors harboring the rare and recently described ZC3H7B-BCOR and PHF1-TFE3 fusions. J Cutan Pathol 2020; 47:934-945. [PMID: 32352579 DOI: 10.1111/cup.13728] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/16/2020] [Accepted: 04/24/2020] [Indexed: 12/28/2022]
Abstract
Ossifying fibromyxoid tumor (OFMT) is a rare soft tissue neoplasm of uncertain differentiation and intermediate biologic potential. Up to 85% of OFMTs, including benign, atypical, and malignant forms, harbor fusion genes. Most commonly, the PHF1 gene localized to 6p21 is fused with EP400, but other fusion partners, such as MEAF6, EPC1, and JAZF1 have also been described. Herein, we present two rare cases of superficial OFMTs with ZC3H7B-BCOR and the very recently described PHF1-TFE3 fusions. The latter also exhibited moderate to strong diffuse immunoreactivity for TFE3. Reciprocally, this finding expands the entities with TFE3 rearrangements. Accumulation of additional data is necessary to determine if OFMTs harboring these rare fusions feature any reproducible clinicopathologic findings or carry prognostic and/or predictive implications.
Collapse
Affiliation(s)
- Konstantinos Linos
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH and Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Darcy A Kerr
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH and Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Michael Baker
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH and Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Sandra Wong
- Department of Surgery, Dartmouth-Hitchcock Medical Center and Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Eric Henderson
- Department of Surgery, Dartmouth-Hitchcock Medical Center and Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Janos Sumegi
- Division of Molecular Pathology, The Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Julia A Bridge
- Division of Molecular Pathology, The Translational Genomics Research Institute, Phoenix, Arizona, USA.,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
15
|
Makise N, Mori T, Kobayashi H, Nakagawa K, Ryo E, Nakajima J, Kohsaka S, Mano H, Aburatani H, Yoshida A, Ushiku T. Mesenchymal tumours with RREB1-MRTFB fusion involving the mediastinum: extra-glossal ectomesenchymal chondromyxoid tumours? Histopathology 2020; 76:1023-1031. [PMID: 31991003 DOI: 10.1111/his.14080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/23/2020] [Accepted: 01/25/2020] [Indexed: 12/12/2022]
Abstract
AIMS Ectomesenchymal chondromyxoid tumour (ECT) is a rare benign intraoral tumour which almost exclusively presents as a small mass of the anterior dorsal tongue. Recently, the RREB1-MRTFB (previously known as MKL2) fusion gene has been identified in 90% of ECTs, all located in the tongue, emphasising its genetic distinctiveness. Here, we report two mesenchymal tumours involving the superior mediastinum of adult women with RREB1-MRTFB fusions. METHODS AND RESULTS Both tumours presented as well-circumscribed paravertebral masses that were clinically suspected to be schwannoma. After fragmented resection, recurrence was not observed at 27 and 18 months. Although tumours were originally unclassifiable, next-generation sequencing detected identical RREB1 (exon 8)-MRTFB (exon 11) fusion transcripts, which were validated by reverse transcriptase-polymerase chain reaction, Sanger sequencing, and fluorescence in-situ hybridisation. Both tumours shared hyalinised areas with round cells embedded in a cord or reticular manner. The tumour cells showed mild nuclear atypia of possible degenerative type with very low mitotic activity, and were at least focally positive for S100, glial fibrillary acidic protein, smooth muscle actin and epithelial membrane antigen. Overall, these findings suggest that they may represent previously undescribed extra-glossal ECT involving the mediastinum. However, the histology was not classic for ECT, because that in case 2 was predominated by storiform growth of spindle cells, whereas the tumour in case 1 lacked myxoid change. CONCLUSIONS We have provided the first evidence that RREB1-MRTFB fusion is not limited to tumours in the head region, and whether such tumours represent extra-glossal ECTs requires further research.
Collapse
Affiliation(s)
- Naohiro Makise
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Taisuke Mori
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan.,Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroshi Kobayashi
- Department of Orthopaedic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuo Nakagawa
- Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Eijitsu Ryo
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Jun Nakajima
- Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinji Kohsaka
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan.,Rare Cancer Center, National Cancer Center Hospital, Tokyo, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
16
|
Dickson BC, Antonescu CR, Argyris PP, Bilodeau EA, Bullock MJ, Freedman PD, Gnepp DR, Jordan RC, Koutlas IG, Lee CH, Leong I, Merzianu M, Purgina BM, Thompson LDR, Wehrli B, Wright JM, Swanson D, Zhang L, Bishop JA. Ectomesenchymal Chondromyxoid Tumor: A Neoplasm Characterized by Recurrent RREB1-MKL2 Fusions. Am J Surg Pathol 2019; 42:1297-1305. [PMID: 29912715 DOI: 10.1097/pas.0000000000001096] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ectomesenchymal chondromyxoid tumor is a rare and benign neoplasm with a predilection for the anterior dorsal tongue. Despite morphologic heterogeneity, most cases are characterized by a proliferation of bland spindle cells with a distinctive reticular growth pattern and myxoid stroma. The immunophenotype of these neoplasms is likewise variable; most cases express glial fibrillary acid protein and S100 protein, with inconsistent reports of keratin and myoid marker expression. The molecular pathogenesis is poorly understood; however, a subset of cases has been reported to harbor EWSR1 gene rearrangement. Following identification of an RREB1-MKL2 fusion gene by RNA Sequencing in an index patient, a retrospective review of additional cases of ectomesenchymal chondromyxoid tumors was performed to better characterize the clinical, immunohistochemical, and molecular attributes of this neoplasm. A total of 21 cases were included in this series. A marked predisposition for the dorsal tongue was confirmed. Most cases conformed to prior morphologic descriptions; however, hypercellularity, hyalinized stroma, and necrosis were rare attributes not previously emphasized. The neoplastic cells frequently coexpressed glial fibrillary acid protein, S100 protein, keratin, smooth muscle actin, and/or desmin; a single case was found to contain significant myogenin expression. An RREB1-MKL2 fusion product was identified in 19 tumors (90%), a single tumor (5%) had an EWSR1-CREM fusion product, and the remaining case lacked any known fusion gene by RNA Sequencing. The latter 2 cases subtly differed morphologically from many in the cohort. This series illustrates that recurrent RREB1-MKL2 fusions occur in most, perhaps all, cases of ectomesenchymal chondromyxoid tumor.
Collapse
Affiliation(s)
- Brendan C Dickson
- Department of Pathology & Laboratory Medicine, Mount, Sinai Hospital.,Departments of Laboratory Medicine and Pathobiology
| | | | - Prokopios P Argyris
- Division of Oral and Maxillofacial Pathology, School of Dentistry.,Department of Biochemistry, Molecular Biology and Biophysics, College of Biological Sciences, University of Minnesota, Minneapolis, MN
| | - Elizabeth A Bilodeau
- Department of Diagnostic Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA
| | | | - Paul D Freedman
- Section of Oral Pathology, New York Presbyterian/Queens, Flushing
| | - Douglas R Gnepp
- Department of Pathology, Warren Alpert School of Medicine at Brown University (retired), Providence, RI
| | - Richard C Jordan
- Department of Orofacial Sciences, Pathology and Radiation Oncology, University of California San Francisco, San Francisco
| | | | | | - Iona Leong
- Department of Pathology & Laboratory Medicine, Mount, Sinai Hospital.,Oral Pathology & Oral Medicine, Faculty of Dentistry, University of Toronto, Toronto
| | | | - Bibianna M Purgina
- Department of Pathology and Laboratory Medicine, Ottawa Hospital, University of Ottawa, Ottawa
| | | | - Bret Wehrli
- Department of Pathology and Laboratory Medicine, London Health Sciences Centre, Western University, London, ON
| | | | - David Swanson
- Department of Pathology & Laboratory Medicine, Mount, Sinai Hospital
| | - Lei Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York
| | - Justin A Bishop
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX
| |
Collapse
|
17
|
Stevens TM, Morlote D, Xiu J, Swensen J, Brandwein-Weber M, Miettinen MM, Gatalica Z, Bridge JA. NUTM1-rearranged neoplasia: a multi-institution experience yields novel fusion partners and expands the histologic spectrum. Mod Pathol 2019; 32:764-773. [PMID: 30723300 PMCID: PMC8194366 DOI: 10.1038/s41379-019-0206-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 11/09/2022]
Abstract
Poorly differentiated neoplasms lacking characteristic histopathologic features represent a significant challenge to the pathologist for diagnostic classification. Classically, NUT carcinoma (previously NUT midline carcinoma) is poorly differentiated but typically exhibits variable degrees of squamous differentiation. Diagnosis is genetically defined by NUTM1 rearrangement, usually with BRD4 as the fusion partner. In this multi-institutional next-generation sequencing and fluorescence in situ hybridization study, 26 new NUTM1-rearranged neoplasms are reported, including 20 NUT carcinomas, 4 sarcomas, and 2 tumors of an uncertain lineage. NUTM1 fusion partners were available in 24 of 26 cases. BRD4 was the fusion partner in 18/24 (75%) cases, NSD3 in 2/24 cases (8.3%), and BRD3 in 1/24 (4.2%) cases. Two novel fusion partners were identified: MGA in two sarcomas (myxoid spindle cell sarcoma and undifferentiated sarcoma) (2/24 cases 8.3%) and MXD4 in a round cell sarcoma in the cecum (1/24 cases 4.2%). Eleven cases tested for NUT immunoexpression were all positive, including the MGA and MXD4-rearranged tumors. Our results confirm that NUTM1 gene rearrangements are found outside the classic clinicopathological setting of NUT carcinoma. In addition, as novel fusion partners like MGA and MXD4 may not be susceptible to targeted therapy with bromodomain inhibitors, detecting the NUTM1 rearrangement may not be enough, and identifying the specific fusion partner may become necessary. Studies to elucidate the mechanism of tumorigenesis of novel fusion partners are needed.
Collapse
Affiliation(s)
- Todd M. Stevens
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Diana Morlote
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | | | | | - Julia A. Bridge
- Department of Pathology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
18
|
Maloney N, Bridge JA, de Abreu F, Korkolopoulou P, Sakellariou S, Linos K. A novel MAP3K7CL-ERG fusion in a molecularly confirmed case of dermatofibrosarcoma protuberans with fibrosarcomatous transformation. J Cutan Pathol 2019; 46:532-537. [PMID: 30950098 DOI: 10.1111/cup.13469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/01/2019] [Accepted: 03/26/2019] [Indexed: 12/16/2022]
Abstract
Dermatofibrosarcoma protuberans (DFSP) is a translocation-associated, low-grade sarcoma with fibroblastic differentiation. It is the most common superficial sarcoma, almost exclusively arising within the dermis. In a minority of cases, there is a transition from the conventional morphology to a fibrosarcomatous pattern, known as a fibrosarcomatous DFSP (FS-DFSP). Although a number of different molecular alterations have been described to account for this transformation, it remains poorly understood. Herein we report the first case of a FS-DFSP with a fusion between ERG, an ETS family transcription factor, and MAP3K7CL, a kinase gene rarely observed in fusion gene events.
Collapse
Affiliation(s)
- Nolan Maloney
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center and Geisel School of Medicine at Dartmouth, One Medical Center Drive, New Hampshire, Lebanon
| | - Julia A Bridge
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 983135 Nebraska Medical Center, Omaha, Nebraska 68198-3135, The Translational Genomics Research Institute (TGen), Phoenix, Arizona
| | - Francine de Abreu
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center and Geisel School of Medicine at Dartmouth, One Medical Center Drive, New Hampshire, Lebanon
| | | | | | - Konstantinos Linos
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center and Geisel School of Medicine at Dartmouth, One Medical Center Drive, New Hampshire, Lebanon
| |
Collapse
|
19
|
Anderson EM, Maldarelli F. The role of integration and clonal expansion in HIV infection: live long and prosper. Retrovirology 2018; 15:71. [PMID: 30352600 PMCID: PMC6199739 DOI: 10.1186/s12977-018-0448-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/15/2018] [Indexed: 02/07/2023] Open
Abstract
Integration of viral DNA into the host genome is a central event in the replication cycle and the pathogenesis of retroviruses, including HIV. Although most cells infected with HIV are rapidly eliminated in vivo, HIV also infects long-lived cells that persist during combination antiretroviral therapy (cART). Cells with replication competent HIV proviruses form a reservoir that persists despite cART and such reservoirs are at the center of efforts to eradicate or control infection without cART. The mechanisms of persistence of these chronically infected long-lived cells is uncertain, but recent research has demonstrated that the presence of the HIV provirus has enduring effects on infected cells. Cells with integrated proviruses may persist for many years, undergo clonal expansion, and produce replication competent HIV. Even proviruses with defective genomes can produce HIV RNA and may contribute to ongoing HIV pathogenesis. New analyses of HIV infected cells suggest that over time on cART, there is a shift in the composition of the population of HIV infected cells, with the infected cells that persist over prolonged periods having proviruses integrated in genes associated with regulation of cell growth. In several cases, strong evidence indicates the presence of the provirus in specific genes may determine persistence, proliferation, or both. These data have raised the intriguing possibility that after cART is introduced, a selection process enriches for cells with proviruses integrated in genes associated with cell growth regulation. The dynamic nature of populations of cells infected with HIV during cART is not well understood, but is likely to have a profound influence on the composition of the HIV reservoir with critical consequences for HIV eradication and control strategies. As such, integration studies will shed light on understanding viral persistence and inform eradication and control strategies. Here we review the process of HIV integration, the role that integration plays in persistence, clonal expansion of the HIV reservoir, and highlight current challenges and outstanding questions for future research.
Collapse
Affiliation(s)
| | - Frank Maldarelli
- HIV Dynamics and Replication Program, NCI, NIH, Frederick, MD, 21702, USA.
| |
Collapse
|
20
|
Chebib I, Jo VY. Application of ancillary studies in soft tissue cytology using a pattern‐based approach. Cancer Cytopathol 2018; 126 Suppl 8:691-710. [DOI: 10.1002/cncy.22030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/22/2018] [Accepted: 05/22/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Ivan Chebib
- James Homer Wright Pathology Laboratories Massachusetts General Hospital Boston Massachusetts
- Harvard Medical School Boston Massachusetts
| | - Vickie Y. Jo
- Department of Pathology Brigham and Women’s Hospital Boston Massachusetts
- Harvard Medical School Boston Massachusetts
| |
Collapse
|
21
|
Yan M, Dai W, Cai E, Deng YZ, Chang C, Jiang Z, Zhang LH. Transcriptome analysis of Sporisorium scitamineum reveals critical environmental signals for fungal sexual mating and filamentous growth. BMC Genomics 2016; 17:354. [PMID: 27185248 PMCID: PMC4867532 DOI: 10.1186/s12864-016-2691-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/05/2016] [Indexed: 11/10/2022] Open
Abstract
Background Sporisorium scitamineum causes the sugarcane smut disease, one of the most serious constraints to global sugarcane production. S. scitamineum possesses a sexual mating system composed of two mating-type loci, a and b locus. We previously identified and deleted the b locus in S. scitamineum, and found that the resultant SsΔMAT-1b mutant was defective in mating and pathogenicity. Results To further understand the function of b-mating locus, we carried out transcriptome analysis by comparing the transcripts of the mutant strain SsΔMAT-1b, from which the SsbE1 and SsbW1 homeodomain transcription factors have previously been deleted, with those from the wild-type MAT-1 strain. Also the transcripts from SsΔMAT-1b X MAT-2 were compared with those from wild-type MAT-1 X MAT-2 mating. A total of 209 genes were up-regulated (p < 0.05) in the SsΔMAT-1b mutant, compared to the wild-type MAT-1 strain, while 148 genes down-regulated (p < 0.05). In the mixture, 120 genes were up-regulated (p < 0.05) in SsΔMAT-1b X MAT-2, which failed to mate, compared to the wild-type MAT-1 X MAT-2 mating, and 271 genes down-regulated (p < 0.05). By comparing the up- and down-regulated genes in these two sets, it was found that 15 up-regulated and 37 down-regulated genes were common in non-mating haploid and mating mixture, which indeed could be genes regulated by b-locus. Furthermore, GO and KEGG enrichment analysis suggested that carbon metabolism pathway and stress response mediated by Hog1 MAPK signaling pathway were altered in the non-mating sets. Conclusions Experimental validation results indicate that the bE/bW heterodimeric transcriptional factor, encoded by the b-locus, could regulate S. scitamineum sexual mating and/or filamentous growth via modulating glucose metabolism and Hog1-mediating oxidative response. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2691-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Meixin Yan
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, Peoples' Republic of China.,Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, Peoples' Republic of China
| | - Weijun Dai
- Guangdong Innovative and Entepreneurial Research Team of Sociomicrobiology Basic Science and Frontier Technology, South China Agricultural University, Guangzhou, Peoples' Republic of China.,Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, Peoples' Republic of China
| | - Enping Cai
- Guangdong Innovative and Entepreneurial Research Team of Sociomicrobiology Basic Science and Frontier Technology, South China Agricultural University, Guangzhou, Peoples' Republic of China.,Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, Peoples' Republic of China
| | - Yi Zhen Deng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, Peoples' Republic of China.,Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, Peoples' Republic of China
| | - Changqing Chang
- Guangdong Innovative and Entepreneurial Research Team of Sociomicrobiology Basic Science and Frontier Technology, South China Agricultural University, Guangzhou, Peoples' Republic of China.,Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, Peoples' Republic of China
| | - Zide Jiang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, Peoples' Republic of China.
| | - Lian-Hui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, Peoples' Republic of China. .,Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, Peoples' Republic of China.
| |
Collapse
|
22
|
Maldarelli F. The role of HIV integration in viral persistence: no more whistling past the proviral graveyard. J Clin Invest 2016; 126:438-47. [PMID: 26829624 DOI: 10.1172/jci80564] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A substantial research effort has been directed to identifying strategies to eradicate or control HIV infection without a requirement for combination antiretroviral therapy (cART). A number of obstacles prevent HIV eradication, including low-level viral persistence during cART, long-term persistence of HIV-infected cells, and latent infection of resting CD4+ T cells. Mechanisms of persistence remain uncertain, but integration of the provirus into the host genome represents a central event in replication and pathogenesis of all retroviruses, including HIV. Analysis of HIV proviruses in CD4+ lymphocytes from individuals after prolonged cART revealed that a substantial proportion of the infected cells that persist have undergone clonal expansion and frequently have proviruses integrated in genes associated with regulation of cell growth. These data suggest that integration may influence persistence and clonal expansion of HIV-infected cells after cART is introduced, and these processes may represent key mechanisms for HIV persistence. Determining the diversity of host genes with integrants in HIV-infected cells that persist for prolonged periods may yield useful information regarding pathways by which infected cells persist for prolonged periods. Moreover, many integrants are defective, and new studies are required to characterize the role of clonal expansion in the persistence of replication-competent HIV.
Collapse
|
23
|
Mertens F, Antonescu CR, Mitelman F. Gene fusions in soft tissue tumors: Recurrent and overlapping pathogenetic themes. Genes Chromosomes Cancer 2015; 55:291-310. [PMID: 26684580 DOI: 10.1002/gcc.22335] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 11/01/2015] [Accepted: 11/01/2015] [Indexed: 12/21/2022] Open
Abstract
Gene fusions have been described in approximately one-third of soft tissue tumors (STT); of the 142 different fusions that have been reported, more than half are recurrent in the same histologic subtype. These gene fusions constitute pivotal driver mutations, and detailed studies of their cellular effects have provided important knowledge about pathogenetic mechanisms in STT. Furthermore, most fusions are strongly associated with a particular histotype, serving as ideal molecular diagnostic markers. In recent years, it has also become apparent that some chimeric proteins, directly or indirectly, constitute excellent treatment targets, making the detection of gene fusions in STT ever more important. Indeed, pharmacological treatment of STT displaying fusions that activate protein kinases, such as ALK and ROS1, or growth factors, such as PDGFB, is already in clinical use. However, the vast majority (52/78) of recurrent gene fusions create structurally altered and/or deregulated transcription factors, and a small but growing subset develops through rearranged chromatin regulators. The present review provides an overview of the spectrum of currently recognized gene fusions in STT, and, on the basis of the protein class involved, the mechanisms by which they exert their oncogenic effect are discussed.
Collapse
Affiliation(s)
- Fredrik Mertens
- Department of Clinical Genetics, University and Regional Laboratories, Lund University, Lund, Sweden
| | | | - Felix Mitelman
- Department of Clinical Genetics, University and Regional Laboratories, Lund University, Lund, Sweden
| |
Collapse
|
24
|
HIV-infected cells are frequently clonally expanded after prolonged antiretroviral therapy: implications for HIV persistence. J Virus Erad 2015; 1:237-44. [PMID: 27482422 PMCID: PMC4946654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
HIV infection is controlled but not eradicated by combination antiretroviral therapy (cART), and persistence during therapy represents a substantial barrier to strategies to eradicate infection. The nature of persistence is uncertain, and a number of mechanisms have been proposed to explain HIV persistence in vivo, including low-level HIV replication, sanctuary sites for HIV-infected cells, and latent HIV residing within long-lived cells. Analysis of residual viraemia and of cell-associated HIV revealed evidence of multiple copies of identical HIV sequences suggesting infected cells can undergo cellular expansion. Recently, analysis of integration sites in HIV-infected cells derived from peripheral blood lymphocytes of patients undergoing long-term cART revealed direct evidence that HIV-infected cells undergo clonal expansion. These studies demonstrated that clonally expanded populations are common in HIV-infected individuals, persist for prolonged periods and increase in frequency during prolonged therapy. Several analyses reported that site of integration may affect persistence, clonal expansion, or both. As such, expanded populations may represent an important source of infectious HIV during cART. Many HIV integrants are defective for replication, however, and additional research is essential to determine to what degree clonally expanded populations represent a reservoir of replication-competent HIV.
Collapse
|
25
|
Nishio J, Ideta S, Iwasaki H, Naito M. Scapular osteochondrolipoma: Imaging features with pathological correlation. Oncol Lett 2013; 6:817-820. [PMID: 24137417 PMCID: PMC3789040 DOI: 10.3892/ol.2013.1455] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 06/20/2013] [Indexed: 12/18/2022] Open
Abstract
Osteochondrolipoma is an extremely rare histological variant of lipoma with osseous and cartilaginous differentiation. The present study reports an unusual case of an osteochondrolipoma occurring in the left scapular region of a 49-year-old male. The physical examination revealed a 3-cm, hard, non-tender and minimally mobile mass. Plain radiography revealed a faintly ossified soft-tissue mass without evidence of bone erosion. Computed tomography (CT) confirmed the presence of a lesion and the normal appearance of the scapula. Magnetic resonance imaging (MRI) showed a well-circumscribed subcutaneous mass with an almost homogeneous high signal intensity on the T1- and T2-weighted sequences. Contrast-enhanced fat-suppressed T1-weighted sequences demonstrated a faint peripheral and septal enhancement of the mass. A marginal excision of the tumor was performed. Histologically, the tumor was predominantly composed of mature adipocytes mixed with thin trabeculae of mature bone. In addition, small amounts of mature hyaline cartilage and osteoid were identified in the periphery of the lesion. Based on these findings, the tumor was diagnosed as an osteochondrolipoma. The patient demonstrated no evidence of local recurrence within six months of follow-up. Although rare, osteochondrolipoma should be considered as a differential diagnosis of a well-defined, calcified/ossified, subcutaneous mass in the scapular region.
Collapse
Affiliation(s)
- Jun Nishio
- Department of Orthopaedic Surgery, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan
| | | | | | | |
Collapse
|
26
|
Nishio J. Updates on the cytogenetics and molecular cytogenetics of benign and intermediate soft tissue tumors. Oncol Lett 2012; 5:12-18. [PMID: 23255885 DOI: 10.3892/ol.2012.1002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 10/04/2012] [Indexed: 12/20/2022] Open
Abstract
SOFT TISSUE TUMORS ARE CLASSIFIED ACCORDING TO THEIR HISTOLOGICAL RESEMBLANCE TO NORMAL ADULT TISSUES AND CAN BE GROUPED INTO THE FOLLOWING CATEGORIES BASED ON METASTATIC POTENTIAL: benign, intermediate (locally aggressive), intermediate (rarely metastasizing) and malignant. Over the past two decades, considerable progress has been made in our understanding of the genetic background of soft tissue tumors. Traditional laboratory techniques, such as cytogenetic analysis and fluorescence in situ hybridization (FISH), can be used for diagnostic purposes in soft tissue pathology practice. Moreover, cytogenetic and molecular studies are often necessary for prognostics and follow-up of soft tissue sarcoma patients. This review provides updated information on the applicability of laboratory genetic testing in the diagnosis of benign and intermediate soft tissue tumors. These tumors include nodular fasciitis, chondroid lipoma, collagenous fibroma (desmoplastic fibroblastoma), giant cell tumor of tendon sheath (GCTTS)/pigmented villonodular synovitis (PVNS), angiofibroma of soft tissue, myxoinflammatory fibroblastic sarcoma (MIFS) and ossifying fibromyxoid tumor (OFMT).
Collapse
Affiliation(s)
- Jun Nishio
- Department of Orthopaedic Surgery, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan
| |
Collapse
|
27
|
Overexpression of Akt1 enhances adipogenesis and leads to lipoma formation in zebrafish. PLoS One 2012; 7:e36474. [PMID: 22623957 PMCID: PMC3356305 DOI: 10.1371/journal.pone.0036474] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 04/04/2012] [Indexed: 12/22/2022] Open
Abstract
Background Obesity is a complex, multifactorial disorder influenced by the interaction of genetic, epigenetic, and environmental factors. Obesity increases the risk of contracting many chronic diseases or metabolic syndrome. Researchers have established several mammalian models of obesity to study its underlying mechanism. However, a lower vertebrate model for conveniently performing drug screening against obesity remains elusive. The specific aim of this study was to create a zebrafish obesity model by over expressing the insulin signaling hub of the Akt1 gene. Methodology/Principal Findings Skin oncogenic transformation screening shows that a stable zebrafish transgenic of Tg(krt4Hsa.myrAkt1)cy18 displays severely obese phenotypes at the adult stage. In Tg(krt4:Hsa.myrAkt1)cy18, the expression of exogenous human constitutively active Akt1 (myrAkt1) can activate endogenous downstream targets of mTOR, GSK-3α/β, and 70S6K. During the embryonic to larval transitory phase, the specific over expression of myrAkt1 in skin can promote hypertrophic and hyperplastic growth. From 21 hour post-fertilization (hpf) onwards, myrAkt1 transgene was ectopically expressed in several mesenchymal derived tissues. This may be the result of the integration position effect. Tg(krt4:Hsa.myrAkt1)cy18 caused a rapid increase of body weight, hyperplastic growth of adipocytes, abnormal accumulation of fat tissues, and blood glucose intolerance at the adult stage. Real-time RT-PCR analysis showed the majority of key genes on regulating adipogenesis, adipocytokine, and inflammation are highly upregulated in Tg(krt4:Hsa.myrAkt1)cy18. In contrast, the myogenesis- and skeletogenesis-related gene transcripts are significantly downregulated in Tg(krt4:Hsa.myrAkt1)cy18, suggesting that excess adipocyte differentiation occurs at the expense of other mesenchymal derived tissues. Conclusion/Significance Collectively, the findings of this study provide direct evidence that Akt1 signaling plays an important role in balancing normal levels of fat tissue in vivo. The obese zebrafish examined in this study could be a new powerful model to screen novel drugs for the treatment of human obesity.
Collapse
|
28
|
Kesserwan C, Sokolic R, Cowen EW, Garabedian E, Heselmeyer-Haddad K, Lee CCR, Pittaluga S, Ortiz C, Baird K, Lopez-Terrada D, Bridge J, Wayne AS, Candotti F. Multicentric dermatofibrosarcoma protuberans in patients with adenosine deaminase-deficient severe combined immune deficiency. J Allergy Clin Immunol 2012; 129:762-769.e1. [PMID: 22153773 PMCID: PMC3294021 DOI: 10.1016/j.jaci.2011.10.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 10/21/2011] [Accepted: 10/24/2011] [Indexed: 11/25/2022]
Abstract
BACKGROUND Dermatofibrosarcoma protuberans (DFSP) is a rare malignant skin tumor associated with a characteristic chromosomal translocation (t[17;22][q22;q13]) resulting in the COL1A1-platelet-derived growth factor β(PDGFB) fusion gene. This malignancy is rarely diagnosed in childhood. OBJECTIVE We observed an unexpected high incidence of this DFSP in children affected with adenosine deaminase-deficient severe combined immunodeficiency (ADA-SCID) and set out to evaluate the association of these 2 clinical entities. METHODS Twelve patients with ADA-SCID were evaluated with a complete dermatologic examination and skin biopsy when indicated. Conventional cytogenetic and molecular analyses (fluorescence in situ hybridization, RT-PCR, or both) were performed when possible. RESULTS Eight patients were found to have DFSP. Six patients had multicentric involvement (4-15 lesions), primarily of the trunk and extremities. Most lesions presented as 2- to 15-mm, round atrophic plaques. Nodular lesions were present in 3 patients. In all cases CD34 expression was diffusely positive, and diagnosis was confirmed either by means of cytogenetic analysis, molecular testing, or both. The characteristic DFSP-associated translocation, t(17;22)(q22;q13), was identified in 6 patients; results of fluorescence in situ hybridization were positive for fusion of the COL1A1 and PDGFB loci in 7 patients; and RT-PCR showed the COL1A1-PDGFB fusion transcript in 6 patients. CONCLUSIONS We describe a previously unrecognized association between ADA-SCID and DFSP with unique features, such as multicentricity and occurrence in early age. We hypothesize that the t(17;22)(q22;q13) translocation that results in dermal overexpression of PDGFB and favors the development of fibrotic tumors might arise because of the known DNA repair defect in patients with ADA-SCID. Although the natural course of DFSP in the setting of ADA-SCID is unknown, this observation should prompt regular screening for DFSP in patients with ADA-SCID.
Collapse
Affiliation(s)
- Chimen Kesserwan
- the Genetics and Molecular Biology Branch and the Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda
| | - Robert Sokolic
- the Genetics and Molecular Biology Branch and the Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda
| | - Edward W. Cowen
- the Dermatology Branch, National Institutes of Health, Bethesda
| | - Elizabeth Garabedian
- the Genetics and Molecular Biology Branch and the Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda
| | | | | | | | - Clarymar Ortiz
- the Section of Cancer Genomics, National Institutes of Health, Bethesda
| | - Kristin Baird
- the Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda
| | | | - Julia Bridge
- the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha
| | - Alan S. Wayne
- the Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda
| | - Fabio Candotti
- the Genetics and Molecular Biology Branch and the Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda
| |
Collapse
|
29
|
Delineation of chondroid lipoma: an immunohistochemical and molecular biological analysis. Sarcoma 2011; 2011:638403. [PMID: 21559269 PMCID: PMC3087950 DOI: 10.1155/2011/638403] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2010] [Accepted: 02/22/2011] [Indexed: 02/03/2023] Open
Abstract
Aims. Chondroid lipoma (CL) is a benign tumor that mimics a variety of soft tissue tumors and is characterized by translocation t(11;16). Here, we analyze CL and its histological mimics. Methods. CL (n = 4) was compared to a variety of histological mimics (n = 83) for morphological aspects and immunohistochemical features including cyclinD1(CCND1). Using FISH analysis, CCND1 and FUS were investigated as potential translocation partners. Results. All CLs were strongly positive for CCND1. One of 4 myoepitheliomas, CCND1, was positive. In well-differentiated lipomatous tumors and in chondrosarcomas, CCND1 was frequently expressed, but all myxoid liposarcomas were negative. FISH analysis did not give support for direct involvement of CCND1 and FUS as translocation partners. Conclusions. Chondroid lipoma is extremely rare and has several and more prevalent histological mimics. The differential diagnosis of chondroid lipomas can be unraveled using immunohistochemical and molecular support.
Collapse
|
30
|
Contributions of cytogenetics and molecular cytogenetics to the diagnosis of adipocytic tumors. J Biomed Biotechnol 2011; 2011:524067. [PMID: 21274402 PMCID: PMC3025394 DOI: 10.1155/2011/524067] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2010] [Accepted: 12/15/2010] [Indexed: 12/14/2022] Open
Abstract
Over the last 20 years, a number of tumor-specific chromosomal translocations and associated fusion genes have been identified for mesenchymal neoplasms including adipocytic tumors. The addition of molecular cytogenetic techniques, especially fluorescence in situ hybridization (FISH), has further enhanced the sensitivity and accuracy of detecting nonrandom chromosomal translocations and/or other rearrangements in adipocytic tumors. Indeed, most resent molecular cytogenetic analysis has demonstrated a translocation t(11;16)(q13;p13) that produces a C11orf95-MKL2 fusion gene in chondroid lipoma. Additionally, it is well recognized that supernumerary ring and/or giant rod chromosomes are characteristic for atypical lipomatous tumor/well-differentiated liposarcoma and dedifferentiated liposarcoma, and amplification of 12q13–15 involving the MDM2, CDK4, and CPM genes is shown by FISH in these tumors. Moreover, myxoid/round cell liposarcoma is characterized by a translocation t(12;16)(q13;p11) that fuses the DDIT3 and FUS genes. This paper provides an overview of the role of conventional cytogenetics and molecular cytogenetics in the diagnosis of adipocytic tumors.
Collapse
|